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For the first time in 2018 the Italian Institute of Statistics (Istat) implemented the annual
Permanent Population Census which relies on the Population Base Register (PBR) and the
Population Coverage Survey (PCS). This article provides a general overview of the PCS
sampling design, which makes use of the PBR to correct population counts with the extended
dual system estimator (Nirel and Glickman 2009). The sample allocation, proven optimal
under a set of precision constraints, is based on preliminary estimates of individual
probabilities of over-coverage and under-coverage. It defines the expected sample size in
terms of individuals, and it oversamples the sub-populations subject to the risk of under/over
coverage. Finally, the article introduces a sample selection method, which to the greatest
extent possible satisfies the planned allocation of persons in terms of socio-demographic
characteristics. Under acceptable assumptions, the article also shows that the sampling
strategy enhances the precision of the estimates.
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1. Introduction

The Italian National Statistical Institute is currently engaged in a modernization program

involving a vital revision of the approach traditionally embraced for the production of

official statistics. In accordance with the European Statistical System commitment to

Vision 2020 and UNECE – High-level group on Modernization of official statistics (Istat

2016), the program aims to enhance the Italian Integrated System of Statistical Registers

(ISSR). The ISSR is the result of the integration of administrative with survey data (Alleva

2017). An important part of the ISSR is the Population Base Register (PBR), which

updates the list of administrative households and people each month.

In this new environment, Istat has started to implement the Permanent Census in order

to count the people living in their usual places of residence (or living people) at the

municipality level. The use of the PBR as a unique tool to implement the Permanent

Census incorporates some errors in counting living people mainly for two reasons. First,

the PBR is not able to correctly register the movements of people among the

municipalities, the numbers of immigrated and emigrated people, births and deaths.

Moreover, the archives, which feed the PBR, have non-statistical purposes. Thus, the
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registered place of residence could differ from the usual place of residence (for example,

for reasons related to paying taxes). These above errors introduce under-coverage and

over-coverage into the living population counts. To overcome these problems, the Census

Population Coverage Survey (PCS) is carried out each year as a component of the

Permanent Census Survey System. The PCS selects an area sample in order to estimate the

coverage problems, which affect the PBR. It implements a two-step process. The objective

of the first step is to estimate the under-coverage using a capture/recapture estimator

(Wolter 1986) and the second step calculates the over-coverage by following up on the list

of persons captured and recorded in the PBR, but not recaptured in the first step of the

process (Nirel and Glickman 2009).

The Permanent Census incorporates the results of the PCS into the PBR by defining

individual coverage weights. The sum of these weights over the register units yields

unbiased estimates of the living population.

The Permanent Census also includes a list survey which observes some target variables

for the census statistics. The two surveys together (the PCS and the list survey) represent

the Master Sample of the social surveys system of Istat, and the Permanent Census’ annual

counts essentially become the basis for demographic statistics. This entire process thus

facilitates both the complete integration and the convergence of three statistical

information systems (census counts, demographic statistics and social surveys). Until now,

these three systems were completely independent of one another, creating an additional

risk of producing inconsistent statistical figures.

This article focuses on the planning of a sample design of the PCS, optimal for

estimating the living population at municipality level under a given set of precision

constraints. This sampling design is both challenging and innovative for different

reasons. It uses the output of statistical models flexibly as auxiliary information for the

sampling design definition (Section 2). Furthermore, the area sampling takes into account

the indirect sampling of individuals for estimating the unknown population size

(Section 3 and Section 4). Eventually, the selection of the areas uses the balanced

sampling method to guarantee as far as possible that the planned optimal allocation in

terms of persons by socio-demographic characteristics is satisfied (Section 5). Section 6

shows some evidence of the realized sampling process and presents the first results of

collection from the field. Finally, Section 7 summarises the main findings and provides

some conclusions.

2. Parameters of Interest

The target parameters of the PCS are different characteristics of the living population for

different geographical domains and demographic sub-classes.

To expedite comprehension of this work, here below we will concentrate on the two

primary target parameters to be estimated at the municipality level.

These are: the number of people living in a given municipality, denoted as NL, and the

proportion of living people in the municipality over those counted in the register, indicated

in the following as PLjR. Both parameters are highly relevant. NL is the primary input for

defining the legal population, which determines the number of parliamentarians for

specific areas. PLjR represents a significant quality measure of the PBR.
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2.1. The Formal Definition of the Target Parameters

Let g be a variable which divides the living and the registered population into G socio-

demographic groups (or classes). The g variable identifies the individual demographic

profile for defining the sub-populations or strata where the probabilities of over-coverage

are homogeneous (Nirel and Glickman 2009) and where the assumptions of the capture/

recapture model hold (Wolter 1986). We summarise the statistical process for arriving at

the definition of this variable in Subsection 2.2. In the present section, we note that proper

identification of the g variable is crucial for enhancing the quality of the overall statistical

process and for improving the efficiency of the sampling strategy.

Based on the partition induced by g, we express NL as:

NL ¼
XG

g¼1
Ng;L ¼

XG

g¼1
Ng;R

Ng;RL=Ng;R

Ng;RL=Ng;L
¼
XG

g¼1
Ng;R

Pg;LjR

Pg;RjL

¼
XG

g¼1
Ng;R dg;

where, regarding the class g (g ¼ 1 : : : , G) of g: Ng;L is the number of living people; Ng;R

denotes the total number of people in the PBR; Ng;RL indicates the total number of living

people who are correctly included in the register; Pg;LjR ¼ Ng;RL/Ng;R is the proportion of

living people in PBR; PgRjL ¼ Ng;RL/Ng;L is the proportion of living people in PBR with

respect to all the living people; dg ¼ PgRjL=PgRjL are the coverage weights. Note that

1 2 Pg;LjR

� �
is the over-coverage proportion of PBR and ð1 2 Pg;RjLÞ is the under-coverage

proportion of PBR.

In the same way, we have

PLjR ¼
NRL

NR

¼
1

NR

XG

g¼1
Ng;RPg;LjR;

being NR ¼
P

g Ng;R.

2.2. Definition of the g Variable

The definition of the g variable is a complex process in which both results from statistical

models as well as practical issues related to the feasibility of the PCS sampling design are

taken into consideration. At the end of this process, we can state that definition of the g

variable has been driven by four guiding principles, herein listed as:

1. the g variable should be somehow predictive of both phenomena of over-coverage

and under-coverage affecting the quality of the register,

2. The register data should permit the calculus of the specific g value for each unit in the

register,

3. The partitioning into G classes must be parsimonious, and

4. The partitioning criteria ought to be robust as a result of studying the coverage of

different observational data sets with various statistical models.

The rationale of these principles is the following: the word “somehow” in the first

principle means that the definition of g is guided not only by statistical model

considerations. The models represent working tools, useful for choosing the variables to be

involved in the calculus of g. The basic implication of the second principle is that only

register variables should be used for defining g. The third principle states that partitioning
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into G classes should not define population subgroups that are so small that they would

impose constraints on the sample sizes, making them too challenging to handle in the

phase of sampling design (see Section 5). The fourth principle affirms that the efficacy of

the definition of the g variable should be verified with more than one experiment.

The process of building the g variable starts from examining the results of two logistic

models, one for under-coverage and the other for over-coverage. The models use the ad

hoc 2015 survey data based on a sample of about 145,000 people in 800 enumeration areas

(areas defined at sub-municipality level) located in more than 80 municipalities (Mancini

and Ronconi 2017). The data collection for this survey adopts the two-step process. In the

first step, the capture is the 2015 administrative register listing the people in the sample

areas, and the recapture occurs in the field survey. The second step for identifying over-

coverage is a follow-up of the sub-set of non-recaptured people in the first step. The people

not recaptured in the follow-up represent cases of over-coverage.

The models utilize the auxiliary variables available within the register. These are both at

the individual and the area level. The variables at the individual level are Gender, Age-

class, Citizenship, Type of household (one-component/more than one-component). Those

at the area level are Type of census enumeration area (urban/rural), Size of the

municipality, Macro Region.

Table 1 presents the salient results of using the two models in terms of the conditional

odds ratio related to the control class.

An odds ratio of 1 indicates that the event being studied (under-coverage or over-

coverage) is equally likely to occur in both classes; that is, the interest class and the control

class. An odds ratio greater than 1 indicates that the under-coverage or over-coverage is

more likely to occur in the interest class. An odds ratio lower than 1 indicates that the

under-coverage or over-coverage is more likely to occur in the control class. Analysis of

the odds ratio reveals that the larger positive values are for people living in one-component

households and for foreigners. Also, the Age-class variable shows a significant difference

between each class and the control class (50–64). Values larger than 1 for younger people

signal a higher probability of both under-covered and over-covered. On the other hand, the

register covers people in the 65 þ class better. Further results, not presented in the article,

show that the effect of each age class on coverage is statistically significant (at the 5%

level). The Gender variable here has only a minor impact on coverage. Specifically, the

odds ratio value is not statistically significant for under-coverage. The odds ratio for the

Municipality by population size variable is significantly smaller than one, which means

that larger cities (.50,000) have greater under-coverage and over-coverage. However, if

we consider the odds for the municipalities with less than 50,000 inhabitants, coverage is

similar. Finally, the Type of enumeration area and Macro-region variables do not reveal a

statistically significant impact. We used the data of the 2011 Census Post Enumeration

Survey (PES) to validate the robustness of these models. The PES estimated the under-

coverage and identified the Age-class and Citizenship as the variables affecting the

coverage. The two models treated above include Household type as an explicative

variable.

For reasons of the fourth principle (that of parsimony), we shall not consider other

variables. Furthermore, we implement a further step of aggregation of age classes from

five to three since the former number generates an overly detailed stratification, and
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sample allocation should not be unduly complicated. We combine the first three classes

characterized by higher under-coverage and over-coverage and define the 0–49 class. This

class is vast. It covers people in very different stages of their life cycle, and the reasons that

affect the coverage of these groups are different. Nevertheless, they have a roughly similar

level of coverage rate, and this represents an essential property for the scope of our

research. At the end of this process, we identify G ¼ 12 classes obtained by the cross-

classification of the Age-class (0–49; 50–64; þ 65), Citizenship (Italian/Foreigner), and

Type of household (one-component /more than one-component). These are then the strata

of the sampling design, and we note these strata overlap the post-strata used in the

estimation phase.

Table 1. Odds ratio of logistic models for under-coverage and over-coverage prediction according to the 2015

survey.

Variable Classes* Under-coverage
model conditional

odds ratio**

Over-coverage
model conditional

odds ratio**

Gender Male 0.959 0.880
Female (control) – –

Age-class 0–14 2,056 2,038
15–29 3,348 2,539
30–49 2,910 2,915
50–64 – –
65þ 0,459 0,401

Household type One-component 4,681 3,055
More than one-
component (control) – –

Citizenship Foreigner 2,269 4,586
Italian – –

Enumeration Urban 0,644 0,754
area type Not-Urban (control) – –

Municipality by ,1,000 0,470 0,438
population size 1,000–4,999 0,359 0,322

5,000–9,999 0,637 0,359
10,000–49,999 0,337 0,389
.50,000 (control) – –

Macro region Islands 1,366 0,596
South 1,166 0,712
Centre (control) – –
North-East 1.105 0.738
North-west 0.653 0.817

*Corner point Parametrization: control case. Gender: Female; Age class: 50–64; Household type: more than one

component; Citizenship: Italian; Municipality population: .50,000; Macro Region: Center.

**Bold values: P value minor than significance level of 5%
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3. General Description of the PCS Sampling Design and Estimators

The first cycle of the Permanent Census considers the years ranging from 2018 to 2021.

The PCS and the List Survey (LS) serve to support the Permanent Census. The PCS in that

it selects a sample of areas to correct the coverage problems of the PBR. The LS in that it

draws a sample of households from the list of households in the PBR and collects the

census target variables which are not recorded in the PBR.

The two surveys are conducted each year according to a two-stage sampling design, in

which the Primary Sampling Units (PSUs) are Italian municipalities. For each year of the

census cycle, both the PCS and the LS share the same sample PSUs. Nevertheless, the

samples of households in the two surveys are negatively coordinated one to the other and

for different survey occasions.

3.1. The Sampling Design

From this point onwards, we limit ourselves exclusively to a description of the sampling

design of the PCS. The sampling design splits the PSUs into:

1. Self-Representative PSUs selected each year including 600 municipalities with a

population of more than 18,000 inhabitants and about 545 municipalities drawn from

the Labor Force Survey;

2. Non-Self-Representative PSUs, roughly 6,840 municipalities. Within each province,

these are stratified with reference to homogeneous population size strata. Each

stratum has four PSUs, and one PSU is drawn from each stratum each year using

simple random sampling so that, within a four-year period of time, all the Italian

municipalities have been observed.

As a general rule, the Secondary Sampling Units (SSUs) are street address numbers

(hereinafter addresses) in urban areas and Enumeration Area (EAs), which are clusters of

addresses, in non-urban areas. The EAs are the SSUs also in urban areas for about 15% of

small municipalities, where a significant part of the addresses in the territory are poorly

identified. It is worth noting that the EAs constitute the most detailed partitioning of the

national territory and that an EA cannot overlap into two or more municipalities. Two

primary considerations have driven the definition of two different types of SSUs. The first

is that there is a more precise definition and localization of addresses within densely

populated urban areas and higher risk of address errors in non-urban areas. The second has

to do with the reduction of the cost of an interview: it is significantly more cost-effective to

collect data for more than one address in cases where the interviewer has to arrive at

remote non-urban areas.

The generic PSU is indicated with the subscript i. The PCS sampling frame lists the SSU

codes with associated geographical references (region, municipality, and so on) and the

registered number of people in the G classes Ni;g;R, being
P

i Ng;i;R ¼ Ng;R. In the following,

the vector Ni;R ¼ (Ni;1;R; : : : ;Ni;g;R; : : : ; Ni;G;RÞ
0 is specified as the SSU profile.

The sampling frame integrates the Geographical Base Register – listing the Italian

addresses and any geographical references such as municipality and EA codes – with the

PBR. In this integration, a data cleaning process is carried out to delete all the non-

residential addresses such as markets, shops, garages, and so on.
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In the 2018 PCS round, 2,745 municipalities (containing approximately 43 million

people, 72% of the country’s population) are sampled using the area sampling design

while the PCS considers all the areas in 107 small-scale municipalities. In 2,745

municipalities, the sample selection includes approximately 166,000 addresses and 3,450

EAs. The expected sample size, given by the available PBR information is around 935,000

people (about 2.2% of the sampling fraction).

The sample selection of SSUs from each municipality is realized by means of a three-

step process, with the aim of obtaining the optimal sampling of individuals:

1. Definition of the optimal sample sizes in terms of individuals, ng;R, for each subclass

g (g ¼ 1; : : : ;G). This is described in Section 4,

2. Definition of the inclusion probabilities of SSUs by a calibration process ensuring

that the expected sample sizes for each subclass g are equal to the optimal ng;R. This

is described in Subsection 5.1, and

3. Selection of a balanced sample of SSUs utilizing the cube algorithm (Tillé 2006),

ensuring that the number of registered people in the selected sample of SSUs equals

the optimal sample sizes. This is described in Subsection 5.2.

All the living households are observed in each SSU, and every individual who is a

member of the household is interviewed. In the first step of the survey, the interviewer

does not have access to the list of the registered population of the SSU. In the over-

coverage follow-up, interviewers for a given SSU investigate whether the registered

households which they did not find in the first step are living in the SSU or not.

3.2. Basic Elements of the Estimator

Considering the PBR as the first capture and the PCS as the second capture (or recapture),

NL can be estimated by applying the Extended Dual System Estimator (Nirel and

Glickman 2009) given by

N̂L ¼
XG

g¼1
N̂g;L ¼

XG

g¼1
Ng;R

P̂g;LjR

P̂g;RjL

¼
XG

g¼1
Ng;R d̂g; ð1Þ

where P̂gLjR and P̂g;RjL are the sample estimates of the proportions PgLjR and Pg;RjL being

that d̂g ¼ P̂g;LjR=P̂g;RjL. Note that in the PBR each individual of a given municipality in a g

class has the same weight, d̂g, which is to be included in the PBR at the individual level.

This weight is unique for that individual. All the estimates of living populations for

different domains or sub-classes will be produced directly from PBR using these weights.

The use of a unique weight ensures internal coherence of the estimates of the population

size of different population sub-groups.

Comparable to Equation (1), we can also estimate P̂LjR as:

P̂LjR ¼
1

NR

XG

g¼1
Ng;R P̂g;LjR:

The PCS allows for the building of unbiased estimates of both P̂g;RjL and P̂g;LjR ratios.

In its first step, the PCS is carried out using the usual capture/recapture technique. To

illustrate this step with regard to sub-group g, let

Sg; 1ð ÞRL ¼ Sg;L > Sg;R;
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denote the sampling intersection set, where Sg;L identifies the set of individuals detected as

living and belonging to the addresses and EAs selected in the sample, and Sg;R identifies

the set of individuals recorded in the register as belonging to the addresses and EAs

selected in the sample. We compute P̂g;RjL as

P̂g;RjL ¼
N̂g; 1ð ÞRL

N̂g; 1ð ÞL

;

where: N̂g; 1ð ÞRL is the estimate of Ng;RL obtained by summing the PCS sampling weights

over the units in Sg; 1ð ÞRL, and N̂g; 1ð ÞL is the rough estimate of Ng;L obtained by summing the

PCS sampling weights over the units in Sg;L.

The second step of the PCS is a follow-up on the sampling set Sg; 2ð ÞR ¼ Sg;R\Sg; 1ð ÞRL, which

includes the people belonging to the register and not found as belonging to the living

population in the first step. These individuals are observed in the second step with different

data collection techniques. At the end of this process, we identify a subset of them,

Sg; 2ð ÞRL ¼ Sg; 2ð ÞR > Sg;L;

as belonging to the living population. We then estimate the probability P̂g;LjR as

P̂g;LjR ¼
N̂g; 1ð ÞRL þ N̂g; 2ð ÞRL

N̂g;R

;

where: N̂g;R is the estimate of Ng;R obtained by summing up the PCS sampling weights over

people of the sample set Sg;R; N̂g; 2ð ÞRL is obtained by summing the PCS sampling weights over

the units of the set Sg; 2ð ÞRL. N̂g; 2ð ÞRL represents an additional estimate of the living population

included in the register obtained from the follow-up operations of the second step.

4. Sample Size Allocation of Individual Sub-Groups at the Municipality Level

The sample allocation problem at the municipality level centers on the definition of the

vector nR ¼ ng;R : g ¼ 1; : : : ;G
� �

of expected sample sizes for population sub-groups.

This vector is the most influential factor in calculating the cost of doing surveys and it

determines the payments for interviewers. Moreover, as shown below, it has a direct

impact on the expected precision of the estimates.

As shown in Section 5, the numbers of sampled addresses and EAs are a by-product

derived from nR.

To define nR, we solve the Optimization Problem (OP) illustrated in Falorsi and Righi

(2015). The OP has the objective function of minimizing the number of interviews in a

municipality, which is equivalent to cutting survey costs. Moreover, the OP defines as

constraints the requirement that the sampling variances of the target estimates (N̂L and

P̂LjR) are lower than the prefixed thresholds. Defining the sampling variances V N̂L

� �
and

V P̂LjR

� �
as a function of the vector nR is the first step to making the OP operational. For

V N̂L

� �
we consider the approximated design variance using the Taylor linearization

method (Pfeffermann 2015):

V N̂L

� �
¼
X

g
N2

g;R

V P̂g;LjR

� �

E P̂g;RjL

� �� �2 þ
E P̂g;LjR

� �� �2

E P̂g;RjL

� �� �4 V P̂g;R=L

� �
" #

: ð2Þ
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The variances V P̂g;LjR

� �
and V P̂g;RjL

� �
in Equation (2) are those of a two-stage cluster

sampling design. We may obtain their values by starting from the sampling variances of a

Simple Random Sampling (SRS) design – respectively of ng;R registered units and ng;L

living units. We then multiply the latter variances by the design effect, deff, (Kish 1965;

Cochran 1977) which is the ratio of the sampling variance of a complex sampling design

over that of an SRS. Thus, we have:

V P̂g;LjR

� �
¼

Pg;LjR 1 2 Pg;LjR

� �

ng;R

� 	
deff ; ð3Þ

V P̂g;RjL

� �
¼

Pg;RjL 1 2 Pg;RjL

� �

ng;L

� 	
deff ø

Pg;RjL 1 2 Pg;RjL

� �

ng;R

E P̂g;RjL

� �

E P̂g;LjR

� �
" #

deff ; ð4Þ

being ng;L ø ng;R E P̂g;LjR

� �
=E P̂g;RjL

� �� �
:

Plugging the Equations (3) and (4) into (1), we obtain:

V N̂L

� �
¼
X

g
N2

g;R

1

ng;R

Pg;LjR 1 2 Pg;LjR

� �

E P̂g;RjL

� �� �2 þ
E P̂g;LjR

� �

E P̂g;RjL

� �� �3 Pg;RjL 1 2 Pg;RjL

� �
" #

deff ;

ð5Þ

In order to make Equation (4) computable for the OP, we considered the estimates P̂g;LjR,

P̂g;RjL and ddeffdeff respectively of Pg;LjR, Pg;RjL and deff.

The use of the parameters from the logistic models (Subsections 2.2) gives us the

estimates of P̂g;LjR and P̂g;RjL. We compute the ddeffdeff by simulating the actual sampling

design on the data of the previous Population Census. We obtain the plug-in estimator of

V N̂L

� �
as

V̂ N̂L

� �
¼
X

g
N2

g;R

1

ng;R

P̂g;LjR 1 2 P̂g;LjR

� �

P̂g;RjL

� �2
þ

P̂g;LjR

P̂g;RjL

� �3
P̂g;RjL 1 2 P̂g;RjL

� �
" #

ddeffdeff : ð6Þ

The computable expression of V̂ P̂LjR

� �
, used as input in the OP, is

V̂ P̂RjL

� �
¼

1

N2
R

¼
X

g
N2

g;R

1

ng;R
P̂g;RjL 1 2 P̂g;RjL

� �ddeffdeff : ð7Þ

Thus, based on Equations (6) and (7), the OP for defining the nR is given by:

min nR ¼
XG

g¼1
ng;R


 �

XG

g¼1
N2

g;R

1

ng;R

P̂g;LjR 1 2 P̂g;LjR

� �

P̂g;RjL

� �2
þ

P̂g;LjR

P̂g;RjL

� �3
£ P̂g;RjL 1 2 P̂g;RjL

� �
" #

ddeffdeff # V*
1;

1

N2
R

X
g
N2

g;R

1

ng;R
P̂g;RjL 1 2 P̂g;RjL

� �ddeffdeff # V *
2

ng;R # Ng;R; g ¼ ð1; : : :;GÞ

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð8Þ
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where V
*

1 and V
*

2 are the pre-defined variance-thresholds and Ng;R is the resulting total

number of people (from the register) in subgroup g of the municipality. These thresholds,

expressed in terms of coefficient of variations (Table 2), vary according to municipality

size.

Further variance constraints have been set up at the regional level and national level.

These influence the final solution only marginally. The final solution is mainly affected by

constraints defined at the municipality level on V̂ N̂L

� �
. This is the main reason why we

decided to focus this section on describing the constraints at the municipality level only.

Practical implementation of the optimal allocation algorithm has been carried out

employing the open-source software MAUSS-R (Buglielli et al. 2013). This software

automatically guarantees the respect of the constraints ng;R # Ng;R g ¼ 1; : : : ;G
� �

of

Equation (8) reiterating the algorithm until the constraints are respected.

To explain more clearly how the System (1) works, it is useful to consider the univariate

single domain-case in which the only target parameter is N̂L in a given municipality. Let us

reformulate the Equation (6), in the following way:

V̂ N̂L

� �
¼
X

g
N2

g;R

1

ng;R
ŝ2

g;N̂L
;

being

ŝ2
g;N̂L
¼

P̂g;LjR 1 2 P̂g;LjR

� �

P̂g;RjL

� �2
þ

P̂g;LjR

P̂g;RjL

� �3
P̂g;RjL 1 2 P̂g;RjL

� �
" #

ddeffdeff :

Thus, the univariate OP is defined as

min nR ¼
XG

g¼1
ng;R


 �

X
g
N2

g;R

1

ng;R
ŝ2

g;N̂L
¼ V

*

1 :

ng;R # Ng;R; g ¼ 1; : : : ;G
� �

8
>>>>>><

>>>>>>:

Solving the above OP, we obtain the classical Neyman solution:

nR ¼

XG

g¼1
Ng;Rŝg;N̂L


 �2

V
*

1

; ð9Þ

Table 2. Coefficient of variation thresholds for implementing the allocation at municipality level.

Municipality

by number

of residents

,1,000 1,000–4,999. 5,000–19,999 20,00–49,999 50,000–799,999 .799,999

Estimates

N̂L 0.20% 0.20% 0.20% 0.20% 0.09% 0.05%

P̂LjR 0.40% 0.33% 0.25% 0.16% 0.09% 0.06%
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and

ng;R ¼ nR

Ng;Rŝg;N̂LXG

g¼1
Ng;Rŝg;N̂L

ð10Þ

The actual sample sizes defined at municipality level are very close to those defined by

Equations (9) and (10) since, as anticipated before, the constraints defined at the

municipality level on V̂ N̂L

� �
have the greatest impact on the final solution of the OP.

Finally, we notice that the actual final allocation is slightly different from the optimal

allocation as described above since further operative constraints have been applied. First,

we could have increased the sample sizes for the municipalities with less than 1,000

inhabitants since at least 100 households need to be interviewed. Then, we have carried out

a traditional census in municipalities with a population of less than 300 inhabitants. Lastly,

additional efforts can be made to smooth the solution towards proportional allocation

wherever the optimal allocation is much too different from the proportional one.

5. Sample Selection at the Municipality Level

5.1. Definition of the Inclusion Probabilities of the SSU

The inclusion probability, pi (i ¼ 1; : : : ;M), of the ith SSU in a given municipality is

defined by the following calibration system ensuring that the expected sample sizes for

each subclass g are equal to the optimal ng;R:

min
XM

i¼1
Dðpi; �pÞ


 �

XM

i¼1
piNi;g;R ¼ ng;R; g ¼ 1; : : : ;G

� �

L �p # pi # U �p for i ¼ 1; : : : ;M

8
>>>><

>>>>:

; ð11Þ

where: M is the number of SSUs in the municipality, D pi; �p
� �

is the truncated logarithmic

distance function (Singh and Mohl 1996) between pi and �p ¼ nR=NR which is the initial

inclusion probability to ensure that the expected sample size for the municipality is equal

to the optimal one; 0 # L # 1; and U $ 1. Furthermore, the truncated logarithmic

distance function ensures that the final inclusion probabilities are bounded in the interval

L �p;U �p
� �

. The problem of Equation (11) is solved with the software Regenesees

(Zardetto 2020).

We note that the system (11) finds the final inclusion probabilities starting from an

initial inclusion probability, �p, which ensures that each person in the gth class is selected

in the sample with the same probability, irrespective of the SSU in which they are

registered. This solution seems optimal since it minimizes the variance of the final weights

(Kish 1965, sec. 11.7). However, the initial probability does not ensure the respect of the

optimal ng;R; g ¼ 1; : : : ;G
� �

sample sizes, since once that particular SSU i is selected in

the sample, the whole vector Ni;R ¼ Ni;1;R; : : : ;Ni;g;R; : : : ; Ni;G;R

� �
0 must be observed.
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5.2. Selection of the SSUs

In all municipalities, the SSUs are selected with the cube algorithm (Tillé 2006),

guaranteeing approximate respect of the following balancing equations

X
i[s

Ni;R ¼ ð n1;R; : : : ; ng;R; : : : ; nG;RÞ
0; ð12Þ

s being the sample of the SSUs.

In practice, selecting a sample with this level of detail might be unfeasible, especially

for smaller municipalities. Therefore, in these situations, starting from the constraints (12),

we can define a new system with fewer equations. In order to accomplish this, we

aggregate the ng;R optimal sample sizes into G classes (with G , 12), where the size of

each class g (g ¼ 1, : : : , G) of the new classification is obtained by summing the

sampling dimensions of the original grouping into G classes. Table 3 illustrates this

aggregation scheme. We see that in municipalities with over 100,000 registered people,

the original sample allocation with G ¼ 12 is implemented; in municipalities with less

than 100,000 registered people and sample size , 50 people, no allocation into classes is

executed. The balancing equations control the sample size according to Age-class variable

and separately by Household type variable in municipalities with a sample size between 50

and 150). Eventually, with a sample size of over 150 people and less than 100,000

registered people, allocation considers Age-class, Household type and Citizenship

separately.

In a given municipality with less than 100,000 registered people, the cube algorithm

selects the sample of SSUs, respecting the following balancing equations approximately,

X
i[s

Ni;G;R ¼ nG;R;

in which Ni;GR ¼ Ni;1;R; : : : ;Ni;g;R; : : :Ni;G;R

� �
0 and nG;R ¼ n1;R; : : : ; ng;R; : : :nG;R

� �
0 are

the population vector of the ith SSU and the sample allocation vector defined according to

Table 3.

6. Some Findings from the Sampling Design of the 2018 PCS

We now analyze the sample, having considered the expected sample distributions and a

rough index of accuracy related to the allocation (Subsection 6.1). Moreover, we make

preliminary comparisons between the expected and the observed sample distributions

(Subsection 6.2).

Table 3. Sample allocation classes by expected sample size nR and population size NR.

Expected sample
size nR

Population size NR Sample allocation classes

,50 Expected overall sample size
50–150 ,100,000 Age class þ household type
.150 Age class þ household type þ citizenship

100,000 and more Age class þ household type þ citizenship
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6.1. The Expected Sample Distributions and a Rough Index of the Accuracy

The proposed sample design aims to select a sample for controlling the number of people

according to specific socio-demographic characteristics (Section 5) in order to minimize the

sampling variance of the population count estimation. The optimal allocation reveals

important differences with the proportional allocation. Table 4 gives the sampling distribution

of the optimal allocation and the proportional-to-municipality population allocation by

municipality size. The evidence indicates that the optimal allocation oversamples in the

smallest municipalities due to the precision thresholds and the operative constraints applied to

about 600 cities with less than 1,000 inhabitants. Samples allocated in the largest

municipalities are relatively much smaller than those of proportional allocation since the

sample size needed to respect precision constraints is somehow independent of the population

size. This is the counterpart of the phenomenon observed in the smallest municipalities, where

optimal allocation gives a sample more than four times greater than the proportional allocation.

Table 5 offers insights into the demographic distribution of the sample. Note that the

proportional allocation would be the expected allocation if we selected a sample without

demographic constraints. Comparison of the two allocations underlines that the optimal

allocation oversamples, particularly people living in a one-component household,

foreigners and the 0–49 age class.

Table 6 shows a Raw Efficiency Index (REI) calculated as

REI ¼ Mean
V̂ N̂L

� �
j optimal allocation

V̂ N̂L

� �
j proportional allocation

" #
; ð13Þ

the average of the municipality ratios between the variances in Equation (5) computed

with the optimal allocation and the proportional allocation. We denote this as “raw” since

the index takes the parameters in the variance Equation (5) as true values. This is a strong

assumption and we consider the result as a qualitative index.

The findings here highlight the improvement in efficiency of the proposed sampling

strategy.

Table 4. Optimal population sample allocation versus proportional allocation by municipality size according to

the PBR.

Municipality by size Optimal expected sample
allocation

Proportional expected sample
allocation

,5,000 26.6% 6.6%
5,001–2,0000 24.2% 19.5%
2,0001–5,0000 12.3% 26.3%
5,0001–250,000 31.5% 26.5%
þ250,000 5.4% 21.1%
Total 100.0% 100.0%

Sample size 935,396 935,396
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6.2. Evidence from the PBR and Field Data Collection

We compare the planned sample with the realized sample in PCS, highlighting

discrepancies in the socio-demographic sample distributions. We recommend considering

the results below with a degree of caution since there are some aspects not thoroughly

addressed in this article. These include (1) the occurrence of non-responses in the PCS; (2)

register addresses that cannot be identified in the territory, thereby reducing the number of

sampled persons; (3) the difference between the reference time of the PBR used for the

sample selection and the reference time of the PCS.

The oversampled categories such as people living in a one-component household and

foreigners display significant differences between realized and expected sample size. The

Relative Percentage Difference Index (RPDI), given by

RPDI ¼ 100 £
realized sample size 2 expected sample size
� �

expected sample size
; ð14Þ

is, respectively, equal to 225.3% and 35.4% for the two classes (corresponding to

approximately 61,000 and 23,000 persons). Although no conclusion can be drawn on the

reasons for these results (PBR over-coverage, obsolete sampling frame, non-response in

the PCS), the results are a wake-up call, and larger samples for these sub-populations

Table 6. Raw efficiency index (ratio of expected variance

with optimal allocation and proportional-to-population

size allocation) by municipality population size.

Municipality by size REI*

,10,000 50.6%
10,000–100,000 48.4%
100,000–250,000 53.0%
.250,000 67.8%

*see Equation (13)

Table 5. Optimal population sample allocation versus proportional allocation by demographic characteristics

according to the PBR.

Characteristics Optimal expected
sample allocation

Proportional expected
sample allocation

People living in a 1-component
household

25.0% 15.5%

People living in a household
with 2 or more components

75.0% 84.5%

Italian 87.2% 91.8%
Foreigners 12.8% 8.2%

0–49 age class 56.1% 42.0%
50–64 age class 20.4% 42.4%
þ65 age class 23.5% 15.6%

Sample size 935,396 935,396
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facilitate the capture/recapture process and offer greater accuracy in the estimates. The

proposed sample allocation achieves this condition.

Finally, Table 7 shows a slight change in the distribution by age class between expected

and realized samples. Consequently, the sample size reduction has been distributed across

the classes more uniformly, and the RPDI is less significant.

7. Conclusions

The article describes the sampling design of the 2018 Population Coverage Survey (PCS)

of the new Italian Permanent register-based Population Census that will produce census

counts every year. The primary source of the Permanent Census is the Population Base

Register (PBR). The PBR is the final result of the integration of multiple administrative

archives implemented by the Istat. The PBR lists the population according to

administrative place of residence, whereas the census target population is the living

population at the municipality level. The reasons why the two populations differ can

depend on: administrative errors, non-updated information in the PBR, the personal

interests of particular persons which have them registered in places that are not their living

area. That said, the direct use of the PBR for census counts produces biased statistics, and

the PCS is needed to provide unbiased estimates of population sizes. The sampling design

of the PCS introduces both relevant and reliable innovations for dealing with the census

coverage errors. We briefly indicate what these are: (1) the PCS selects areas with a

different level of detail such as addresses and EAs. The choice depends on cost and

operative constraints (addresses in urban areas and EAs in not urban areas) and on the need

to control expected sample size. (2) The use of previous data (the 2011 Population Census

and pilot studies) to set up predictive models of the individual probabilities to be

under/over-covered and useful for defining optimal sample sizes for specific sub-

populations. (3) The calculation of the inclusion probabilities of the Secondary Stage Units

varies according to their socio-demographic profiles in such a way that the sample design

Table 7. Expected sample size by demographic distributions of the expected and observed sample sizes.

Characteristics Expected sample
size

Realised sample
size

RPDI**

People living in a 1
component household

25.0% 20.7% 225.3%

People living in a household
with 2 or more components

75.0% 79.3% 24.8%

Italian 87.2% 90.7% 26.2%
Foreigner 12.8% 9.2% 235.4%

0–49 age class 56.1% 55.2% 211.4%
50–64 age class 20.4% 20.8% 28.1%
þ65 age class 23.5% 24.0% 27.9%

Sample size 935,396 842,539* 29.9%

* Preliminary value; ** see Equation (14)
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oversamples specific sub-populations subjected to the risk of under/over coverage. In

particular, we verify that the allocation oversamples people living in a one-component

household and foreigners. (4) The application of a sample selection method for Secondary

Stage Units is based on balanced sampling, which ensures respect of the planned sample

sizes for socio-demographic sub-groups.

When compared with a sample design that ignores registered demographic information

at the area level, we have seen that, if the assumptions of the super-population models for

coverage hold, the sample design we have described does improve the precision of

sampling estimates.

While making the comparison between the realized sample sizes with the expected ones,

we notice that the PCS has major issues with trying to recapture those persons that are

oversampled by the sampling design. Therefore, the opportunity to have a larger sample

size for these sub-populations improves the accuracy of the final census count estimates.

Finally, fieldwork operations confirm that the factors which have the greatest relative

importance in explaining the structural differences between the registered and the usual

place of residence within the country are Household type and Citizenship. In particular,

people living in a one-component household and foreigners are the sub-populations most

affected by coverage problems. The reasons for these structural differences are partially

self-evident. Still, there is room for further empirical analysis to investigate whether or not

there are interactions with other factors, such as size of the municipality or geographical

area. We would use such findings to refine the proposed methodology.
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