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I. INTRODUCTION 

In the field of tissue engineering and biomedicine 
computer-aided simulation represents a powerful tool to 
interpret experimental trials, identify the best operating 
conditions to be adopted during cell cultivation, or 
predict/interpret the effect of specific substances on cell 
growth and its proliferation. Computational tools can be 
particularly effective and useful for the optimization of cell 
culture in view of the production of monoclonal antibodies 
(mAbs), recombinant DNA proteins and vaccines, as well as 
for the synthesis of ex vivo tissues/organs by means of stem 
cells differentiation or the expansion of specialized cells. 
Reliable and predictive models, on which computational tools 
are based to properly simulate in vitro cell culture, require an 
accurate description of the cell cycle that regulates the 
proliferative capacity of cells under normal or pathologic 
conditions. The typical schematization of the eukaryotic cell 
cycle involves four distinct phases (Murray and Hunt, 1993). 
A post-mitotic cell grows due to biosynthetic activities (gap 
phase, G1) before duplicating its DNA content (synthesis 
phase, S). Next, the cell enters a new gap phase (G2) wherein 
it grows and prepares for the subsequent division which occur 
during the mitotic phase (M). Under certain conditions, a cell 
in the stage G1 can leave the cycle reaching a specific 
condition of quiescence/senescence (resting phase, G0). It is 
well known that eucaryotic cell cycle is governed by cyclin 

dependent kinases (Cdks), small proteins whose activity is 
exerted when they associate with cyclins to form 
heterodimeric complexes which catalyze the transfer of 
phosphates from adenosine triphosphate (ATP) to specific 
target proteins (Morgan, 1995, 1997 and 2007; Nurse, 2000). 
During cell cycle, the level of active cyclin/Cdk complexes 
undergoes oscillations which coordinate the timing of all 
cellular events and drive, irreversibly, phase transitions 
(Nurse, 2000; Morgan, 2007). The regulatory mechanism that 
controls the levels of active cyclin/Cdk heterodimers, their 
oscillations, and consequently the progression of the cell 
cycle is very complex. The crucial steps involved in such a 
mechanism are schematically reported in Fig. 1.  

 
Fig. 1. Schematic representation of the main processes that regulate the 
level of active cyclin/Cdks complexes and their oscillations during the 

progress of cell cycle. 
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In particular, they include the expression and degradation 
of cyclins, their binding with Cdks to form active 
heterodimeric complexes, then the phosphorylation or 
dephosphorylation processes to inactivate or activate 
cyclin/Cdk, and finally, the expression and degradation of 
inhibitory proteins which in turn may inactivate the same 
cyclin/Cdk heterodimers (Morgan, 2007). Since the early 90s, 
a significant number of mathematical models to simulate 
eukaryotic cell cycle progression or part of it, have been 
proposed in the literature. For this purpose, various 
approaches have been adopted, mostly based on deterministic 
equations even if a substantial number of models make use of 
stochastic, Boolean or hybrid methods (Ahmadian et al., 
2020). Tyson (1991), by means of a stochastic approach, 
developed a mathematical model focused on the phase S and 
M of the cell cycle for frog eggs. Later, Chen et al. (2000 and 
2004) proposed a detailed biochemistry mechanism to 
simulate the yeast cell cycle. Ciliberto et al. (2003), by 
following a deterministic approach, described the main 
checkpoints which underlie of the cell cycle progression for 
the budding yeast, while, some years later, for a generic 
eukaryotic cell line, Csikasz-Nagy et al. (2006) proposed a 
mathematical model to simulate the DNA synthesis. Next, 
Davidich and Bornholdt (2008) published a Boolean network 
model, based on the known biochemical interaction topology, 
to simulate cell-cycle progression for the S. Pombe yeast. The 
Boolean approach does not require to define specific 
parameters but only the structure of the regulatory circuitry. 
More recently, Ahmadian et al. (2020) proposed a hybrid 
modelling method to simulate the cell cycle of the budding 
yeast by combining the deterministic approach to the 
stochastic one. 

For the specific case of mammalian cellular line, Aguda 
and Tang (1999) and Qu et al. (2003) developed a detailed 
mathematical model to simulate the transition between G1 
phase and S one. More recently, Gérard and Goldbeter (2009, 
2012 and 2014) proposed a comprehensive biochemical 
model which describes all phases of the mammalian cell 
cycle. In particular, the model is capable to simulate the well-
known oscillations that cyclins and the corresponding 
complexes cyclin/Cdk, namely D/Ckd4-6, E/Cdk2, A/Cdk2 
and B/Cdk1, undergo during the cell cycle evolution. Weis et 
al. (2014) proposed an interesting data-driven approach to fit 
model parameters, mainly reaction rate constants, by 
considering various models and data reported in the literature 
over the mammalian cell cycle. Beside the classic 
optimization methods, for calibrating model parameters the 
authors took advantage of various techniques, among which 
the “simulated annealing”, genetic algorithms or other 
stochastic methods (Weis et al., 2014). More recently, 
Almeida et al. (2017) developed a reduced variable 
mechanistic model able to capture the essential features of the 
mammalian cell cycle by considering a limited number of key 
components involved in the biological process.  

In order to simulate cells growth, their replication and 
distribution during in vitro cultivation an effective and 
comprehensive model should take into account not only the 
detailed and complex intracellular phenomena which govern 
the cell life and but also the heterogeneities of the entire cell 
population during its evolution. Typically, cell culture is 
simulated by taking advantage of average cell models or by 

means of population balance models (PBMs) (Karra et al., 
2010). With the first approach, the heterogeneities of the cell 
population and their distribution cannot be described. This 
task is well performed by PBMs which, on the contrary, 
cannot simulate the detailed and complex phenomena which 
occur inside the cell. At the same time, PBMs require the 
knowledge of suitable and reliable functions to describe the 
transition from a cell phase to the next one as well as the cell 
growth and its division rate (Ramkrishna, 2000). Florian and 
Parker (2005) developed an age-structured PBM to describe 
a tumor growth under chemotherapy treatment where phase 
transition and division rates are function of a specific critical 
age. Later, Liu et al. (2007) proposed a PBM with two state 
variables (i.e., DNA content and cell volume) to simulate the 
cell cycle progression observed during in vitro culture of 
myeloma cells. With a different approach, Sherer and 
Ramkrishna (2008) developed a general stochastic method 
for multistate systems and illustrated its advantage and 
potentiality in the case of cell population behavior under 
chemotherapy treatment. The model does not consider the 
complex biochemical reaction pathways which govern the 
cell cycle progression but describes, with a stochastic 
approach, the evolution of a cell population distributed in the 
lumped phase “G” (G0/G1), in the phase S and in the lumped 
one “M” (G2/M). Subsequently, Karra et al. (2010) proposed 
a multiscale model for the simulation of the mammalian cell 
culture based on kinetic equations of the main nutrients and 
metabolites coupled with a mass structured PBM with three 
subpopulation related to the lumped phases “G0/G1” and 
“G2/M “as well the S one. Later, Fadda et al. (2012a and 
2012b) developed a multistage PBM with DNA content and 
cell volume as internal variables. Various functions to 
calculate rate of transitions from G1 to S and from G2/M to 
G1 were used, while the transition from S to G2/M was 
simulated by adopting a fully deterministic approach, based 
on the DNA content. More recently, Fuentes-Garì et al. 
(2015a) developed a multistage PBM by considering as 
internal variables the expression levels of cyclin E, DNA, and 
cyclin B, for cells in G0/G1, S, and G2/M phase, respectively. 
The same research group illustrated the capability of the 
proposed model in the specific case of leukemia 
chemotherapy treatment (Fuentes-Garì et al., 2015a). Finally, 
Pisu et al. (2015), on the basis of PBM approach (Fadda et 
al., 2012a, 2012b; Pisu et al., 2003, 2004, 2006 and 2008; 
Mancuso et al., 2009 and 2010), and by considering a detailed 
biochemical network that regulates the cell cycle of 
mammalian cells (Gérard and Goldbeter (2009 and 2012) 
proposed a novel method to link PBM to cell cycle kinetics. 
Specifically, the authors developed a multistage PBM 
involving four subpopulations (i.e., cells distributed over G0, 
G1, S, G2/M phases) with cell volume and dimensionless age 
of a cell in each phase as internal variables. The residence 
time of a cell in a given phase, appearing in PBM parameters, 
was calculated by considering a specific biochemical 
reactions model. Such an approach neglects the biochemical 
pathways involved in some important extracellular signaling 
which may affect the cell cycle duration as, for example, the 
regulatory mechanisms due to the presence external 
extracellular matrix (ECM) and growth factors.  

In this work a novel mathematical model for simulating the 
cell cycle progression in batch systems (Petri dish) is 
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proposed. The model is based on a multistage population 
balance with two internal variables (i.e., cell volume and a 
specific dimensionless age) for the simulation of cell cycle 
progression through the different phases experienced by each 
cell of the entire population. The rate of transitions between 
two subsequent phases of the cell cycle are obtained by means 
of a detailed biochemical model which simulates the series of 
complex events that take place during the cell growth and its 
division. With respect to the work by Pisu et al. (2015), a 
more detailed kinetic network, which includes the regulatory 
action due to the extracellular signaling induced by external 
GF and ECM and their direct interaction with the cells cycle, 
is taken into account. The potential of the mathematical 
model has been tested by considering some specific 
procedures taking place during in vitro trials and in particular, 
the effect of seeding conditions and the addition of suitable 
substances in the culture medium. 

 

II. MATHEMATICAL MODEL 

The mathematical model proposed in this work is divided 
in two modules. The first one takes advantage of a 
comprehensive model for the description of the complex 
network of biochemical reactions that governs the 
progression of a single cell cycle, while the second one is 
based on a PBM where the cell distribution in each cell cycle 
phase is defined in terms of size (cell volume) and a proper 
maturation age (dimensionless) for transition.  

The kinetic module was developed on the basis of the 
mathematical model proposed by Gérard and Goldbeter 
(2014) which is schematically reported in Fig. 2. 

 

Fig. 2. Biochemical model for the cyclin/Cdk network driving the 
mammalian cell cycle (taken from Gérard and Goldbeter, 2014). 

The intracellular reaction network is divided into four 
sections each one focused on a specific cyclin/Cdk complex 
(i.e., D/Ckd4-6, E/Cdk2, A/Cdk2 and B/Cdk1). The 
heterodimer D/Cdk4–6, after its activation, starts the cell 
cycle and promotes the progression in G1 phase, the complex 
E/Cdk2 elicits the G1àS transition, while the complex 

A/Cdk2 sustains the progression in S and the SàG2 
conversion. Finally, the complex B/Cdk1 triggers the G2àM 
transition which leads to the cell division. The biochemical 
model also describes the regulatory effect of some proteins 
(Cdh1, Cdc20, Wee1, Skp2 and cdc25 phosphatase) and Cdks 
inhibitors (p21/p27), the synthesis and degradation of cyclins, 
their binding with Cdks, and the opposed effect of the tumor 
suppressor pRB and the transcription factor E2F. The 
extended model by Gérard and Goldbeter (2014), compared 
to the one previously developed by the same authors (Gérard 
and Goldbeter, 2009 and 2012) includes the effect of some 
extracellular signaling and in particular the crucial influence 
of an external growth factor GF. The latter one elicits the 
activation of signaling pathways leading to the synthesis of 
the transcription factor AP1 which in turn, together with E2F, 
promotes the synthesis of cyclin D starting the cell cycle (Fig. 
2). The effect of an extracellular signaling induced by GFs or, 
similarly, by other species affecting the cell cycle, can be 
accounted for by taking advantage of the following equation 
which describes the expression level of the transcription 
factor AP1 factor (Gérard and Goldbeter, 2014): 

 
![#$%]
!'

= "𝑣(#$% ⋅ "
[)*]

+!"#,[)*]
% + 𝑣(#$- ⋅ "

[*#+]
+!#!$,[*#+]

% − 𝑘.#$% ⋅

[𝐴𝑃1]% ⋅ 𝜀	     (1) 

where 𝑣!"#$is the rate of synthesis of the transcription factor 
AP1 depending on GF, 𝐾"%& is the Michaelis constant for 
synthesis of AP1 induced by GF, FAK represents expression 
level of the focal adhesion kinase, 𝑣!"#'is the rate of 
synthesis of the transcription factor AP1 depending on FAK, 
𝐾"%& is the Michaelis constant for synthesis of AP1 induced 
by FAK, finally e  represents a scale factor (Gérard and 
Goldbeter, 2014) . The biochemical model also accounts for 
the extracellular signaling induced by contact inhibition 
which may affect the cell proliferation at high cell density, 
and the presence of ECM which in turn can affect the cell 
cycle progression through FAK1 (cf. Fig. 2). Overall, the 
model proposed by Gérard and Goldbeter (2014), considered 
in the present work, simulates a biochemical network of 42 
reacting species (namely, growth and transcription factors, 
cyclins, Cdks, complexes cyclin/Cdk in active or inactive 
form, phosphorylated or unphosphorylated proteins, protein 
phosphatases, Cdks inhibitors). The resulting system of 42 
ordinary differential equations (ODEs), which properly 
describes the dynamics and the typical oscillations of 
mammalian cell cycle, involves over two hundred 
parameters. For the sake of brevity all model equations and 
related parameters are not reported in this paper, thus for all 
details the interest reader should refer to the original work by 
Gérard and Goldbeter (2014). 

In order to simulate the progression in S phase and the 
transition SàG2, it is necessary to describe also the DNA 
replication kinetics neglected in the original work by Gérard 
and Goldbeter (2014). As schematically illustrated in Fig. 3, 
at the beginning of the synthesis phase, S, the complex 
E/Cdk2 activates the anchoring factor Cdc45, which permits 
DNA polymerase α to start the replication. The kinase ATR 
is activated by binding the RNA primer synthesized by DNA 
polymerase α. Next, ATR promotes the activation of the 
kinase Chk1 which, in turn, inhibits the Cdc25 phosphatases, 
thus preventing the activation of the complexes E/Cdk2, 
A/Cdk2 and E/Cdk1 during DNA replication (Gérard and 
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Goldbeter, 2009 and 2012). In the light of the considerations 
above, it is possible to incorporate in the model five 
additional equations, i.e., eqs (40)-(44) reported by Gérard 
and Goldbeter (2009), which describe the temporal behavior 
of Cdc45, DNA polymerase a, RNA primer, ATR and Chk1, 
respectively. The resulting system of 47 ordinary differential 
equations (ODEs), which allows one to calculate the duration 
of each one cell cycle phase, is solved through standard 
numerical libraries based on Gear method (IMSL).  

 

 

Fig. 3. The reaction network for DNA replication (taken from Gérard 
and Goldbeter, 2009 and 2012). 

The second part of the model is based on a multi-staged 
population balance with two internal variables, namely the 
cell volume, 𝑣, and the dimensionless phase duration, 𝜉, 
which ranges between 0 (newborn cell) and 1 (cell entering 
the next phase). By considering a monolayer of cells evenly 
distributed on the surface of the cultivation system (Petri 
dish), lumping G2 and M phase in the single one (G2M) and 
assuming negligible cell death terms as well as the transition 
G1àG0 irreversible, the population balance equations can be 
written as 
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along with the initial (ICs) and boundary conditions (BCs) 

𝑛)5(𝑣, 𝑡) = 𝑛5)5(𝑣)	for 𝑡 = 0 and ∀𝑣	   (6) 

𝑛$(𝑣, 𝜉, 𝑡) = 𝑛5$(𝑣, 𝜉) for 𝑡 = 0	and	∀𝑣, 𝜉 with 𝑃 = 𝐺1, 𝑆, 𝐺2𝑀
       (7)  

𝑟6
)%𝑛)%(𝑣, 𝜉, 𝑡) = 2∫ 𝑟6

)-:𝑛)-:(𝑣, 1, 𝑡)𝑝(𝑣, 𝑣′)𝑑𝑣;2,-.
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	for	𝜉 = 0	and ∀𝑣, 𝑡 > 0     (8) 

𝑛)5(𝑣, 𝑡) = 0	 for 𝑣 = 𝑣<=0 and 𝑡 > 0   (9) 

𝑛$(𝑣, 𝜉, 𝑡) = 0	 for 𝑣 = 𝑣<=0 and ∀𝜉, 𝑡 > 0	 
 with 𝑃 = 𝐺1, 𝑆, 𝐺2𝑀     (10) 

𝑟6
(𝑛((𝑣, 𝜉, 𝑡) = 𝑟6

)%𝑛)%(𝑣, 1, 𝑡) for 𝜉 = 0	and ∀𝑣, 𝑡 > 0  (11) 

𝑟6
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(𝑛((𝑣, 1, 𝑡)	for 𝜉 = 0	and ∀𝑣, 𝑡 > 0  (12) 

where 𝑛%((𝑣, 𝑡) represents the monodimensional number 
density distribution of cells in G0 phase, 𝑛#(𝑣, 𝜉, 𝑡) is the 
bidimensional number density distribution of cells in the 
generic phase P=G1,S,G2M, 𝑟)*(𝑣) and 𝑟+#with 
P=G1,S,G2M, are the time rates of change of the variables 𝑣 
and 𝜉, respectively, 𝛤)%$(𝑣) appearing in (2) and 3) is the rate 
of transition from phase G1 to G0 one, while Φ(t) is the 
geometric limiting factor for simulating the well-known “cell 
contact inhibition” which may become significant at high 
level of the cell density (Fadda et al., 2012a). Beside the 
accumulation term, the left-hand-side of (2) for G0 phase 
includes an advection term on the internal variable 𝑣, while 
in Eqs (3), (4) and (5) two advection terms are considered to 
account for the growth on volume 𝑣 and dimensionless age 𝜉 
of cells in the phase G1, S and G2M, respectively. The right-
hand-side of (2) and (3) accounts for the cells that leave, 
irreversibly, the phase G1 entering the G0 resting phase. 
Finally, in Equations (3), (4) and (5), the amount of cells 
which leave G1, S and G2M phase, respectively, is 
intrinsically taken into account by the advection term on the 
internal variable ξ when its value attains the upper limit (i.e., 
𝜉 = 1). The rate of the irreversible transition G1àG0, 
𝛤)%$(𝑣), can be expressed as follows (Fadda et al., 2012a; 
Pisu et al., 2015): 

 
𝛤2)%(𝑣) = 𝑟2)%(𝑣)

>(2)
%?∫ >(21)!212

%
	   (13) 

where 𝑓(𝑣) is the probability density function of transition of 
a cell with volume 𝑣	characterized by two adjustable 
parameters, namely w and λ (Hatzis et al., 1995): 

 
𝑓(𝑣) = A

B3
𝑣A?%     (14) 

 
The function 𝑝(𝑣, 𝑣′), appearing in (8), represents an 

unequal partitioning distribution, since after the division of a 
mother cell the two daughter cells may have a different 
volume (Hatzis et al., 1995): 

𝑝(𝑣, 𝑣′) = %
C(D,D)

%
2;
"2
2;
%
D?%

"1 − 2
2;
%
D?%

   (15) 

 
where 𝛽(𝑞, 𝑞) is the symmetrical beta function on the 
parameter q. The volume growth rates, 𝑟)*(𝑣), in (3)-(6), are 
assumed linear (Fadda et al., 2012a), thus satisfying the 
containment conditions (i.e., 𝑟)#(0) = 0) (Fredrickson and 
Mantzaris, 2002): 

𝑟2$(𝑣) =
!2
!'
= 𝑘2𝑣	with	𝑃 = 𝐺1, 𝑆, 𝐺2𝑀	  (16) 
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It is worth noting that, BCs (9) and (10) satisfy the 
regularity condition when 𝑣,-. > 0 (Fadda et al., 2012a; 
Fredrickson and Mantzaris, 2002). 

The time rate of change of internal variable 𝜉 can be 
expressed as: 

 
𝑟6
$ = !6

!'
= %

E4
	with	𝑃 = 𝐺1, 𝑆, 𝐺2𝑀	   (17) 

 
where 𝜏# is the duration of the generic phase P computed by 
taking advantage of the kinetic module. On the basis of the 
equation (17), the advection terms on the variable 𝜉, 
appearing in (3), (4) an (5), assume the classical form they 
have in age structured population balances (Ramkrishna, 
2000). The geometric limiting factor, Φ(t), appearing in 
equations (2) and (3), accounts for the cell contact inhibition 
which leads the transition from the phase G1 to the resting 
one G0. For anchorage-dependent cells the value of Φ(t), 
depending on the level of cell density attained during 
cultivation in a Petri dish having area 𝐴#, ranges from 1 (no 
limitation) to 0 (confluence, no space available for cell 
growth). For the complete description of the term Φ(t), which 
is modelled by considering only one parameter (i.e., the 
interstitial constant a), the interested reader should refer to 
the original work by Fadda et al. (2012a). Along similar lines, 
the term Φ(t) can be defined for any cultivation batch system 
(well plates, flasks).  

Finally, from the number density distribution, the cell 
count of each phases can be obtained as follows: 

𝑁)5(𝑡) = ∫ 𝑛)5(𝑣, 𝑡)𝑑𝑣	2,-.
2,/0

    (18) 
 
𝑁$(𝑡) = ∫ ∫ 𝑛$(𝑣, 𝜉, 𝑡)	𝑑𝑣𝑑𝜉	with	𝑃 = 𝐺1, 𝑆, 𝐺2𝑀%

5
2,-.
2,/0

 (19) 

and the total cell count 𝑁(𝑡)	can be calculated as: 

𝑁(𝑡) = 𝑁)5(𝑡) + 𝑁)%(𝑡) + 𝑁((𝑡) + 𝑁)-:(𝑡) (20) 
 
Equations (2)-(5) represent a system of partial differential 

equations (PDEs) in the independent variables t, 𝑣 𝜉, along 
with the ICs and BCs (6)-(12). In order to numerically solve 
such a system, we implemented the method of lines, thus the 
domain of the variables 𝑣 and 𝜉 was suitably divided by using 
constant step size meshes (100 and 300 grid points, 
respectively) and the partial derivatives, with respect to the 
same variables, were discretized by backward finite 
differences. The resulting system of ordinary differential 
equations (ODEs) in the time variable was integrated as an 
initial value problem by taking advantage of standard 
numerical libraries (Gear method, IMSL). Computational run 
of code, written in fortran language, were performed on nodes 
of PC clusters (HP, Dual CPU Quadcore at 2.8 GHz, 
operating system Centos7.0). 

 

III. RESULTS AND DISCUSSION 

The model, described in the previous section, is capable of 
simulating, for various operating conditions, the cultivation 
of mammalian cells performed in batch systems, as for 
example Petri dishes, where monolayer adherent cells may 

grow and proliferate in the presence of specific culture 
medium. The replication time and consequently the evolution 
of the cell culture depend mainly on the cell type and its 
intrinsic metabolism which in turn can be affected by external 
chemical or mechanical stimuli. Firstly, let us consider as 
base case a cell cycle with a circadian rhythm (i.e., 24 h of 
cell cycle duration). This situation can be properly simulated 
by the kinetic module as shown in Fig. 4, where the 
expression levels of the active complexes D/Ckd4-6, E/Cdk2, 
A/Cdk2 and B/Cdk1 as well as the DNA polymerase 𝛼 (i.e, 
DNA Pol. a) content are reported as a function of time. 

 

Fig. 4. Expression levels of the main Cyclin-Cdk complexes and of the 
DNA polymerase a content as a function of time. The duration of cell cycle 

is 24h. 

In this simulation, as far as the biochemical model 
schematically illustrated in Fig. 2, we took advantage of all 
data and parameters reported by Gérard and Goldbeter 
(2014), while for the DNA replication submodule, 
schematically illustrated in Fig. 3, all data and parameters 
were taken from Gérard and Goldbeter (2009) except for the 
scaling factor, e. In the present work, the latter one, was set 
equal to 14 in order to ensure a cell cycle lasting 24 hours. 
For the sake of brevity data (initial concentration of all 47 
involved biochemical species) and model parameters (over 
two hundred) are not reported in this paper, thus, for all 
details, the interested reader should refer to the original works 
(Gérard and Goldbeter, 2009, 2012 and 2014). From Fig. 4 it 
is possible to observe the typical oscillation faced by the 
active complexes D/Ckd4-6, E/Cdk2, A/Cdk2 and B/Cdk1 
during the cell cycle which is replicated each 24 hours. The 
duration of a single phase 	𝜏#, with P = G1, S, G2, M, can be 
computed on the basis of such oscillating behavior. After the 
activation of the complex D/Ckd4-6 the cell cycle starts in G1 
phase. The heterodimer D/Ckd4-6 sustains the cell 
progression in G1 and when its expression level attains the 
peak the transition G1àS takes place (t = 	𝜏%$ = 8.4 h). 
Contextually, the complex E/Cdk2 and consequently the 
DNA polymerase 𝛼 rapidly increase to ensure the DNA 
replication in S phase. When the levels of E/Cdk2 and the 
DNA polymerase 𝛼 diminish and the complex A/Cdk2 
displays its peak, the transition to the next phase G2 occurs (t 
=17.2h; 	𝜏! = 8.8 h). During the gap phase G2 the expression 
level of B/Cdk1 increases to sustain the cell progression until 
its expression level attains the peak, thus eliciting the 
transition G2àM (t =20.5 h; 	𝜏%' = 3.3 h). 
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Finally, at the end of the mitotic process, the expression 
levels of E/Cdk2 and A/Cdk2 decrease and approach zero, 
while the level of D/Ckd4-6 attains its minimum value before 
starting to grow again at the beginning of the new G1 phase 
(t =24 h; 	𝜏/ = 3.5 h). Overall, the lumped phase G2M, 
considered in PBM, displays a duration of 	𝜏%'/ = 	𝜏%' +
	𝜏/= 6.8 h. It is important to note that, the level of cyclin 
D/Cdk4–6, in the Fig. 4 represented by the sum of its free 
form and the bound one to p21/p27, remains elevated during 
the cycle, accordingly with experimental observations 
(Gérard and Goldbeter, 2009; van Vugt et al., 2004). The 
phase duration time, computed by taking advantage of the 
biochemical kinetic module, permits to estimate the rate 
𝑟+#=	 $

0!
, with P=G1, S, G2M, required by the PBM, thus, for 

this base case, 𝑟+%$ =
$
0"#

= 0.1190	= h-1, 𝑟+! =
$
0$
=

0.1136	= h-1, 𝑟+%$ =
$

0"%&
= 0.1470	= h-1.  

Let us now consider some effects on in vitro cultivation 
due to different operating conditions, as for example when 
changing the initial seeding in terms of cell number and their 
distribution over the phase G1, S, G2M. For a first analysis 
let us assume an initial distribution with cells belonging only 
to G1 phase (𝑖. 𝑒. , 𝑛(%((𝑣) = 𝑛(!(𝑣, 𝜉) = 𝑛(%'/(𝑣, 𝜉) = 0), 
expressed with the following bivariate normal gaussian 
distribution on the variables 𝑣 and 𝜉: 

 

𝑛5)%(𝑣, 𝜉) =
𝑁5

2𝜋𝜎2𝜎6
𝑒𝑥𝑝W−

1
2 X
(𝑣 − 𝜇2)-

𝜎2-
+
Z𝜉 − 𝜇6[

-

𝜎6
- \] 

 
where 𝑁( is initial the total cell number, 𝜇) and 𝜇+ are the 
mean values of the variables 𝑣 and 𝜉, respectively, and 𝜎) and 
𝜎+ 	their corresponding standard deviations. Such a 
distribution with cells belonging only to G1 phase is used to 
define the initial conditions of (6) and (7). Simulation results, 
obtained by taking advantage of the PBM computational 
module, are reported in Fig. 5. 

 

 
Fig. 5. Total cell count as a function of time at various initial seeding 

conditions (i.e., 𝑁! =	0.5×105; 1.0×105; 2.0×105; 3.0×105). 

In particular, results shown in Fig. 5, are represented in 
terms of total cell number as a function of the cultivation time 
and for various seeding conditions (i.e., 𝑁( =	0.5×105; 
1.0×105; 2.0×105; 3.0×105). All model parameters used in this 
simulation are reported in Table I.  

 
 
 

TABLE I: MODEL PARAMETERS 
Par. Value Unit Reference 
N0

 0.5×104÷3.0×105 Cells This work 
μv 1.5×103 μm3 This work 
σv 4.0×102 μm3 This work 

 0.2 or 0.5 h-1 Pisu et al. (2015) 
 0.01 or 0.15 - Pisu et al. (2015) 

𝑟"#$ 0.1190 or 0.1587 h-1 This work 
𝑟"% 0.1146 or 0.1887 h-1 This work 
𝑟"#&' 0.1471 or 0.1190 h-1 This work 

AP 10×108 μm2 Pisu et al. (2015) 
α 1.6 - Fadda et al. (2012b) 

 0.035 h-1 Fadda et al. (2012b) 
vmin 20.0 μm3 Fadda et al. (2012b) 
vmax 7000.0 μm3 Fadda et al. (2012b) 
w 7.8 - Fadda et al. (2012b) 
λ 1.78×103 μm3 Fadda et al. (2012b) 
q 40 - Mancuso et al. (2009) 

 
Specifically, as far as the bivariate normal gaussian 

distribution, the mean values and the corresponding standard 
deviation of the variable 𝜉, are set to 𝜇+ = 0.2 and 𝜎+ = 0.01, 
respectively, while the time rates of change on the same 
variable 𝜉, are 𝑟+%$ = 0.1190 h-1, 𝑟+! = 0.1136	h-1, 𝑟+%'/ =
0.1470 h1. By observing Fig. 5, as it might be expected, the 
increase of N0 leads to an augmentation of the cell number at 
any cultivation time. It is also apparent that each growth curve 
displays the typical behavior with stationary periods and 
subsequent incremental steps due to the time needed to 
complete the cell cycle whose duration is 24h, consistently to 
what calculated by the kinetic module (cf. Fig. 4). Moreover, 
from Fig. 5, it can be observed the typical lag time due to 
acclimation period experienced by cells at the start of 
cultivation. In fact, the number of cells may increase only by 
undergoing the transition G2MàG1 which requires a period 
of time since cells are initially synchronized only in G1 phase, 
as imposed by the initial conditions for this simulation. By 
observing Fig. 5, the initial lag time for the cell expansion is 
about 22 h, according to the time required by the cells, 
initially synchronized in G1-phase, to complete the cell cycle, 
having them an initial mean value age of 𝜇+ ⋅ 𝜏%$ = 0.2 ⋅
8.4 = 	1.68	h.  

Let us now analyze the behavior of a cell population during 
in vitro cultivation by focusing on each single phase of the 
cell cycle. In Fig. 6 model results in terms of cell number 
distributed in G0, G1, S and G2M phases and total cell count 
are shown as a function of cultivation time for two specific 
initial seeding condition (i.e., N0 = 1.0×105 and 3.0×105, 6a 
and 6b, respectively). As it can be observed in Fig. 6, cell 
count evolution in G1, S and G2M shows a well-known 
behavior oscillating between a minimum value to a maximum 
one. Cultivation starts with cells synchronized in the phase 
G1 as imposed by the initial conditions, therefore cells 
belonging to S stage can appear only when the maturation in 
the phase G1 is completed. The increase of cell number in the 
S phase corresponds to a reduction of cells number in the G1 
one at the occurrence of transition G1àS. Similarly, the same 
behavior can be observed for the other transitions SàG2M 
and G2MàG1. From Fig. 6 it is also apparent that such phase 
transitions occur coherently with the maturation age for 
transition calculated by the biochemical kinetic module (i.e., 
	𝜏%$ = 8.4	h; 	𝜏! = 8.8	h;	 	𝜏%'/ = 6.8	h). It is important to 
note that, the time required for the first transition G1àS is 

ξμ

ξσ

vk
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lower than 	𝜏%$ since the initial age of cells (mean value 
𝜇+ ⋅ 𝜏%$ = 1.68	h), as imposed in the initial conditions, is 
greater than 0.  

 

 

Fig. 6. Phase cell count, NP with P = G1, G0, S, G2M, and total one, N, 
as a function of time at different initial seeding condition: (a) N0 = 1.0×105; 

(b) N0 = 3.0×105. 
 

As far as the resting phase G0, by observing Fig. 6, the cell 
number evolution during the cultivation displays an 
oscillating “step” behavior. In fact, cell number in G0 phase 
can increase only in the presence of the cells belonging to the 
G1 phase as a consequence of the transition G1àG0 
(promoted by the contact inhibition effect), while the rate of 
cells entering G0 phase approaches zero when cells complete 
the transition G1àS. As expected, the number of cells in the 
phase G0 cannot decrease since the transition G1àG0 has 
been assumed to be irreversible. Finally, by focusing on the 
cell number evolution in G1 phase it is apparent that when the 
rate of transition G1àG0 becomes significant (i.e., after to 
about 48 h of cultivation) the cell number belonging to G1 
phase starts to decrease before to experience the transition to 
the next active phase S. Other important information can be 
obtained by analyzing the cell population behavior in terms 
of their volume and age distribution. To this aim, by 
considering the same data for the simulation illustrated in Fig. 
6a (i.e., N0=1.0×105), the normalized cell distributions on the 
variables 𝑣 and 𝜉, at various time, are shown in Fig. 7a and 
7b, respectively.  

  

Fig. 7. Normalized distribution on 𝑣 computed as $
((*)

∫ 𝑛,(𝑣, 𝜉, t)𝑑𝜉$
!  

with P=G1,S,G2M (a) and on the variable 𝜉, obtained by 
$

((*)
∫ 𝑛,(𝑣, 𝜉, t)𝑑𝑣-!"#
-!$%

 with P=G1,S,G2M (b). 

 
As it can be observed from Fig. 7a, coherently to what 

shown in Fig. 6a, it is apparent that cells, initially distributed 
only in G1 phase, at t=12 h have already experienced the 
transition G1àS (t > 	𝜏%$). Thus, at this time, cells are in the 
next S stage and display a volume distribution with an higher 
mean value, with respect to the one at t=0, since the cell 
volume at 12 h is obviously increased. Similarly, at t = 20 h, 
after the transition SàG2M, cells belong to G2M phase with 
a distribution which shows a mean value higher than the one 
for phase S at t = 12 h. Finally, for t =26 h, cells have already 
completed their mitotic division and smaller newborn cells 
are now present in G1 phase displaying a volume distribution 
with a lower mean value if compared to the one at t = 20 h for 
the previous phase (G2M). In terms of age, as shown in Fig. 
7b, when the cultivation time increases it is possible to 
observe an enlargement of the distribution curve with values 
spread over the entire range. At t = 26 h, when the cycle is 
already completed, the cell population that is back in G1 
phase shows an age distribution with a smaller mean value 
with respect to the one defined at lower cultivation time. 
Similar results, in terms of normalized distribution on 
variables 𝑣 and 𝜉, have been obtained in the case of a seeding 
with a cell number N0=0.5×105; 2.0×105; 3.0×105. These 
results, for a sake of brevity, are not reported in the present 
paper. Another important feature of the proposed model is the 
ability to describe the typical smoothed oscillations in terms 
of cell count evolution that can occur on the basis of the initial 
seeding conditions as in the case of cell population initially 
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distributed in all active phases described, for example, by the 
following bivariate normal gaussian function: 

 

𝑛5$(𝑣, 𝜉) =
𝑁5/3
2𝜋𝜎2𝜎6

𝑒𝑥𝑝 W−
1
2 X
(𝑣 − 𝜇2)-

𝜎2-
+
Z𝜉 − 𝜇6[

-

𝜎6
- \] 	with	P

= G1, S, G2M 
 
The effect of this particular seeding condition is illustrated 

in Fig. 8, where the phase cell count, 	N*, with P=G0, G1, S, 
G2M as well as the total one, N, are reported as a function of 
time. 

 

 
Fig. 8. Phase cell count, NP, with P= G1, G0, S, G2M and total one, N, 

as a function of time for a seeding with cells in G1, S and G2M phase. 
 
Parameters for this simulation are reported in Table I, 

where in particular, N0 = 1.0×105, 𝜇+ = 0.5 and 𝜎+ = 0.15. By 
comparing the cell count evolution shown in 6a, which refers 
to a different seeding condition (i.e., cell population initially 
synchronized in phase G1), with the one of Fig. 8, it is 
possible to observe, in the latter case, a smoother oscillating 
behavior. In fact, when cells are initially distributed in all 
phases, it follows that cells belonging to G2M can divide after 
few minutes of cultivation, at the same time cells in G1 can 
enter the next phase S, and cells in S phase can in turn reach 
the G2M stage by guaranteeing a sort of continuous behavior 
in cell expansion. On the other hand, by observing Fig. 8, it 
is apparent that cell count for each phase fluctuates but with 
a rising trend during the cultivation.  

Finally, let us analyze some possible effect of specific 
substances added in the culture medium during the cell 
culture. It is well known that a variety of antagonistic factors 
may affect the cell cycle progression (Hanahan and 
Weinberg, 2011). These factors include soluble GFs which 
promote cell cycle progression, and tumor suppressors, 
which, on the opposite, inhibit cell proliferation and may 
cause its arrest (Shapiro and Harper, 1999; Gérard and 
Goldbeter, 2014). The effect of a GF, which speedups the cell 
cycle, or of a cytostatic drug which, on the contrary, can cause 
its arrest or even prevent its starting, can be simulated by 
suitably changing one parameter of the kinetic model, for 
example the rate of synthesis of the transcription factor AP1, 
𝑣!"#$, appearing in (1). It is well known that the presence of 
GF elicits the activation of signaling pathways leading to the 
synthesis of AP1 which in turn promotes the synthesis of 
cyclin D and starts the cell cycle (Gérard and Goldbeter, 
2014). Thus, the regulation of AP1 expression level plays a 
crucial role in the cell cycle machinery. By taking advantage 

of the biochemical kinetic module of the proposed model it is 
possible to calculate the variation of the cell cycle lasting as 
a function of the parameter 𝑣!"#$. (cf. Fig. 9).  

Fig. 9. Variation of the cell cycle duration, calculated by the biochemical 
kinetic module, as a function of the parameter 𝑣%.,$. 

 
All parameters of the biochemical kinetic module used in 

this simulation are the same of the base case, whose results 
have been shown in Fig. 4, with the exception of the 
parameter 𝑣!"#$, which was varied from 0.037 to 0.5 mM/h. 
Correspondingly, the cell cycle duration ranges from 24 to 20 
h. Under the critical value of 0.037 mM/h the cell cycle 
doesn’t start as it may occur when a soluble cytostatic drug is 
added in the culture medium. On the contrary, the adding 
specific an external GFs may induce an increase on the rate 
of synthesis of AP1 leading to a shortening of cell cycle 
duration as properly simulated by the biochemical kinetic 
module (Fig. 10), where 𝑣!"#$ has been set to 0.5 mM/h.  

 

 
Fig. 10. Expression levels of the main Cyclin-Cdk and of the DNA 

polymerase a content as a function of time when a soluble GF is added in 
the culture medium. The duration of a single cell cycle is 20h. 

 
As it can be observed from Fig. 10 a complete cell cycle is 

performed within 20 h, being 	𝜏%$ = 6.3 h, 	𝜏! = 5.3 h, 	𝜏%' = 
3.2 h and 	𝜏%'/ = 5.2 h. In this example, the most relevant 
effect occurs in the duration of G1 and S phase (𝜏%$ = 6.3 h 
and 	𝜏! = 5.3 h instead of 𝜏%$ = 8.4 h and 	𝜏! = 8.8 h for the 
base case whose results are shown in Fig. 4). This effect can 
be ascribed to the presence of GF that induces a rapid growth 
of AP1, which in turn leads to a faster increase of cyclin D 
synthesis, and consequently of its active complex with the 
kinase Cdk4-6 at the beginning of the cell cycle. On the other 
hand, there is an early appearance of the complex E/Cdk2 
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(after 6.3 h from the start of the cell cycle when a GF is added 
instead of 8.4 h as for the base case) which plays a crucial role 
in the synthesis phase S. Finally, by taking advantage of the 
PBM module, the effect of the cycle speeding up induced by 
an adding of GF during in vitro culture is shown in Fig. 11, 
where the total cell count is reported as a function of the 
cultivation time and compared to the corresponding one of 
the base cases, already depicted in Fig. 5 for N0= 1.0×105. 

 

 
Fig. 11. Total cell count as a function of the cultivation time for the base 

case (cell cycle completed in 24 h, black solid line) and when GF is added 
in the culture medium (cell cycle completed in 20 h, red dashed line). 
 
All parameters used in this simulation, performed by the 

PBM computational module, are reported in Table I. In 
particular, in the case of adding GF in the culture medium, 
the time rates of change on the variable 𝜉 required by PBM, 
and obtained on the basis of the duration of the phases G1, S, 
G2M calculated by the biochemical kinetic module, are 
𝑟+%$ = 0.1587	= h-1, 𝑟+! = 0.1887	= h-1, 𝑟+%'/ = 0.1190	= h-

1. As it might have been expected, simulation results reported 
in Fig. 11, coherently with the cell cycle timing for the base 
case (cf. Fig. 4) and when adding GF in culture medium (cf. 
Fig. 10), clearly show the speeding up due to the extracellular 
signaling induced by GF in term of the total cell count.  

 

IV. CONCLUDING REMARKS 

A novel mathematical model for simulating the cell cycle 
progression during in vitro cultivation performed in batch 
systems is proposed. From the knowledge of the cell phases 
duration, calculated by means of a detailed biochemical 
model, the PBM module simulates the time evolution of cells 
culture in terms of volume, number, and distribution on the 
phase G0, G1, S and in the lumped one G2M. The proposed 
model is capable of simulating various situations which may 
occur during in vitro cultivation as for example those ones 
arising by the variation of the total number used in seeding or 
by changing their initial distribution over the cell cycle 
phases. Results show the ability of the proposed model to 
interpret the well-known incubation/acclimation time and the 
typical oscillating behavior during the cell expansion 
characterized by stationary periods followed by incremental 
steps. Moreover, the fluctuation in the evolution of the cell 
number in each phase during the cell culture, which could be 
experimentally observed through fluorometric methods, is 
properly simulated by the present model. Other important 
feature consists in the possibility to interpret the effect of the 

adding of substances added in the culture medium. A specific 
example has been discussed regarding the effect of the adding 
of GF which may reduce the cell cycle duration and 
consequently can speed up the expansion of the cells during 
in vitro cultivation. 

The results shown represent only a limited portion of the 
potential of the proposed model which, nevertheless, needs 
specific experimental validation for demonstrating its full 
reliability and effective applicability. Work is underway to 
include for example the effect of cell cycle synchronization 
factors (Banfalvi, 2017; Pantaleo et al., 2017; Secchi et al., 
2020). This aspect is of peculiar importance for infection with 
lentivirus (Trobridge and Russell, 2004; Bonfalvi, 2017; 
Pantaleo et al., 2017; Secchi et al., 2020) to generate GM 
cells, typically for mAb production (or any other recombinant 
protein). 
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