
Prediction of local scour depth at bridge piers under

clear-water and live-bed conditions: comparison of

literature formulae and artificial neural networks

E. Toth and L. Brandimarte

ABSTRACT

The scouring effect of the flowing water around bridge piers may undermine the stability of the

structure, leading to extremely high direct and indirect costs and, in extreme cases, the loss of

human lives. The use of Artificial Neural Network (ANN) models has been recently proposed in the

literature for estimating the maximum scour depth around bridge piers: this study aims at further

investigating the potentiality of the ANN approach and, in particular, at analysing the influence of the

experimental setting (laboratory or field data) and of the sediment transport mode (clear water or live

bed) on the prediction performances. A large database of both field and laboratory observations has

been collected from the literature for predicting the maximum local scour depth as a function of a

parsimonious set of variables characterizing the flow, the sediments and the pier. Neural networks

with an increasing degree of specialization have been implemented – using different subsets of the

calibration data in the training phase – and validated over an external validation dataset. The results

confirm that the ANN scour depths’ predictions outperform the estimates obtained by empirical

formulae conventionally used in the literature and in the current engineering practice, and

demonstrate the importance of taking into account the differences in the type of available data –

laboratory or field data – and the sediment transport mode – clear water or live bed conditions.

Key words 9999 bridge piers, empirical formulae, multi-layer feedforward networks, scour depth,

sediment transport mode

NOTATION

y angle of attack of the flow

f Shields parameter

r water mass density

n cinematic viscosity of the fluid

fsF Froelich pier shape factor

b pier width

bp projected pier width

d50 median grain size

ds scour depth

Fr Froude number

Frc critical Froude number

Ns Neill pier shape factor

g gravitational acceleration

Ky angle of flow attack factor

Kd sediment size factor

KI flow intensity factor

Ks Melville pier shape factor

Kt factor for the sediment mode transport

Kyb depth size factor

L pier length

V mean flow velocity at the approach

section

Vc critical velocity for sediment motion

y approach flow depth

E. Toth (corresponding author)
DICAM,
University of Bologna,
Italy,
Via Risorgimento 2,
Bologna,
Italy
E-mail: elena.toth@unibo.it

L. Brandimarte
UNESCO-IHE,
Institute for Water Education,
The Netherlands,
Westvest,
7, Delft,
The Netherlands

doi: 10.2166/hydro.2011.065

& IWA Publishing 2011 Journal of Hydroinformatics 9999 13.4 9999 2011812



INTRODUCTION

The presence of a bridge structure in a flow channel inevi-

tably involves a significant change to the flow pattern, which

in turns induces the formation of a scour hole at the piers.

The scouring effect of the flowing water around bridge piers is

a common issue that engineers have to face both at the

design and maintenance stages since it has been widely

recognized (Federal Highway Administration 1988; Parola

et al. 1997; Melville & Coleman 2000) as one of the main

causes of bridge damage and failure, thus leading to extremely

high direct and indirect costs and, in extreme cases, the loss of

human lives.

The phenomenon is extremely complex: to the general

erosion, causing a bed lowering, may be added the scour due

to the flow contraction and the localized scour due to the

formation of a system of vortices that develops around the

pier when unidirectional flow in erodible channels becomes

three-dimensional (Shen et al. 1969; Graf 1998; Melville &

Coleman 2000).

Over the past decades the scientific community has made

several efforts to investigate, with different approaches, the

scour phenomenon around bridge piers, but relevant uncer-

tainties still affect the prediction of the scour depth. Among

the main reasons for such uncertainties we may cite (Fran-

zetti et al. 1994; Federico et al. 2003) the difference between

the actual geometrical description of piers and streambed and

those schematized in the models, the time-dependent flow

pattern and the scanty information often available for char-

acterizing the sediments.

The most promising research approaches for studying the

scour process are certainly those that model the temporal

evolution of the scour hole (Franzetti et al. 1989; Kothyari

et al. 1992; Briaud et al. 1999; Oliveto & Hager 2002; Mia &

Nago 2003; Brandimarte et al. 2006) and, for real-world

applications, the effect of variable streamflow should be

taken into account: in fact, the time needed to get to an

equilibrium scour depth may be extremely long in compar-

ison with the short duration of the scour-generating flood

events (characterized by high flow depths and velocities),

thus leading to the risk of overestimating the actual erosion in

unsteady flow conditions.

In order to fully describe such a complex physical phe-

nomenon, detailed information on the flow, on the sediments,

on the streambed and on the structure would be needed: such

information is rarely available in real-world applications and

it follows that, although scour formation is a time-dependent

process, in current engineering practice, the scour depth is

traditionally estimated by applying empirical formulae that do

not take into account the time progression of the scour hole

but try to identify only the anticipated maximum scour.

These equations were derived, over the past 50 years, by

different authors interpreting the results of sets of experiments

mainly carried out in laboratory settings. Many of them (but

not all) take explicitly into account the nature of the sediment

mode transport, which is one of the driving factors in the

attainment of the equilibrium scour depth. In the clear-water

mode, when the upstream bed material is not in motion, the

scour depth increases slowly tending to a stable solution; in

live-bed conditions, when there is transport of bed material

from upstream, the scour depth increases rapidly and, due to

the interaction between erosion and deposition, it tends to

fluctuate around an equilibrium value (Melville & Chiew

1999; Oliveto & Hager 2002).

As an alternative to literature equations, in recent years,

the application of Artificial Neural Networks (ANNs) to the

estimate of local scour at bridge piers has been proposed

(Jeng et al. 2005; Bateni et al. 2007a, b; Lee et al. 2007; Firat &

Gungor 2009; Muzzammil & Ayyub 2010), taking advantage

of their capability to flexibly reproduce the highly non-linear

nature of the relationship between input and output variables,

also when such relationship is not explicitly known a priori.

However, many of these studies use limited datasets, either

collected from laboratory experiments or from field measures

and do not distinguish between scour occurring in the differ-

ent conditions of clear-water (no sediment being transported

into the scour hole by the flowing water) and live-bed (sedi-

ments are supplied at the pier site from upstream).

This paper presents the application of ANN models

for the prediction of scour depth at bridge piers, taking

explicitly into account the transport mode conditions, and

in a rigorous calibration–validation framework. Observed

scour records collected from different sources, and relative

to both laboratory experiments and field campaigns, were

used to create different training subsets, with an increasing

degree of specialization: models distinguishing field and

laboratory data, clear-water and live-bed conditions were

applied to investigate the capability to predict the equilibrium
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(or quasi-equilibrium) scour depth over an external validation

data set. The performances obtained through the implemen-

tation of the ANNs are compared to those obtained by

applying eight of the most widely used literature formulae

to the same external validation data.

DATA SETS

Two large datasets were collected from the literature to carry

out this investigation, including both in situ field scour

measurements and data derived from laboratory experiments.

Collecting both types of data is deemed to be useful both for

increasing the data base and for analysing the performances

attainable with the proposed methods when applied to dif-

ferent experimental settings. In fact, laboratory data are more

accurate measurements but generally not representative of

the actual conditions of real-world cases, that are often much

more complex than those schematized by the laboratory

equipment. On the other hand, field data describe real-

world situations but are affected by significant uncertainties

in the measurements of both input and output variables. Such

uncertainties are due to the unavoidable simplification of the

description of the real flow pattern, sediments’ properties,

pier and streambed geometry and are worsened by the

absence of a standardized and objective data collection

procedure.

The Field dataset includes observations collected by (i)

Froelich (1988), reporting data relative to bridges located

mainly in the USA but also in New Zealand and Serbia,

and (ii) the U.S. Geological Survey (USGS) in cooperation

with the Federal Highway Administration and other U.S.

highway administrations (Mueller & Wagner 2005). The

USGS national bridge scour database is formed of more

than five hundred records, but including often more measure-

ments relative to the same pier, and also some scour depths

occurring downstream of the bridge: in such cases, for

each pier, only the maximum upstream scour depth was

selected in the present study. In addition, we discarded the

measurements relative to groups of piers (more bridges in

series), the scour values reported as influenced by floating

debris accumulation and those with an incomplete descrip-

tion of pier geometry (length, in particular, was not always

recorded).

The Laboratory dataset includes scour observations from

laboratory experiments carried out by a number of scientists

over the past decades, reporting the equilibrium (or quasi-

equilibrium) scour depths obtained for a variety of experi-

mental conditions. Many data were obtained by Kothyari

(1989), which described also some results of clear-water

experiments developed by Ettema (1980) and by Chabert &

Engeldinger (1956); other records belonging to different

experiments carried out by Ettema (1980) and by Chabert &

Engeldinger (1956), along with three records of Chee (1982),

were reported in Jeng et al. (2005). The other experiments are

those described in Chiew (1984), Dey et al. (1995), Melville &

Chiew (1999), Mia & Nago (2003), Sheppard et al. (2004),

Sheppard & Miller (2006).

In addition to the scour depth measurement (or the

estimate of the equilibrium or quasi-equilibrium depth), ds,

the following information was collected for all the piers of

both field and laboratory data bases: mean velocity (V) and

water depth (y) of the approach flow; mean particle diameter

(d50); dimension of the pier (width, b, and length, L); shape of

the pier; angle of attack of the flow (y).

In the absence of more detailed information on the

incipient motion conditions, the distinction between clear-

water or live-bed condition was performed by assuming clear-

water conditions if the approach velocity V is less than the

critical velocity for sediment motion, Vc, where this latter is

estimated through Neill formula (Neill 1973) for the d50 size

particles:

Vc ¼ f0:531:08y1/6d1/3
50 : ð1Þ

The Shields parameter, f, in Equation (1) is computed with

Equation (2), originally proposed by Miller et al. (1977) to

relate the grain size to the shear velocity and then modified by

Mueller (1996) for estimating the Shields parameter:

f ¼ 0:0019d�0:384
50 d50o0:0009m

f ¼ 0:0942d0:175
50 if 0:0009mod50o0:020m

f ¼ 0:047 d5040:020m:
ð2Þ

The critical velocity was computed for all the records and

the cases in which the V/Vc ratio resulted in too small a value

(less than 0.35) were discarded since it was assumed that no

scour is generated in such conditions.
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The laboratory data were then carefully inspected in

order to exclude the records in which the scour depth was

obtained in clear-water experimental settings (that is where

no sediments were supplied at the pier site by the flowing

water) but with flow velocities higher than the critical ones

(estimated with Equation (1)). Such experiments are in fact

not representative of real-world applications, in which such

high velocity would determine a live-bed condition.

The finally selected data base is formed by 215 (147 live-

bed and 68 clear-water) field records and 331 (157 live-bed

and 174 clear-water) laboratory records. All the eventually

selected laboratory records correspond to cylindrical piers: it

follows that all the pier noses are circular, the flow attack

angle is null and the pier length is equal to its width for all the

laboratory data.

The four sets (dividing field from laboratory data and

clear-water from live-bed conditions) were then divided into

calibration data (2/3 of the total), used for ANN training, and

validation data (the remaining 1/3 of the records), for the fair

evaluation of both ANN and literature formulae.

The ranges of the measured variables characterizing the

selected records are summarized in Table 1.

ESTIMATION OF LOCAL SCOUR WITH ARTIFICIAL
NEURAL NETWORKS

As an alternative to the traditional literature formulae, ANNs

are implemented as non-linear models for identifying the

relationship between the flow, sediment and pier character-

istics and the equilibrium scour depth.

ANNs have been widely applied in the last decade to a

variety of hydrologic and hydraulic problems (see among

many others, Abrahart et al. 1999; Giustolisi 2000; Liriano

& Day 2001; Bowden et al. 2003; Rao & Alvarruiz 2007;

Tsanis et al. 2008; Toth 2009) mainly due to their capability

to flexibly reproduce highly non-linear relationships; the

method is a data-driven approach, where no a priori relation-

ship between known parameters and observed values has to

be hypothesized and no knowledge of the underlying process

is needed.

The ANN models implemented in the present work

(using MATLABs Neural Network Toolbox) are multi-layer

feedforward networks formed by only one hidden layer; a

tan-sigmoidal activation function was chosen for the hidden

layer and a linear transfer function for the output layer. The

training algorithm, minimizing a learning function expressing

the closeness between observations and ANN outputs, in

the present case the mean squared error, is the Newton

Levenberg–Marquardt BackPropagation algorithm (Hagan &

Menhaj 1994), that approaches second-order training speed

without having to compute the Hessian matrix. The algorithm

was designed to serve as an intermediate optimization algo-

rithm between the Gauss–Newton method and the gradient

descent algorithm, and addresses the limitations of each of

those techniques. The control parameter that governs the

relative influence of the two techniques starts from a value

of 0.001, is decreased after each successful step (reduction in

error function) and is increased when a tentative step would

increase the error function: the decreasing and increasing

factors are respectively 0.1 and 10. To mitigate overfitting and

to improve generalization, a Bayesian regularization of the

Table 1 9999 Range of observed variables for the selected datasets

Variable
Field data
Live bed

Field data
Clear water

Laboratory data
Live bed

Laboratory data
Clear water

d50 (mm) 0.01–33 0.06–108 0.2–5.35 0.22–3

y (m) 0.27–22.52 0.3–9.17 0.05–0.43 0.02–1.9

V (m) 0.46–4.08 0.18–3.51 0.32–2.16 0.17–0.76

b (m) 0.29–19.50 0.3–4.60 0.03–0.15 0.02–0.91

L (m) 0.98–39 3.41–27.43 0.03–0.15 0.02–0.91

y (1) 0–43 0–85 0 0

Pier nose shape square- circ-triang square- circ-triang circular circular

ds (m) 0.15–10.40 0.15–2.44 0.03–0.3 0–1.39
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learning function (Foresee & Hagan 1997) was applied. In

order to prevent the training algorithm from being trapped in a

local minimum, each ANN is trained (for 50 epochs) starting

from 10 different initial networks, randomly initialized, of

which the best performing on training data (without making

any use of validation data) is chosen as the trained network.

Input variables

The input nodes to be included in a neural network may be

decided on the basis of a priori considerations (for example as

a function of the physics of the analysed phenomenon) or

analysing the influence of a wide set of possible input vari-

ables on the target. This last approach may be carried out

either with a model-free methodology, using statistical mea-

sures of dependence (such as correlation or mutual informa-

tion) to determine the strength of the relationship between

candidate model inputs and the model output, prior to model

specification and calibration (e.g., Solomatine & Dulal 2003;

Bowden et al. 2005; Lin et al. 2006; Wang et al. 2009), or with

a model-based approach, that analyses the performance of

calibrated models with different inputs for choosing the most

appropriate input vector.

In the present work, the input variables were decided a

priori, consisting in the characteristics (among those that are

actually available in all the collected datasets) of flow, sedi-

ments and structure that are considered as the most influen-

tial on the basis of the physics of the scour phenomenon and

consistently with the scientific literature (e.g. Ettema et al.

1998; Choi & Cheong 2006; Bateni et al. 2007a). This allows

also a fair comparison of the ANN models with the empirical

formulae that are world-widely applied both in the literature

and in the operational engineering practice.

The input nodes feed to the network the variables that

were actually measured for each data record (that is, for each

pier): mean velocity (V) and water depth (y); mean particle

diameter (d50); dimension of the pier (width, b, and length,

L); shape of the pier; angle of attack of the flow (y).

As far as the shape of the pier nose is concerned, such

information is made quantitative through the widely-used

Neill shape coefficient (Neill 1973), here denoted by Ns: 1

for square pier noses, 2 for circular noses, 3 for sharp noses.

The ‘‘indirect’’ variables (for example Froude number or

critical velocity) that are often used in the literature formulae

but are derived as functions of ‘‘direct’’ variables that were

actually measured, were not included as input. Also the

variables that are assumed to be constant, in the usual

conditions of laboratory and field experiments, for all the

records (i.e. flow density, flow viscosity, acceleration due to

gravity) are not used as input variables. In fact, adding input

data that do not actually convey any new information to the

model would only increase, along with the number of input

nodes, the number of parameters to be calibrated, therefore

leading to a risk of overfitting in the training phase. It was

chosen to not non-dimensionalize (nor to combine the data

in other ways) such attributes (for example making the ratio

of scour depth with pier width or with flow depth), in order

not to lose information on the direct relationship of each of

them with the output (that is, the scour depth). Such choice is

supported by the results obtained, in a similar application

based on laboratory data only, by Bateni et al. (2007b), where

the ‘‘predictions based on the original (dimensional) scour

data were better than those based on dimensionless forms of

the data.’’

The only exception to this rule is the combination of pier

length (L) and angle of attack of the flow (y), since their

influence is strictly related (actually, the pier length has no

influence on the upstream scour when the attack angle is

zero): in order to decrease the number of input variables,

and therefore of parameters to be calibrated, these two

attributes are presented to the network in the form of the

Ky parameter used both in the Colorado State University

(Richardson & Davis 1995) and in the Melville & Chiew

(1999) equations:

Ky ¼
L
b

sinðyÞ þ cosðyÞ
� �0:65

: ð3Þ

Both input attributes and the output have been standar-

dized to have, for each input variable, mean equal to zero and

variance equal to one. In fact, standardizing input and target

variables tends to make the training process better behaved

by improving the numerical condition of the optimization

problem and ensuring that the default values involved in

initialization and termination are appropriate (see Sarle

1997), so as to make training faster and to reduce the chances

of getting stuck in local minima.
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The input variables provided to the ANN are therefore

the following: (i) pier width (b), (ii) mean approach flow

velocity (V), (iii) approach water depth (y), (iv) mean sedi-

ment diameter (d50), (v) Neill shape coefficient (Ns), (vi)

Melville angle of attack coefficient (Ky).

ANN models

Due to the different nature of the measuring conditions in

laboratory and field experiments and in order to verify the

influence of the sediment transport mode (clear-water or live-

bed), different ANN models are implemented for predicting

the scour depth over the four validation data sets: (a) field

clear-water (Val F-CW); (b) field live-bed (Val F-LB); (c)

laboratory clear-water (Val L-CW); (d) laboratory live-bed

(Val L-LB).

Seven neural networks have been implemented, using

seven different subsets of the calibration data in the training

phase, with an increasing specialization degree. The first

model was parametrized using all the data available in the

training set (two thirds of all the available data, since the

remaining third is dedicated to validation), both field and

laboratory, clear-water or live-bed, for a total of 315 records.

Such model, denoted Model FL model is a ‘‘universal’’ model

and it was applied for the prediction of all the four validation

subsets.

Laboratory and field training data were then separated,

obtaining Model F, to be used for predicting the scours of Val

F-CW and Val F-LB, and Model L, to be used for predicting

the scours of Val L-CW and Val L-LB.

Finally, the most specialized models are implemented,

distinguishing both experimental setting and sediment

transport mode, training four models: Model F-CW, Model

F-LB, Model L-CW and Model L-LB, to be used exclusively

on the validation data of the same type.

It must be noted that when dealing with laboratory data

alone, that is for models L, L-CW and L-LB, the Neill shape

coefficient (Ns) and the Melville angle of attack coefficient

(Ky) are not provided in input to the networks. In fact they

have all the same value for the cylindrical piers of the

laboratory experiments and their inclusion would increase

the model complexity without adding any new information

content. It follows that the input layer is, for such models,

formed by four instead of six nodes.

The optimal number of hidden nodes to be included in

the network is strongly case-dependent. In the present work,

a trial-and-error procedure based on a ‘‘forward selection

method’’ was implemented, beginning by selecting a small

number of neurons and then increasing it. The hidden layer

dimension providing the best trade-off between parsimony

and forecasting performances, for each different model, as

described below, was identified and is reported, for each

ANN model, in Table 2.

The goodness-of-fit of the proposed models is evaluated

through the mean absolute error (MAE), between the Nval

records of observed, ds,o, and predicted, ds,p, scour depths,

MAE ¼
PNval

i¼1 ds;oðiÞ � ds;pðiÞ
�� ��

Nval
ð4Þ

and by scatterplots of predicted versus observed scour depths,

obtained with the different models (with increasing speciali-

zation) over the validations subsets. Only the results of the

best-performing architecture (for each model type) are shown

in Table 2 and Figure 1.

Table 2 9999 Mean absolute error, MAE (m), of the ANN models, over the different validation data types and number of hidden nodes (NH) in the selected architecture

ANN models (data type used in calibration) and number of hidden nodes (HN)

Validation set
FL model
(3 NH)

F model
(3 NH)

F-CW model
(3 NH)

F-LB model
(3 NH)

L model
(5 NH)

L-CW model
(4 NH)

L-LB model
(6 NH)

F 0.45 0.48

F-CW 0.29 0.37 0.39

F-LB 0.52 0.53 0.52

L 0.05 0.02

L-CW 0.064 0.026 0.020

L-LB 0.029 0.009 0.006
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Discussion of the ANN results

A clearly different behaviour of the laboratory and field

data is highlighted, when considering the performances

obtained with ANN models going from the more general

(FL model, including all kind of data in calibration) to the

more specialized ones (F-CW, F-LB, L-CW, L-LB models),

passing through the intermediate ones (F model and L

model).

In fact on the laboratory data there is a strong improve-

ment of the performance when using the more specialized

models: especially important is the enhancement going

from the universal model (FL) to the one using only labora-

tory data (L model), but further improvement, even if to a

lesser extent, is allowed by the even more specifically tailored

models, trained exclusively on the same kind of sediment

supply conditions (L-CW and L-LB) that are considered in

validation.

On the contrary, the estimation of field data does not

improve with the more specialized models but it is always

better with the general model (FL model), deteriorating for

increasing specialization.

The reason for this behavior may be sought in the quality

of the data: laboratory measurements are high-quality data,

accurate and actually representative of the study case (that is

of course much less complex than real-world cases). Such

high-quality information content may be fully exploited by the

more specialized models, even when trained on relatively

small numbers of observations as those characterizing

these models. In fact, data of such good quality are not

affected by significant noise and are therefore less subject to

overfitting.

Figure 1 9999 Scatterplot of predicted (y-axis) versus observed (x-axis) scour depths (m), obtained over the validations subsets with the ANN different models (from the general one to the more

specialized).
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On the other hand, field data are much less accurate and

representative, given the meagre information we have on the

measurement procedures and in particular on the character-

ization of the approach flow (especially because of the

unsteady state conditions) and of upstream sediment proper-

ties and behaviour. When training a model on a small set of

noisy data, affected by relevant uncertainty, the risk of over-

fitting, when model parameters fit also the noise of the

training data, is very high. In the present study, this is

shown by the poor performance over external validation

data that are obtained by the models based on calibration

sets formed by field data only. The generalization capacity,

and therefore the performances over external field data,

improves when adding the high-quality laboratory data to

the training set (model FL), since the merged training data set

is both larger and less noisy.

ESTIMATION OF LOCAL SCOUR WITH EMPIRICAL
FORMULAE

Scientific literature has provided, over the past decades,

a number of experimental equations for estimation of

the maximum depth of local scour at bridge piers. In

the present study, eight of the most widely used empirical

equations (reported in Table 3) were used as a term of

comparison for evaluating the performances of the ANN

models.

The majority of such formulae have been developed

aiming at interpolating the envelope curve of data recorded

in laboratory experiments, with the exception of Froelich’s

equation (1988), which was obtained for interpolating field

measurements and in particular under live-bed sediment

transport conditions.

Table 3 9999 Empirical formulae used for estimating pier scour depth (meaning of the symbols is reported in the text)

1) Laursen & Toch (1956) ds ¼ 1:35 � b0:7 � y0:3

2) Shen et al. (1969)
ds ¼ 0:00023 � Vb

n

� �0:619

3) Hancu (1971)
ds ¼ 2:42b � 2

V
Vc
� 1

� �
� V2

c

gb

� �1/3

4) Breusers et al. (1977)
ds ¼ b � 2V

Vc
� 1

� �
� 2tanhðy/bÞ½ � �Ks �Ky for 0:5oV/Vco1

ds ¼ b � ½2tanhðy/bÞ� �Ks �Ky for V/Vc41

5) Jain & Fischer (1980) dsa ¼ 2:0 � b � ðFr � FrcÞ0:25ðy/bÞ0:5 for ðFr � FrcÞ40:2
dsb ¼ 1:85 � b � Fr0:25 � ðy/bÞ0:5 for ðFr � FrcÞo0
ds ¼ maxðdsa;dsbÞ for 0oðFr � FrcÞo0:2

6) Froelich (1988) ds ¼ 0:32 � fs;F � bp
0:62 � y0:47 � Fr0:22 � d�0:09

50

7) CSU (Richardson & Davis 1995) ds ¼ 2 � b �Ks �Ky �Kt � ðy/bÞ0:35Fr0:43

8) Melville & Chiew (1999) ds ¼ b �Ks �Ky �Kyb �KI �Kd
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The eight empirical equations were applied over all the

validation subsets and the corresponding mean absolute error

(MAE) and scatterplots of estimated versus observed scour

depths are presented in Table 4 and Figures 2 and 3.

The results obtained by the literature formulae show that

the Froelich equation, originally derived for live-bed condi-

tions from field data only, is able to predict reasonably well

both the field datasets, under clear-water and live-bed condi-

tions; on the other hand, as expectable, it strongly under-

estimates laboratory data, getting the worst performances in

comparison to the other formulae, that are all derived speci-

fically on the basis of laboratory experiments.

The Jain & Fischer, CSU, Laursen & Toch and Melville

& Chiew equations definitely tend to overestimate field data

(some points obtained with the latter two are not shown in

the scatterplot being out of scale): this was predictable, since,

as said in the introduction, in field, real-world conditions, the

flow is unsteady and the recorded values of water depths and

flow velocities are the highest ones, generally lasting for

periods (flood events) that are too short for reaching equili-

brium (or quasi-equilibrium).

Analysing the laboratory data, the best match between

predicted and observed scour depth is given by the equations

of Laursen & Toch, Jain & Fischer and CSU, for both live-bed

and clear-water conditions. Hancu and especially Breusers

et al. equations experience more difficulties in the reproduc-

tion of clear-water laboratory data. Shen formula, not distin-

guishing the transport condition mode, overestimates the

laboratory live-bed records, while it tends to underestimate

the clear water ones. The Melville & Chiew equation seems to

be excessively conservative as far as live-bed laboratory data

are concerned.

CONCLUSIONS

The prediction of the maximum expected scour depth at

bridge piers is a crucial step in the safe design of a bridge

crossing. In the common practice, empirical derived equa-

tions are still used for estimating the pier scour depth. The

application of such formulae, often derived by regression

analysis on laboratory data, to real cases often leads to

inaccurate pier design.

The growing interest for soft computing techniques and

data driven approaches has spurred researchers to investigate

the potentialities of applying hydroinformatics techniques to

assist the estimation of the maximum scour depth at bridge

piers. Building on the progress recently made to improve the

performance of the scour estimate through the application of

ANNs, we found that a more accurate analysis should take

into account the differences in the type of available data –

laboratory or field data – and the sediment transport mode –

clear-water or live-bed conditions.

Multi-layer feedforward networks were implemented on

extensive datasets using seven different subsets of the calibra-

tion data in the training phase, distinguishing the type of data

and the sediment transport mode.

The performances of the implemented ANN were

then compared to those of eight empirical formulae com-

monly used in engineering practice. Both the scatterplots

(Figures 1–3) and the values of the mean absolute errors

(see Tables 2 and 4) demonstrate that the best performing

ANN models always allow a closer fit of the scour depth

estimates to the observed measurements, over all the valida-

tion sets and especially for laboratory data. The MAE

obtained with the most specialized ANNs on laboratory

Table 4 9999 Mean absolute error, MAE (m), of the formulae of Table 3, over the different validation data types

Validation set Shen Hancu Laursen & Toch Froelich Jain & Fischer Melville & Chiew Breusers et al. CSU

F 0.93 0.78 1.79 0.52 1.66 3.97 0.79 1.30

F-CW 0.78 0.49 1.18 0.46 1.22 2.32 0.55 1.18

F-LB 1.00 0.92 2.06 0.54 1.85 4.71 0.90 1.36

L 0.071 0.052 0.039 0.082 0.037 0.046 0.073 0.039

L-CW 0.051 0.077 0.053 0.098 0.050 0.050 0.102 0.051

L-LB 0.093 0.023 0.022 0.064 0.022 0.042 0.039 0.024
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validation data is in fact less than one-half than that corre-

sponding to the best-performing empirical formulae for the

clear-water set and less than one-third for live-bed data.

The improvement offered by ANN models is less remark-

able in the reproduction of field data, probably because of the

high uncertainties and dishomogeneity of the measures and of

the information, necessarily incomplete, describing the real-

world cases and in particular the sediments’ properties. The

difficulties experienced in the reproduction of the field data

is probably the main limitation of the proposed approach,

as of all the methodologies (notwithstanding the nature

of the approach) proposed, so far, in the literature for

the prediction of the maximum scour depth in real-world

conditions.

Nonetheless, the presented approach based on neural

networks, being able to exploit at the most the available
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Figure 2 9999 Scatterplot of predicted (y-axis) versus observed field (x-axis) scour depths (m), obtained over the validations subsets by applying empirical formulae (1)–(4) of Table 3.

Journal of Hydroinformatics 9999 13.4 9999 2011E. Toth & L. Brandimarte 9999 Prediction of local scour depth at bridge piers under clear-water and live-bed conditions821



training data, may overall be considered an advantageous

alternative to the traditional literature formulae typically used

in engineering practice, under both clear-water and live-bed

sediment transport conditions.

An additional limitation of the study is that the proposed

method does not distinguish between underestimation and

overestimation errors, whereas, in the engineering practice, at

the design stage, it is undesirable to underpredict scour.

Future research work will focus in this direction, i.e. devel-

oping a neural network model able to restrain the under-

estimation of the scour depths.
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