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ABSTRACT

Genetic Programming has been used to determine Chèzy resistance coefficient for full circular

corrugated channels. Three corrugated plastic pipes have been experimentally studied in order to

generate data. The tests aim at measuring hydraulic parameters of the open-channel flow for some

slopes, from 3.49–17.37% (2–10°), in order to discover the dependence of the channel resistance

coefficient when wake-interference flow occurs. The monomial formula for the Chèzy resistance

coefficient performs well on experimental data, both from measurement errors and from a technical

point of view. In this paper, we present some very parsimonious formulae that have been created by

Genetic Programming with few constants and which fit the data better than the monomial formula.

Moreover, two of the Genetic Programming formulae, after ‘physical post-refinement’, seem to

better explain the role of the roughness in the Chèzy resistance coefficient for corrugated channels

with respect to its traditional expression for rough channels. This fact suggests that at least the

structure of those formulae can be extrapolated to other types of corrugated channels. Finally, the

work stresses the fact that the Genetic Programming hypothesis can be easily manipulated by

means of ‘human’ physical insight. Therefore, Genetic Programming should be considered more than

a simple data-driven technique, especially when it is used to perform scientific discovery.
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INTRODUCTION

Three artificially corrugated channels have been experi-

mentally studied. Laboratory tests aim at determining the

Chèzy resistance coefficient. For this reason, about fifteen

discharges and flow depths have been measured at slopes

from 2–10°. In fact, it is observed that in this range of

slopes wake-interference flow occurs and that the Chèzy

resistance coefficient is a function of the hydraulic radius,

channel slope, roughness-elements longitudinal spacing

and height (Giustolisi 2001).

The wake-interference flow, also referred to in

Morris’s theory (Morris 1955, 1959) as hyper-turbulent

flow, is caused by the particular channel surface that is

constituted by macro wall-roughness elements which have

constant longitudinal spacing and height along the pipe.

In hyper-turbulent flow, these roughness elements

generate vortices which interfere with each other.

Therefore, from a technical viewpoint, the hyper-turbulent

flow is interesting because of the abnormal turbulence

along the channel wall-roughness elements which

generates additional dissipations, with respect to

traditional rough channels, that cause a decrease of the

average velocity of flow. This phenomenon is useful in

drainage networks installed on sloping soils where usually

the use of chutes to dissipate energy implies a higher cost

of the project because they substitute standard manholes

and, moreover, the installation of pipes has higher

excavation costs compared to the situations in which it is

possible to set pipes more or less at the same slope as the

ground surface itself.

Therefore, it is very interesting to set up a formula

for the resistance coefficient that, starting from its tradi-

tional expressions, is able to demonstrate the role of
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the roughness index, ratio of the height to longitudinal

spacing of the roughness elements and slope in corrugated

channels.

For this reason, Genetic Programming (GP) is used as

a tool to explore the domain of the resistance coefficient

formulae that fit the experimental data well. Then, the user

of GP has to select by means of input parameters the area

of the domain where the machine must perform evolution-

ary searching of formulae that fit the data well and, finally,

he has to choose the best formulae both from the fitting

and the physical point of view.

In this way, GP allows us to use the knowledge based

on data by means of the integration of ‘human’ physical

insight and computer capability to explore the domains of

the formulae.

DESCRIPTION OF EXPERIMENTAL TESTS AND
HYDRAULIC PROBLEM

Artificially corrugated plastic pipes have been tested to

slow down the open-channel flow in very steep culverts

(Shipton & Graze 1976). Tests have been carried out at the

Hydraulic Laboratory of the Technical University of Bari

in Italy. Experimental data show a strong slow down of the

average velocity of flow with respect to commercial rough

pipes (Giustolisi 2001).

Good technical results make it interesting to deter-

mine the functional dependence for the Chèzy resistance

coefficient in corrugated channels. Then experiments have

been performed on three corrugated pipes. Therefore, this

work concerns the setting up of a formula based on experi-

mental data from three different corrugated channels.

Actually, experiments on corrugated pipes or large-

scale roughness in channels of non-circular section

already exist (Streeter 1936; Powell 1944; Morris 1955;

Perry et al. 1969; Marone 1970; Shipton & Graze 1976;

Pyle & Novak 1981; Ead et al. 2000), but a formula for

the Chèzy resistance coefficient for corrugated circular

channels does not exist.

Experimental facility and set-up

A closed circuit hydraulic apparatus of a rectangular

channel of about 30 m in length with variable slope, see

Figure 1, has been used to perform experiments on

the three corrugated circular pipes in polyethylene.

Discharge, flow depth and slope have been measured in

uniform flow. The single corrugated channel length is

28.5 m and it is laid in the rectangular channel in order

to conduct experiments. The three pipes have internal

diameters of 182, 231.5 and 285 mm. The wall-roughness

elements are respectively 5.5, 6.5 and 7 mm in height and

they have a longitudinal spacing of 22.3, 26.5 and 30.4 mm

respectively. The slope of the rectangular channel varies

from 0–10°, but wake interference, i.e. hyper-turbulent

flow, has been observed (Giustolisi 2001) at slopes from

2–10° (from 3.49–17.37%) (see in Table 1).

The profile of the flowing fluid is measured through

transparent and easily removable lids in the pipe. A

Figure 1 | Pictures of experimental apparatus and a detail of the artificial roughness.
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hopper, located upstream of the rectangular channel,

conveys water into the corrugated channel. Water enters

the hopper through a large upstream case. The flow at the

end of the pipe overflows into the large downstream case

which discharges into a reservoir below. A pump carries

the flow from the reservoir to the upstream case, closing

the hydraulic circuit, see Figure 2. Actually, two press-

urised pipes carry the water to the upstream case; the

smaller pipe has an internal diameter of 155 mm while the

larger one has an internal diameter of 300 mm. Each

contains an orifice to determine the discharge. The pipes

contain valves which divert the flow into the appropriate

orifice that is selected considering the discharge range (see

Giustolisi (2001) for more details).

Measurements

For each slope, about fifteen measurements have been done

of both the discharge and flow depth for the three channels.

Then, 379 data values of hydraulic parameters have been

collected; they correspond altogether to three values of the

roughness index and to nine values of the slope. The

measurement of each discharge has been performed by

setting the filling level at about 20%, gradually increasing

up to 80%, so covering a large range of Reynolds numbers,

velocities and associated hydraulic parameters. During

tests, down-flow scales have been plotted in real time, as

well as the average velocity of flow and other hydraulic

parameters, in order to better control the experiments

and to avoid possible coarse errors. For this reason, the

maximum estimated percentage error on flow depth and

discharge measurements have been respectively less than

2% and 1%. Finally, slopes have been measured by means

of a plumb line and the total error has been found to be

absolutely negligible (see Giustolisi (2001) for more details).

Hydraulic notes

In open-channel uniform flow, the average velocity of

flow, V, is related to resistance coefficient by (Yen 2002)

Table 1 | Experimental slopes characterised by wake-interference flow occurring.

S (degrees) 2 3 4 5 6 7 8 9 10

S (%) 3.49 5.23 6.98 8.72 10.45 12.19 13.92 15.64 17.37

Figure 2 | Schematic of the experimental apparatus.
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V �
Kn

n
R2�3S1�2 Manning

V �Œ8g

f
√RS Darcy and Weisbach (1)

V � C √RS Chèzy

in which n, f and C are respectively the Manning, Darcy

and Weisbach and Chèzy resistance coefficients;

R = hydraulic radius; S = slope; g = gravitational accelera-

tion. Kn = 1 m1/3 sec − 1 or 1.49 ft1/3 sec − 1 when n is

chosen dimensionless and V and R are respectively

expressed in SI units or in English units (Chow 1973).

Equations (1) allow us to relate the resistance coeffi-

cients of the Manning, Darcy and Weisbach and Chèzy

formulae:

Œ f

8
�

n

R1�6

√g

Kn
�

√g

C
�

√gRS

V
(2)

In particular, the Darcy–Weisbach formula is derived

from the pressurised pipes with the position 4R = D,

D = diameter of the pipe

S �
hf

L
� f

V2

8gR
f � F�R,K�

(3)

where hf = frictional loss; L = length of the pipe; R =

Reynolds number; K = relative roughness; F = functional.

K is equal to the ratio between kS = equivalent surface

roughness and the hydraulic radius R.

Equation (3) says to us that, in uniform flow, the

energy gradient hf/L of the open-channel flow corre-

sponds to its slope and, moreover, it shows better that, in

open-channel flow, the Weisbach resistance coefficient

must vary with the hydraulic radius, for a given wall

roughness of the pipe, if the fully turbulent flow regime

occurs, while it must also be a decreasing function of

the Reynolds number, as experimentally determined in

commercial pipes and shown in the Moody diagram, if

turbulent flow or laminar regimes occur.

Moreover, relations in Equation (2) can be

transformed into

f �
8n2

R1�3

g

K2
n

�
8g

C2 5
C

√g
�

Kn

n√g
R1�6 (4)

which shows that in fully turbulent open-channel flows K

depends on R − 1/3, derived from the Manning formula, n is

a constant related to surface roughness and the Chèzy

resistance coefficient depends on R1/6.

In summary, if fully turbulent flow occurs in our

corrugated channel, it is expected that the Chèzy resist-

ance coefficient is an increasing function of R, the

Weisbach resistance coefficient is a decreasing function of

R and n is constant. Then, at different slopes and fixed R,

it is expected that C and f are constant.

Moreover, it is well known that fully turbulent flow

occurs when the following inequality holds (French 1983):

hSu*

n
�

hS V √g

Cn
�

hS √gRS

n
R 70 (5)

where u* = shear velocity; hS = roughness height; n =

m/r = kinematic viscosity; m = viscosity of the fluid;

r = density of the fluid. In our pipe, Equation (5) allows us

to estimate if fully turbulent flow occurs from the

measured data, the hydraulic radius derived from the flow

depth, the slope and the artificial roughness height.

Morris’s wake-interference flow

Our corrugated channels showed a physical behaviour

different from normal commercial rough pipes. This

behaviour is caused by the wall-roughness elements on the

pipe surface which have a constant longitudinal spacing

and height. Moreover, the elements are macroscopic,

having a radial height of 5.5, 6.5 and 7 mm. It is to be

remembered that the Colebrook–White formula for full

circular pipes (Colebrook & White 1937; Colebrook 1939;

Yen 2002):

Œ1

f
� � 2 log S kS

14.83R
�

2.52

4R √fD (6)

is related to the Moody diagram, which differs from the

Nikuradse diagram since the latter is obtained using
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experimental pipes with sand-grain surface roughness

having a constant diameter. In fact, in the Moody diagram,

the f–R (Weisbach resistance coefficient against Reynolds

number) curves, after departing from the Blasius smooth

pipe curves, show a dipping characteristic in the turbulent

zone and, then, become horizontal in the fully turbulent

one. In contrast, in the Nikuradse diagram, the f–R curves

show, before becoming horizontal in the fully turbulent

zone, a typical dip and rise. Therefore, the Colebrook–

White formula does not predict the Nikuradse exper-

iments because of the artificial roughness. For corrugated

pipes, the situation is worse because it is known (Morris

1955; Marone 1970; Shipton & Graze 1976) that the Moody

diagram does not predict at all the Weisbach resistance

coefficient as well as the Chèzy and Manning coefficients.

Morris (1955, 1959) describes three regimes of flow that

can originate in corrugated pipes. One of these explains

very well our corrugated channel behaviour at slopes

higher than 3.49%.

It is wake-interference flow that occurs at high

Reynolds numbers, i.e. at higher velocities and slopes,

when the longitudinal spacing of the roughness elements

becomes not large enough with respect to the velocity at

their crests. In this situation, the wake zone and the

vortex-generating zone at each element interfere with

each other and, in the zone near the wall, an abnormally

intense turbulence appears. For this reason, Morris (1955)

defines this regime as wake-interference flow and in his

second paper (1959) he calls it hyper-turbulent flow. The

name refers to the generation of a particular sub-layer,

substituting for the viscous one, of intense flow mixing.

In fact, this hyper-turbulent sub-layer is characterised

by an intense and complex vorticity and turbulent mixing

while, separated by a transitional zone, in the central

region of the channel, the normal turbulence, described

by the Von Kàrmàn universal constant of turbulence k,

prevails.

For this reason, in the flow that is subjected to this

regime, it is possible to distinguish two fairly separated

regions: the central zone of the channel with fully turbu-

lent flow and the zone near the wall with hyper-turbulent

flow.

The former region has a logarithmic velocity distri-

bution, while the latter has a more flattened one, due to

the intense flow mixing (Shipton & Graze 1976) which is

given in logarithmic form in Morris’s hypothesis. For this

reason, Morris (1955) writes the expressions

u

u*
� A �

1

k
ln S y

dS
D � a

�
1

k
ln S y

cdS � y0
D normal turbulent region

u

u*
� AP � j ln S y

dS
D � a

(7)

+ ψ ln ( y
cdS = y0

) hyper-turbulent region

where ln = natural logarithm; u = velocity at any point of

the crossing section at distance y from the crests of the

roughness; u* = shear velocity; A and AP = values of u/u*

at y = dS in the fully turbulent region and wall region

respectively; j = slope of the logarithmic velocity distri-

bution in the hyper-turbulent region; a = value of u/u* at a

distance y0 that is the thickness of the hyper-turbulent

sub-layer, which is assumed proportional to the longi-

tudinal spacing dS throughout the constant c. Morris

integrates the previous expressions, the former for (y>y0)

and the latter for (y<y0), and then the expression for

the Weisbach resistance coefficient in wake-interference

flow is

1

√f
�

2.3

k √8
log

2R

dS
�

1

√8
SA �

3

2kD
� f SRW �

dS √f R

2R
�

√32dS√gRS

n
, element shapeD

f �RW� y
1

√8
S1

k
� jD cdS

R
(8)

where log = decimal logarithm; Rw = Reynolds wall

number calculated by roughness longitudinal spacing; and

f is an additive function due to the hyper-turbulent flow.

It is stressed that, dS/hS being constant in our pipe, Rw is

proportional to the value hS u*/n of Equation (5).

The first of Equations (8), i.e. adopting k = 0.40 and

A = 8.7, becomes
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ka �
1

√f
� 2 log

2R

dS
� 1.75 � f �RW, element shape� (9)

Actually, Morris uses the pipe radius because he is con-

cerned with corrugated pipes more than with channels.

For this reason, the pipe radius is substituted by 2R

and Equation (9) corresponds to the fully turbulent flow

equation if we make the substitution kS = dS and f = 0.

Equation (9) shows that, for a given roughness an

additive function f of the Reynolds wall number and of

the roughness-element shapes, exists in hyper-turbulent

flow. Clearly, the Morris resistance function ka is constant

in fully turbulent flow. However, it is known (Rand 1955;

Perry et al. 1969; Pyle & Novak 1981; Marchi & Rubatta

1981) that the value 1.75 is not universal because k and

A depend on roughness geometrical characteristics (lon-

gitudinal spacing, height, shape, etc.) and channel shape.

Moreover, Morris’s theory predicts a positive decreas-

ing value of the additive function—see the second of

Equations (8)—and this explains the fact that, in the

Moody diagram, the f–R curves rise in the region of fully

turbulent flow. He infers that the function f appears to be

linear over a large range, but it should tend to zero at very

high Reynolds wall numbers, or Reynolds numbers, as is

clear from the first of Equations (8).

In fact, with increasing Reynolds numbers, the hyper-

turbulent sub-layer of thickness y0 should become more

and more flattened by the central fully turbulent flow. For

this reason, with increasing Rw, j should tend to 1/k and

c should tend to zero, as cdS = y0.

For this flow regime, the hydraulic parameters must be

correctly computed with reference to a datum at the crests

of the roughness elements.

Range of hydraulic parameters and experimental

monomial formula for Chézy resistance coefficient

Table 2 reports the range of some hydraulic parameters of

flow computed by means of measured discharge Q, flow

depth H and slope S. D is the internal diameter computed

according to Morris’s theory. Table 2 also shows that, in

our experiments, fully turbulent flow always occurs, as hS

u*/n>480, while f is not constant, but it is quite variable

with slope. Consequently, the Weisbach resistance coef-

ficient, i.e. the Chèzy resistance coefficient, see Equations

(2) and (4), does not depend on R alone as in fully

turbulent flow (Giustolisi 2001). Then the study of the

dependence of C has been carried out starting from the

dimensionless expression of C in Equation (4) in rough

channels adding to the function in Equation (3) for the

dependence on S that is shown by our tests (Giustolisi

2001):

C

√g
� Cadim � F�K,S� (10)

Actually, being the equivalent surface roughness constant

in our tests, the dependence of K = kS/R in Equation (10)

means a dependence on hydraulic radius. Therefore, the

selection of a monomial formula for the Chèzy resistance

coefficient makes for easy parameter estimation and it

gives

Cadim �
707

√g
R0.12 S� 0.116 Sds

hsD
� 2.235

� 226R0.12 S� 0.116 Sds

hsD
� 2.235

(11)

Table 3 reports the fitting properties of Equation (11)

according to AVG (Average error), CoD (coefficient of

determination) and RMS (root mean squared error) error

functions:

AVG ≠

∑
No. of data

√�1 � Xcomputed�Xexperimental�2

No. of data

RMS ≠
! ∑

No. of data

�Xcomputed�Xexperimental�2

No. of data
(12)

CoD ≠ 1 2
No. of data 2 1

No. of data

∑
No. of data

�Xcomputed�Xexperimental�
2

∑
No. of data

sXexperimental 2 Mean sXexperimentaldd
2
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Table 2 | Hydraulic parameters.

Measured Calculated

S
(degrees)

D
(mm)

Q
(l/sec)
(min–max)

H/D
(min–max)

hSu*/n
×10−3

(min–max)

V
(m/sec)
(min–max)

R
×10−5

(min–max)

R
×102 (m)
(min–max)

f
(min–max)

2 271 12.6–74.89 27.3–78.8 0.84–1.17 0.99–1.54 1.67–5.02 4.28–8.24 0.095–0.121

218.5 13.2–50.2 34.1–79.2 0.77–0.97 1.17–1.57 1.92–4.16 4.14–6.64 0.073–0.082

171 2.90–25.46 28.7–76.1 0.48–0.73 0.90–1.36 0.70–2.78 2.22–5.17 0.079–0.104

3 271 9.17–90.07 16.9–81.3 0.93–1.43 0.88–1.79 0.98–5.87 2.81–8.25 0.105–0.150

218.5 4.7–55.8 18.5–76.2 0.73–1.19 0.98–1.82 0.96–4.76 2.46–6.61 0.079–0.103

171 7.02–32.04 32.0–81.5 0.69–0.89 1.10–1.60 1.35–3.30 3.08–5.20 0.083–0.110

4 271 7.59–97.52 18.5–77.5 1.00–1.65 1.04–2.03 1.25–6.63 3.04–8.22 0.109–0.155

218.5 4.8–62.2 17.6–74.4 0.82–1.37 1.08–2.08 1.00–5.43 2.34–6.58 0.082–0.108

171 3.25–36.07 19.9–83.2 0.65–1.03 1.10–1.66 0.81–3.64 2.05–5.20 0.088–0.111

5 271 12.1–96.37 15.4–71.3 1.21–1.82 1.29–2.19 1.06–7.02 2.57–8.07 0.115–0.169

218.5 5.3–70.4 17.6–77.3 0.92–1.53 1.19–2.26 1.11–5.94 2.35–6.61 0.088–0.113

171 4.84–39.87 23.0–83.7 0.77–1.15 1.21–1.92 1.12–3.96 2.33–5.20 0.096–0.108

6 271 9.43–105.9 18.5–72.9 1.23–2.00 1.29–2.35 1.55–7.57 3.04–8.12 0.121–0.150

218.5 5.8–73.5 17.6–74.6 1.00–1.68 1.30–2.45 1.21–6.42 2.34–6.58 0.089–0.113

171 8.10–40.18 29.5–80.2 0.94–1.26 1.43–2.03 1.64–4.20 2.88–5.20 0.103–0.115

7 271 7.18–118.6 15.7–76.4 1.23–2.17 1.24–2.51 1.29–8.17 2.63–8.20 0.121–0.164

218.5 5.8–80.4 16.9–74.3 1.06–1.82 1.38–2.56 1.24–6.72 2.26–6.63 0.097–0.114

171 3.49–40.06 19.1–76.2 0.84–1.36 1.13–2.13 0.89–4.38 1.98–5.17 0.109–0.146

8 271 9.04–122.4 17.1–74.9 1.47–2.32 1.38–2.64 1.55–8.57 2.84–8.17 0.128–0.162

218.5 5.6–82.3 16.0–77.0 1.11–1.94 1.44–2.65 1.23–6.96 2.16–6.62 0.100–0.114

171 4.99–40.04 22.6–75.5 0.97–1.45 1.28–2.17 1.17–4.45 2.30–5.16 0.119–0.153

9 271 11.4–119.4 18.6–70.4 1.51–2.44 1.54–2.75 1.87–8.78 3.06–8.04 0.128–0.159

218.5 5.6–83.6 15.7–73.9 1.16–2.05 1.48–2.81 1.25–7.34 2.11–6.56 0.102–0.118

171 4.98–40.31 21.6–73.0 1.00–1.53 1.36–2.24 1.19–4.56 2.20–5.12 0.125–0.145

10 271 12.2–129.1 18.7–73.7 1.69–2.59 1.63–2.83 1.99–9.16 3.08–8.15 0.135–0.159

218.5 5.4–85.9 15.2–74.6 1.21–2.16 1.50–2.86 1.23–7.48 2.05–6.58 0.109–0.124

171 3.62–40.37 18.3–72.0 0.98–1.61 1.26–2.28 0.95–4.62 1.90–5.10 0.134–0.158
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where X is the dimensionless Chèzy resistance coefficient,

Cadim, of Equation (4).

The monomial formula of Equation (11) fits

sufficiently well the data but it has some limits:

1. It has four parameters, but a more parsimonious

expression should be more easily extrapolated,

especially outside the range of the experimental

roughness index [0.230 0.247].

2. Equation (11) allows us to explain the role of the

new parameter S, due to the rise of the f–R curves in

the Moody diagram for wake-interference flow that

alters the quadratic dependence of Equation (3) in

fully turbulent flow (Giustolisi 2001), but which

leaves some interpretations open about the joint role

of slope and roughness index.

For this reason, in this work GP is used to better explore

the domain of Chèzy resistance formulae in order to

confirm the dependencies of the monomial formula and to

have a more parsimonious one that could be a better

candidate for performing extrapolation, especially with

respect to the roughness index. In fact, the experimental

ranges of parameters R and R, i.e. S, are quite large.

GENETIC PROGRAMMING APPROACH

A Genetic Algorithm (GA) is a machine learning paradigm

which derives its behaviour from a metaphor for the

processes of evolution in nature. This is done by the

creation, within a machine, of a population of individuals

represented by chromosomes, essentially a set of character

strings that are analogous to chromosomes observed in

our own DNA. The individuals in the population go

through a process of evolution. Evolution is not a purpose-

ful or directed process. Indeed, the processes of nature

seem to boil down to different individuals competing

for resources in the environment. Some fit better than

others. Those that fit better are more likely to survive

and propagate their genetic material. In nature, the

encoding for our genetic information (genome) is done in

a way that admits sexual reproduction. Asexual reproduc-

tion (such as by budding) typically results in offspring that

are genetically identical to the parents. Sexual reproduc-

tion allows the creation of genetically radically different

offspring that are still of the same general flavour

(species). At the molecular level strings of chromosomes

bump into one another, exchanging chunks of genetic

information and drift apart (this is a wild oversimplifica-

tion of course). This is the recombination operation, called

crossover, because of the way that genetic material crosses

over from one chromosome to another. The crossover

operation happens in an environment where the selection

is related to the fitness of the individual, i.e. how good the

individual is in competing in its environment. Mutation

also plays a role in this process, though it is not the

dominant role that is popularly believed to be the process

of evolution, i.e. random mutation and survival of the

fittest. It cannot be stressed too strongly that GAs (as a

simulation of a genetic process) do not perform a random

search for a solution to a problem. GAs use stochastic

processes, but the result is distinctly non-random (better

than random).

GP is the extension of the genetic model of learning

into the area of programs (Koza 1992), i.e. formulae for the

Chèzy resistance coefficient in our case. That is, the

objects that constitute the population are not fixed-length

character strings that encode possible solutions to the

problem at hand. In our case, they are symbolic regres-

sions that, when executed, are the candidate solutions to

the Chèzy resistance coefficient modelling problem. These

symbolic regressions are expressed as parse trees of vari-

able length. The formulae in the population are composed

of elements from a function set, a terminal set and con-

stants. The function set is selected by the user and, in our

case, it is related to the choice of function types that are

Table 3 | Errors of the hydraulic parameters computed by Equation (11). AVG–% and

CoD–% are, respectively, AVG and CoD in percentages.

Hydraulic parameter AVG–% RMS CoD–%

Discharge Q 2.5342 9.368 2 10 1 4 99.99987

Velocity of flow V 2.5342 6.343 2 10 1 2 99.407

Chèzy coefficient Cadim 2.5342 2.823 2 10 1 1 88.2543
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candidates to play a role in the symbolic regression. The

terminal set is composed by inputs or constants that are

arguments of the function set.

In this work, GP is used in the hydraulic field (Babovic

1996; Babovic & Abbott 1997; Davidson et al. 1999;

Babovic & Keijzer 2000; Babovic et al. 2001) to perform

knowledge based on data, then, in order to find a symbolic

expression for the dimensionless Chèzy roughness coef-

ficient. For this reason, the target of GP is the experimen-

tal dimensionless Chèzy resistance coefficient and inputs

are experimental values of slope, hydraulic radius, rough-

ness height and longitudinal spacing of the roughness

elements. The function set is composed of product (*),

ratio (/), natural logarithm (ln) and power (pow), and this

is an implicit bounding of the formula space domain

where GP must search the best. GP searches, in an evol-

utionary manner, formulae that better fit the target data.

The user is free to select the cost function to measure

fitting.

Naturally, selection of a function set limits the search-

ing area in the space of formulae by physical choice. The

choice of natural logarithm, product, ratio and power

in the function set is supported by formulae given in

Equations (8) and (11).

Moreover, a so-called dimensionally aware GP

(Keijzer & Babovic 1999) has been used and, therefore,

dimensional information of dS and hS have been

used while the hydraulic radius R has been treated as

dimensionless, as explained above. In fact, the geometric

factor kS, describing the micro-roughness of the three

pipes, should be constant and therefore it does not

affect the functional dependence of Cadim. Dimensional

information in GP acts as a human preferential bias

(Keijzer & Babovic 1999, 2002) that supplies good results

in improving GP exploration without limiting the search

area.

On the maximum length of the parse tree, two

approaches have been tested. In the first approach GP has

been forced to find a formula that is no longer than

Equation (11). Therefore we have chosen the maximum

length of the parse tree equal to 20, see Table 4. This

avoidance overfitting technique is based on prior limiting

the complexity of the formula by expert choice, that is,

performing a sort of Minimum Description Length

principle. This should have the same effect as a cross-

validation technique and it is useful when the amount of

data is not high. Therefore, at first cross-validation is not

performed and during the evolution the fitness of the cost

Table 4 | Input parameters in GP. The optional parameters are respectively related to the first and second approaches.

Parameter Value Parameter Value

Number of experiments 120 Number of generations to run 1,000 or 500

Population size 1,000 Number of children 1,000

Maximum length of parse tree 20 or 30 Training percentage 100% or 75%

Cost functions CoD, RMS Set of functions *, /, ln, pow

Target Cadim Inputs R, S, hS and dS

Breeding method Tournament Tournament size for replacement 3

Constant mutation probability 0.9 Crossover rate 0.9

Self-crossover 0.3 Subtree mutation probability 0.3

Swap mutation rate 0.3 Constant probability 0.5
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functions has been calculated by the whole set of data.

Subsequently, in the second approach cross-validation

has been performed and we have chosen the maximum

length of the parse tree equal to 30, see Table 4, because of

use of the overfitting avoidance technique.

On cost functions, after the first experiments where

RMS or CoD has been used to calculate the fitness without

getting results, the choice to simultaneously optimise RMS

and CoD, using a Pareto front, supplied the best results.

On the other parameters of GP, the choice of perform-

ing a lot of experiments with one thousand runs, high

mutation, crossover, constant probabilities, population

size and number of children provided good results. How-

ever, the opposite choice of fewer experiments with

higher numbers of runs and low mutation, crossover and

constant probabilities did not work well: see some input

parameters of GP in Table 4.

Finally, the second approach seems to require a

smaller number of generations to run in order to provide

results.

RESULTS AND DISCUSSION

Results without cross-validation (first approach)

Tables 5 and 6 report the best GP formulae that it has

supplied during the 120 experiments. The values of the

constants of the formulae in Table 6 are not equal to those

Table 5 | Original best GP formulae. AVG_% and CoD_% are, respectively, AVG and CoD in percentages

Expt. no. AVG_% RMS CoD_% Hypotheses/formulae

11 2.649 0.2777 88.634 Cadim � �x�3�x�1�
R�x�2��dSS��

x�4�hS�dS

99 2.561 0.2838 88.135 Cadim � �x�1� S�Rx�3��
x�2�hS�dS

83 2.700 0.2839 88.127 Cadim � x�1� 	ln �S�R hS
�x�2�dS�hS � 2�


� x�3�

95 2.609 0.2851 88.027 Cadim � �x�1�Rx�2�Sx�2� � 1
��hS�dS�x�3�

66 2.700 0.2907 87.553 Cadim � x�2� �S�R�
x�1�

�dS�hS�
2x�3�

101 2.614 0.2932 87.338 Cadim � �� x�3� ln �x�1�S�R��
x�2�hS�dS

Expt. no. x(1) x(2) x(3) x(4)

11 1.577e+01 4.471e101 1.337e+01 2.715e+00

99 1.569e108 15.150e101

83 6.726e+01 8.257e101

95 4.9000e101 1.015e+04

66 11.160e101 1.596e+02

101 2.047e104 4.335e+00
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of the formulae in Table 5—the original hypothesis

from GP—because the formulae are re-optimised by

traditional nonlinear least squares, LSQ, using as the

initial search point the constant vector x(i) of Table 5, to

give a ‘mathematical post-refinement’ of the results. This

post-refinement generally improves the formulae from the

point of view of all statistical coefficients. The exception

is formula no. 83, which appears to be worse for AVG–%,

but this is possibly because, actually, LSQ optimises

the RMS cost function. From Table 6, the six formulae

Table 6 | Best GP formulae after mathematical post-refinement

Expt. no. AVG_% RMS CoD_% Hypotheses/formulae

11 2.6027 0.2691 89.329 Cadim � �x�3�x�1�
R�x�2��dSS��

x�4�hS�dS

99 2.5038 0.2801 88.444 Cadim � �x�1� S�Rx�3��
x�2�hS�dS

83 2.7676 0.2790 88.527 Cadim � x�1� 	ln �S�R hS
�x�2� �dS�hS� � 2�


� x�3�

95 2.5257 0.2806 88.400 Cadim � �x�1�Rx�2�Sx�2� � 1
��hS�dS�x�3�

66 2.6992 0.2901 87.600 Cadim � x�2� �S�R�
x�1�

�dS�hS�
2x�3�

101 2.4836 0.2789 88.540 Cadim � �� x�3� ln �x�1�S�R��x�2�hS�dS

Expt. no. x(1) x(2) x(3) x(4)

11 2.503e+01 4.637e101 1.035e+01 2.944e+00

99 5.449e109 14.861e101 1

83 7.129e+01 8.463e101 1

95 5.053e101 1.079e+04 1

66 11.153e101 1.599e+02 1

101 1.020e104 4.170e+00 1

Expt. no. x(1) x(2) x(3) x(4)

11 2.503e+01 4.637e101 1.035e+01 2.944e+00

99 6.015e109 14.879e101 9.904e101

83 8.774e+01 8.677e101 1.071e+00

95 5.005e101 1.015e+04 1.004e+00

66 11.151e101 1.597e+02 9.998e101

101 8.440e105 4.263e+00 9.338e101
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generally perform better than the monomial of Equation

(11) and GP confirms the dependence of the Chèzy rough-

ness coefficient on R, S, dS and hS. Moreover, Table 6

shows that GP supplies five formulae having two con-

stants, compared to four constants of the formula in

Eq. (11).

Also, if GP supplies two constants x(i) in the last

five formulae, a deeper post-refinement of GP results is

tried by adding parameter x(3) to be estimated by LSQ

optimisation. Values in Table 6 near unity of x(3) indicate

that the five formulae do not need a constant x(3).

In conclusion, GP generally supplies formulae that,

after mathematical post-refinement, generally fit exper-

imental data better than the monomial formula, but in a

more compact way and including geometrical information

about the roughness index in a different way.

Selection of the best formula

From the formulae reported in Table 6, no. 99 has been

selected as it performs better than the monomial formula,

see Figure 3 and the comparison of AVG–%–RMS–

CoD–% in Tables 3 and 6. It is also characterised by a

structure that has some aspects that will be useful.

In fact, the two formulae, Equation (11) and exper-

iment no. 99, have similar structures, but they differ in the

way in which the geometric roughness index acts in it:

Figure 3 | Comparison between GP (expt. no. 99) and monomial formulae.
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Cadim ≠ 226R0.12 S� 0.116 SdS

hS
D� 2.235

Cadim_GP ≠ S5.449 � 10� 9 S

RD
� 0.448hS�dS

� �1.04 � 104�hS�dS R0.486hS�dS S� 0.486hS�dS (12)

as an exponent of the constant term, hydraulic radius

and slope in the GP formula, and as an isolated term in

the monomial expression. Starting from the second of

Equation (12), we can write

Cadim_GP � x�1�hS�dS Rx�2�hS�dS � 1�6 Sx�3�hS�dS (13)

which is more suitable from a physical point of view

because the exponent of the hydraulic radius should tend

to 1/6 and the exponent of the slope should tend to zero,

as already correctly indicated in Equation (13), when hS is

negligible with respect to dS, see Equation (4). Optimising

by GA the vector x(i) in Equation (13), we finally obtain

Cadim_GP � 15770hS�dS R� 0.1039hS�dS � 1�6 S� 0.4460hS�dS (14)

that has AVG–% = 2.5458% RMS = 0.2955 CoD–% =

87.1353%. This last ‘physical post-refinement’ of the GP

formula does not degrade much the fitness properties

while it introduces a physical insight into the formula for

the Chèzy roughness coefficient.

It is clear that both the formulae in Equation (14)

and the GP formula in Equation (12) are valid in the

range of hydraulic parameters of Table 2 and inside the

experimental roughness index range of [0.230 0.247].

Despite this fact, the two formulae of GP are very

interesting because they explain the effect of the geometry

of the macro-roughness more clearly and both of them are

more parsimonious than the monomial formula.

From a technical point of view, we can consider the

use of either the second of Equation (12) and Equation

(14) or the monomial formula that fit more or less

equally well in the range of the experimented roughness

indexes. Out of this range, we believe that the formula

in Equation (14) is to be recommended because it fits

sufficiently well the experimental data, it is parsimonious

and it is physically interpretable. In fact, the presence

of the roughness index is the physical condition that

generates wake-interference flow and this varies the

traditional dependence on hydraulic radius of the Chèzy

resistance coefficient in a rough pipe, see Equation (4),

and causes the increase of the f–R curves in the Moody

diagram, and therefore the dependence on slope S

(Giustolisi 2001).

Results with cross-validation (second approach)

When cross-validation is performed, GP supplies formulae

that have in general a less parsimonious structure, due to

the higher value of the maximum length of the parse tree,

without good fitting properties. Here we report the best

fitting formula

Cadim_GP ≠ ln
RhS

�dS�hS� � 2

S
� 20.2005 (15)

that, despite this, is very short and fits well the whole set

of data (AVG–% = 2.4496% RMS = 0.2499 CoD–% =

90.7957%). However, there is no evidence that this result

is strictly related to the use of cross-validation because, for

example, experiment no. 83 in Table 5 is quite similar and

Equation (15) could have been supplied by the first GP

approach before the 120th experiment considering its

good fitting properties regarding the whole set of data

and its parsimonious structure. Perhaps we could argue

that cross-validation makes GP more selective during

exploration of hypothesis/formulae space.

Also in this situation, a mathematical and physical

post-refinement has been performed on Equation (15),

as done above, but now considering the formulae in

Eq. (8) and using logarithmic properties. The result is the

formula

Cadim_GP �
1

0.534
ln

2R

hS
� S1.0973 ln

hS
dS�hS

RS
� 20.6863D

(16)

that fits very well the whole set of data (AVG–% =

2.1709% RMS = 0.2295 CoD–% = 92.2412%), see

Figure 4.
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Moreover, re-writing the first of Equation (8) thanks

to the equalities in Equations (2) and (10):

Cadim �Œ8

f
�

1

k
ln

2R

dS

� FSA �
3

2kD � f �RW, element shape�G (17)

We can compare Equations (16) and (17) in order to stress

the fact that GP has supplied a formula similar to the

theoretical one where k = 0.534, a physically compatible

value considering its dependence on the roughness of the

channel as mentioned above, and dS is substituted by hS.

Naturally, it is possible to find the ratio R/dS in Equation

(16) by means of mathematical manipulation based on

logarithmic properties, but Equation (16) is the most

parsimonious structure.

In conclusion, Equation (16), as well as Equation (14),

is recommended because it fits very well the experimental

data, it is parsimonious, physically interpretable directly

from Morris’s theory and is technically feasible requiring a

knowledge of dS, hS, R and S to compute the Chèzy

resistance coefficient.

Figure 4 | Comparison between GP and monomial formulae.
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GP: DATA-DRIVEN TECHNIQUE OR MORE?

A common framework to classify modelling techniques

divides them into three categories:

• white box, i.e. completely physically based models,

whose mathematical structure and parameters are

previously known;

• grey box, i.e. conceptual models, whose

mathematical structure is known from physical

insight or conceptualisation, but whose parameter

estimation is needed by means of data;

• black box, i.e. data-driven models, whose

mathematical structure and parameters are not

previously known and data are needed to

determine both a mathematical structure and

parameters.

The above classification is not exhaustive but it is useful

for our discussion. It demonstrates the fact that white box

models theoretically do not need to monitor data infor-

mation, while grey box and black box models use this

information at different levels.

The problem in the use of data is that they have a

limited information content, i.e. we have sparse points in

the domain of the model (the curse of dimensionality) that

are corrupted by noisy measurements and secondary

physical effects whose input is not known. Highly flexible

data-driven models tend to fit noisy data, that is they are

generally able to fit training data well but this, called

overfitting, causes poor generalisation properties (the

model is not able to predict unseen data).

For this reason, the aim is to improve modelling by

means of other physical information about the mathemati-

cal structure of the model, that is shifting from completely

black box models toward grey box ones. In this way, the

same information content of the data is used to determine

fewer characteristics of the model.

For example, in Multilayer Perceptron avoidance,

overfitting techniques (Giustolisi 2002) improve general-

isation, i.e. by a phenomenon of information smooth-

ness, called Tikhonov regularization (Tikhonov 1963). In

Support Vector Machines (Vapnik 1995) the definition of

the e-tube is external information regarding the level

of non-Gaussian noise; cross-validation pragmatically

allows us to avoid overfitting, controlling it by means of

information in the validation subset of the data.

In this context, GP can be classified as a data-driven

technique because it uses data to find both a mathematical

structure and parameters, while in Multilayer Perceptron

and Support Vector Machines the structure is a math-

ematical expansion based on a prior selected kernel,

which is general in approximating functions, and the data

are used to estimate parameters.

The advantage of the GP technique is that it easy to

deal with physical prior knowledge perhaps because it

works in a similar way as humans, especially when

applied to experimental data from the laboratory used to

perform scientific discovery, as in this work. Moreover,

GP can be forced to use information in data to find a

mathematical feasible structure more than parameters

and this supplies a parsimonious hypothesis. In fact, in

this work, prior knowledge about physical phenomena

are inserted into GP during its setting up in terms of the

selection of function set type and dimensional infor-

mation (Keijzer & Babovic 2002). Moreover, the selec-

tion of the maximum length of the tree, related to the

monomial formula length, requires expert physical

insight and an application of the Minimum Description

Length principle, while performing cross-validation is an

alternative. Prior choices in GP before an evolutionary

search has shifted it from being data-driven towards a

grey box technique, allowing us to avoid typical prob-

lems, such as overfitting, of the traditional over-

parametrized black box techniques. The parsimony of the

formulae/hypotheses supplied by GP, which at the same

time fit the experimental data well (considering the

measurement errors), is the result.

The mathematical post-refinement of the formulae/

hypotheses uses one more time data to improve fitting, but

now in a context of parsimonious formulations and, there-

fore, far from the overfitting problems generated by an

excess of parameters. The final physical post-refinement of

the expert-selected formula by means of manipulation

(Keijzer & Babovic 2002) is very important because it can

be a decisive shift of GP toward physically based model-

ling. In fact, the final physical post-refinement is in the

direction of a physical formula that could fit the worst

experimental data, for example Equation (14), but it
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supplies more information about the effect in a case

study of hydraulic/geometric variables in the resistance

coefficient. Therefore, if overfitting occurs the physi-

cal post-refinement could be seen as a post-avoidance

overfitting technique.

In summary, we believe that, strictly speaking, GP is a

data-driven technique, but prior knowledge during the

setting up of the evolutionary search and final physical

post-refinement (Keijzer & Babovic 2002) of the hypoth-

esis should make it very close to a white box tech-

nique, especially when GP is used in scientific discovery

problems.

CONCLUDING REMARKS

GP (Babovic 1996; Babovic & Abbot 1997; Davidson et al.

1999; Babovic & Keijzer 2000; Babovic et al. 2001) has

been applied to the determination of the Chèzy roughness

coefficient for corrugated channels in wake-interference

flow, i.e. hyper-turbulent flow (Giustolisi 2001).

The novelty of this application is that the author, more

trained in the specific hydraulic problem, takes advantage

of the knowledge discovery technique based on his

integration with GP to improve the Chèzy resistance

coefficient formula with respect to the monomial one. It is

notable that GP quite easily and quickly supplies at least

two good formulae that fit the experimental data better

and are more parsimonious than the monomial formula.

Moreover, GP has supplied six parsimonious expressions

(one or two constants compared to four for the monomial

formula) for the Chèzy resistance coefficient, all confirm-

ing the dependencies on hydraulic radius, slope and

roughness index.

Finally, the two new formulae for the Chèzy resistance

coefficient, derived from these GP formulae by means of

‘mathematical/physical post-refinement’, are suitable for

explaining the effect of the macro-roughness elements,

with respect to the behaviour of the rough commercial

channels and their traditional expressions for resistance

coefficients (Morris’s theory and monomial expressions).

Therefore, the work seems to indicate that this approach,

which combines data-mining techniques together with a

theoretical understanding, provides very good results. In

fact, Equations (14) and (16) show the balance between

experimental data and the physical interpretation of the

roughness index that generates hyper-turbulent flow and

fitting properties.
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NOTATION
A = value of u/u* for normal turbulent region vel-

ocity distribution at y = dS in Morris (1955)

Ap = value of u/u* for wall-velocity distribution at

y = dS in Morris (1955)

a = value of u/u* at distance y0 (boundary between

turbulent and hyper-turbulent regions) in Morris

(1955)

C = resistance coefficient of Chèzy formula

Cadim = dimensionless resistance coefficient of Chèzy

formula

c = coefficient such that the thickness of hyper-

turbulent region is proportional to dS in Morris

(1955)

D = internal diameter of the pipe in wake-

interference flow

dS = longitudinal spacing of the wall-roughness

elements

f = resistance coefficient of Darcy–Weisbach

formula

g = gravitational acceleration

H = flow depth in wake-interference flow

hf = frictional loss
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hS = height of the wall-roughness elements

L = length of the pipe

n = resistance coefficient of Manning formula

k = Von Kàrmàn universal constant of turbulence

kS = equivalent roughness height

K = relative roughness

Q = discharge of flow

R = hydraulic radius of flow

R = Reynolds number of flow

RW = Reynolds wall number of flow

S = slope of the channel

V = average velocity of flow

u = velocity at any point of the cross section of flow

u* = shear velocity of flow

y = radial distance from the crests of the roughness

y0 = thickness of the hyper-turbulent region

f = additive element function in hyper-turbulent

flow in Morris (1955, 1959)

ka = resistance function in Morris (1955)

j = slope of logarithmic velocity distribution in the

hyper-turbulent region in Morris (1955).
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