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ABSTRACT

Steady-state Water Distribution Network models compute pipe flows and nodal heads for assumed

nodal demands, pipe hydraulic resistances, etc. The nonlinear mathematical problem is based on

energy and mass conservation laws which is solved by using global linearization techniques, such as

global gradient algorithm (GGA). The matrix of coefficients of the linear system inside GGA belongs to

the class of sparse, symmetric and positive definite. Therefore a fast solver for the linear system is

important in order to achieve the computational efficiency, especially when multiple runs are

required. This work aims at testing three main strategies for the solution of linear systems inside

GGA. The tests are performed on eight real networks by sampling nodal demands, considering the

pressure-driven and demand-driven modelling to evaluate the robustness of solvers. The results

show that there exists a robust specialized direct method which is superior to all the other

alternatives. Furthermore, it is found that the number of times the linear system is solved inside the

GGA does not depend on the specific solver, if a small regularization to the linear problem is applied,

and that pressure-driven modelling requires a greater number which depends on the size and

topology of the network and not only on the level of pressure deficiency.
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NOTATION

A coefficient matrix

Ann coefficient matrix in GGA

A pp diagonal matrix in GGA

Anp, A pn, A p0 topological incidence sub-matrices in GGA

b vector of known terms

dn column vector of demands

D diagonal matrix

Dnn diagonal matrix of derivatives of the

pressure-demand with respect to Hn

D pp diagonal matrix of derivative of head losses

with respect to Qp

Fn temporary matrix used in GGA

H0 column vector of known nodal heads

Hn column vector of unknown nodal heads

iter counter for iterations

L lower triangular matrix

M pre-conditioner of the iterative method

nn number of nodes with unknown heads

np number of pipes

n0 number of nodes with known heads

P permutation matrix of a symmetric ordering

strategy

Q orthogonal matrix

Qp column vector of unknown pipe flow rates

R upper triangular matrix

U upper triangular matrix

x vector of unknowns

INTRODUCTION

In recent years information technologies have made more

data available and consequently the water industry is

interested in utilizing those records to inform timely
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operational decisions (for security, leakage management,

energy management, etc.). This in turn requires the hydrau-

lic steady-state simulation of larger and larger network

systems with increased detailed information about their

layout, such as, for example, connection to properties and

minor subsystems. Numerous model runs in real-time are

required to find near optimal management solutions for net-

works consisting of thousands of nodes and pipes and this

fact asks for computational efficiency. The improvement of

the computational efficiency can be achieved by: (i)

improved mathematics, for example, new/more robust

numerical techniques to manage the solution of the system

equations; (ii) better technology, for example, parallelization

of existing codes for multi-cores processing and/or Graphic

Processor Units (GPU) (Crous et al. ; Wu & Lee ;

Guidolin et al. ); and (iii) innovative engineering, i.e.

techniques for simplifying the topological representation of

pipe networks while preserving the accuracy of the analysis

as for example in Giustolisi () and Giustolisi et al. ().

Simulation models for hydraulic system networks are

based on the solution of the nonlinear system of equations

related to energy and mass balance principles. The most

widely used algorithm is the global gradient algorithm

(GGA) (Todini & Pilati ; Todini & Rossman ). It

is implemented in EPANET (Rossman ) and involves

the iterative solution of a sparse symmetric system of

linear equations.

The implementation of a robust and computationally

efficient linear solver is a relevant issue considering that

the analysis of hydraulic systems is generally repeated

many times, such as for optimization purposes, extended

period simulations, real-time decisions, etc.

Here, we are here interested in analyzing the numerical

methods, see point (i). For a very large linear system of

equations, several methods and their implementation in sol-

vers exist. They can be divided into three classes: (a) direct

solvers; (b) iterative solvers; and (c) the most recent multi-

grid solvers. Direct methods are highly efficient but require

a large memory space. Iterative methods require less

memory but need a scalable pre-conditioner to remain com-

petitive. Multi-grid methods are often efficient and scalable,

but are sensitive to the condition number (Wesseling )

and their convergence and accuracy depend on it.

Therefore, the most suitable solver depends on several

parameters. One of the most important is the mathematical

problem size (e.g. in the case of Water Distribution Network

(WDN) modelling using GGA the number of nodes of the

hydraulic system) which significantly influences the numeri-

cal complexity of the linear problem inside GGA.

The computing architecture, i.e. point (ii), can also influ-

ence the selection of the solver. For example, direct

methods, as implemented today (e.g. CHOLMOD factoriz-

ation routines used in Matlab package, available at www.

cise.ufl.edu/research/sparse/cholmod), can already support

multi-thread computing (Davis & Hager , , ).

Here, we are interested in the issue of understanding

which method is the most robust and effective for the

specific case of steady-state WDN modelling using GGA

independently on the increase of velocity of the linear

system solution due to the technology such as multi-thread

processing or computing by GPU.

Therefore, an existing Matlab code used inside the

WDNetXL system (www.hydroinformatics.it) for steady-

state analysis has been slightly changed, in order to option

the call to different linear solvers and to store the related

total CPU time, without using parallel computing or multi-

thread facility of the Matlab environment. It is worth

noting that the most computational expensive operations

in Matlab are performed by C built-in codes, i.e. Matlab

works with internally highly optimized C functions for com-

putational expensive tasks. Furthermore, the sparse matrix

representation is always the same, inside Matlab and

linear solvers, and a 32 bit environment was used.

For the purpose of testing solvers, eight real networks

were used and the classical demand-driven analysis (DDA)

and the pressure-driven analysis (PDA) were considered.

PDA entails customer-demand variation with nodal pressure

(Gupta & Bhave ) or more in general several demand

components depending on the nodal pressure (Giustolisi

& Walski ). In fact, in PDA demands can fail to values

close to zero and the solution of the linear system inside

GGA can become critical (high condition number) indepen-

dently on the use of a regularization method (Piller ;

Giustolisi ), for example using a minimum flow

threshold equal to 10–6/R m3/s, as in this work, where R is

the pipe hydraulic resistance.

Moreover, we study the number of iterations (i.e. the

number of times the linear system inside GGA is solved)
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of PDA vs. DDA which significantly influences the actual

computational burden during multiple model runs for any

technical purpose. We found that the number of iterations

of the steady-state analysis is not only related to the level

of pressure deficiency (i.e. number of nodes in pressure

deficient condition and level of actual pressure) but also to

the size of the network and to the type of topology.

The structure of the work is as follows. A brief descrip-

tion of steady-state WDN modelling is initially reported,

DDA and PDA are formulated in a single modelling frame-

work, and the system of linear equations being solved inside

GGA is presented. Successively, three main strategies of

linear system solvers – (i) direct methods, (ii) iterative

methods and (iii) algebraic multi-grid method – are outlined.

Then, the numerical study is presented; it is performed using

eight real networks where nodal demands are sampled in

order to evaluate robustness and effectiveness of each

method.

Finally, the discussion of results demonstrates that

direct methods (and in particular a specialized one) are

robust and effective for the specific complexity of the

linear system inside GGA and actual size of WDN

models, without considering the possibility to reduce the

problem size as for example using Enhanced GGA (Giusto-

lisi et al. ). Furthermore, it was proved that larger

looped networks generally do not require an increased

number of iterations of the steady-state analysis passing

from DDA to PDA because the multiple paths that can

be activated in PDA conditions, varying the boundary con-

ditions scenarios, makes the mathematical problem less

complex. Thus, the only unquestionable source of growth

of computational burden in PDA is the need of computing

demands through pressure-demand relationships (Giusto-

lisi & Walski ).

Although the tests on linear solvers inside GGA are

somehow dependent on the programming environment, on

the steady-state WDN model implementation and even on

the use of a 32 bit programming environment, it was

found that a LDL specialized routine, which is a variant of

Cholesky factorization, is much more effective than the

other solvers. This fact is due to its more compact code

which takes some computational advantages from the

restriction to real matrices (Davis ).

STEADY-STATE WDN MODELLING

Steady-state analysis of a hydraulic network composed of np
pipes with unknown flow rates, nn nodes with unknown

heads (internal nodes) and n0 nodes with known heads

can be performed by solving the following non-linear

system based on energy and mass balance conservation

equations,

A ppQp þA pnHn ¼ �A p0H0

AnpQp � dn(H) ¼ 0n
(1)

where Qp¼ [np,1] column vector of unknown pipe flow

rates; Hn¼ [nn,1] column vector of unknown nodal heads;

H0¼ [n0,1] column vector of known nodal heads; dn¼
[nn,1] column vector of demands which may depend on

head status of the system (head/pressure driven analysis);

Apn¼AT
np and Ap0¼ topological incidence sub-matrices of

size [np,nn] and [np,n0], respectively; AppQp¼ [np,1] column

vector of pipe head losses due to the pipe hydraulic resist-

ance and any device (e.g. valves and pumps) installed on

pipes. The conventional positive signs for the topological

matrices can be assumed as in Todini () or Giustolisi

et al. ().

Once some boundary conditions are assumed, such as

hydraulic resistance in pipes; nodal demands; tank levels;

status of control valves; pump curves; etc., the solution of

the nonlinear system in (1) provides the hydraulic system

state (Qp; Hn). The general GGA solution of system (1)

can be obtained by iteratively solving the following

equations (Todini ; Piller et al. ; Cheung et al.

; Giustolisi et al. ; Wu et al. , Giustolisi &

Walski ):

Fiter
n ¼ AnpQ

iter
p �Cn

� �
�Anp Diter

pp

� ��1
Aiter

pp Q
iter
p þAp0H0

� �

Hiterþ1
n ¼ Anp Diter

pp

� ��1
ApnþDiter

nn

� ��1

Fiter
n

Qiterþ1
p ¼Qiter

p � Diter
pp

� ��1
Aiter

pp Q
iter
p þAp0H0þApnH

iterþ1
n

� �

Cn ¼dn and Diter
nn ¼ 0nn for demand�driven analysis

Cn ¼ dn(H)ð Þiter�Diter
nn H

iter
n for pressure�driven analysis

(2)
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where iter¼ counter for iterations; Dpp¼ diagonal matrix

whose elements are the derivatives of the head loss func-

tions with respect to Qp and Dnn¼ diagonal matrix whose

elements are the derivatives of the pressure-demand

relationships with respect to pressures in the network.

A key point of the algorithm in (2), as well as for other algor-

ithms, is the iterative solution of the linear system of

equations,

Hiterþ1
n ¼ Anp Diter

pp

� ��1
Apn þDiter

nn

� ��1

Fiter
n ¼ Ann½ ��1Fiter

n

(3)

where in the specific case of GGA Ann¼ sparse square sym-

metric positive definite matrix whose order equals the

number of internal nodes nn. It follows that hydraulic sol-

vers based on GGA needs to perform the solution of a

symmetric sparse linear system in an efficient and robust

way because that solution drives the performance (in

terms of convergence and robustness issues) of the GGA

(Giustolisi et al. ). EPANET software package (Rossman

) uses inside GGA a direct method for the system in (3)

with classic LL Cholesky factorization for sparse symmetric

positive definite matrices together with a bandwidth mini-

mization ordering strategy as in George & Liu ().

It is worth noting here that we refer to steady-state

analysis without considering devices controlling pressure/

flow or pressure controlled variable speed pumps or check

valves. In fact, such devices alter the solution of the

system in (1) because extra equations needs to be

implemented in order to model them, furthermore the pre-

diction of the status of those devices needs to be performed.

SOLUTION OF LINEAR SYSTEMS

The solution of systems of linear equations of the form Ax¼
b (A is the coefficient matrix, b is the vector of known terms

and x is the vector of unknowns, nodal head in WDNs) can

be performed using two main strategies named direct and

iterative methods (Saad ). Those strategies are indepen-

dent of the specific properties of the matrix A. Furthermore,

the algebraic multi-grid strategy, using both direct and itera-

tive methods, has been recently proposed in different fields,

for example, in order to integrate shallow water equations

using implicit methods (Spitaleri & Corinaldesi ).

Direct methods

Direct methods are traditionally used and a number of strat-

egies are available. The first and most popular is the

Gaussian elimination and that with partial pivoting is the

most widely used algorithm for solving linear systems

because of its stability and better time complexity. It can

be seen as an LU factorization meaning that A¼ LU (L¼
lower triangular matrix and U¼ upper triangular matrix)

where L is the factor of the elimination phase and U of

the back-substitution phase. The solution of the linear

system is given by:

(LU)x ¼ b ) L(Ux) ¼ b ) Ly ¼ b ) Ux ¼ y

(4)

therefore after factorization two triangular systems are

solved instead of the original one.

Other well-known general methods are the QR (A¼
QR, Q¼ orthogonal matrix and R¼ upper triangular

matrix) factorization using Householder transformations

or Givens rotations. When A is symmetric positive definite

U¼ LT and A¼ LLT that is the well-known LL Cholesky fac-

torization or its variant A¼ LDLT named LDL factorization.

The matrix A can be square or rectangular and dense or

sparse. Sparse means that the matrix has few non-zero

entries although ‘few’ is not well defined in scientific litera-

ture but in water system network analysis this mathematical

condition for the coefficient matrix of the linear system in

(3) always occurs (Giustolisi et al. ). For sparse matrix,

there are effective ways to store the matrix A and the related

factors (e.g. L and U) in memory to avoid storing zeros of

such a matrix. When only the nonzero entries are stored,

there are some consequences for the factorization algor-

ithm. For example the position of non-zeros is not known

in advance, e.g. in L and U factors. Consequently a critical

issue in linear solvers for sparse problems is ‘ordering’.

Ordering means permuting the rows and columns of the

matrix A so that the fill-in in the L and U factors is reduced

to a minimum. A fill-in is defined as non-zeros appearing in
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either of the matrices L or U, while the element in the cor-

responding position in A is a zero. Fill-in has obvious

consequences to memory because the factorization algor-

ithm could create dense L and U factors that can exhaust

available memory although the matrix A is sparse. A good

ordering algorithm yields a low fill-in. Finding the ordering

that gives minimal fill-in is a NP (nondeterministic poly-

nomial time) complete problem (i.e. a polynomial time

algorithm to solve the problem is not known). The solution

for a sparse linear system needs: an analysis of fill-in

reduction by matrix permutation (ordering); a numerical fac-

torization and the phase solution of the problem. The

ordering phase exploits the matrix structure which is some-

times referred to as the symbolic factorization step and

(optionally) determines a pivot sequence and data structures

for efficient factorization. A good pivot sequence signifi-

cantly reduces both memory requirements and the number

of floating-point operations required. The numerical factor-

ization phase uses the pivot sequence to factorize the

matrix (some strategies scale the matrix prior to the factoriz-

ation). The solution phase performs forward elimination

followed by back-substitution using the stored factors. The

solution phase may include iterative refinement. Of the

different phases in a serial implementation, the numerical

factorization is usually the most time-consuming, while the

solution phase is generally significantly faster (Giustolisi

et al. ).

In the specific case of the system in (3) with a symmetric

matrix Ann using, for example, the Cholesky LDL:

PnnA
iter
nn P

T
nn

� �
PnnH

iterþ1
n

� �
¼ PnnF

iterþ1
n and

PnnA
iter
nn P

T
nn ¼ LnnDnnL

T
nnLnny ¼ PnnF

iterþ1
n ) Dnnz ¼ y

) LT
nn PnnH

iterþ1
n

� �
¼ z (5)

where PT¼ permutation matrix of a symmetric ordering

strategy (i.e. the same ordering is applied to rows and col-

umns); L¼ lower triangular matrix with unit diagonal and

D¼ diagonal matrix. It follows that the L factor in Equation

(5) should have a low fill-in because of ordering by P. PnnHn

and PnnFn are the ordered vectors of solution and known

term, respectively, while a proper indexing using the diag-

onal elements of P easily gives the H solution in the

original order. Therefore, the use of Cholesky LDL

decomposition instead of the classical Cholesky LL is

related to its applicability for positive indefinite matrices

because some square roots in LL factorization are avoided,

achieving a faster factorization also.

It is important to consider that increasing the size of the

mathematical problem the matrix, Ann of steady-state WDN

models might become closer and closer to semi-definite. Fur-

thermore, in PDA some network sections might have flow

rates close to zero making Ann indefinite because Dnn is

not invertible (Giustolisi et al. ). This makes the linear

problem ill-conditioned, therefore the accuracy and robust-

ness of direct solvers decrease because of the effect of the

round off errors due to the finite precision of the computing

environment and their propagation due to the increased

number of arithmetic operations to compute the solution.

Iterative methods

Any system of equations can be solved by direct methods.

Unfortunately, the triangular factors of sparse matrices are

not sparse, so the computational burden of these methods

can be quite high, increasing the problem size. Furthermore,

the required model accuracy of the technical problem,

which is also related to the errors in the domain and bound-

ary conditions representation, is usually much lower than

the accuracy of the direct solvers. Therefore, sometimes

there is no reason to try solving the linear system with

much higher accuracy and this leaves an opening for itera-

tive methods especially for large size domains (i.e.

networks), because the increase of the computational

burden of iterative solvers are less sensitive to problem

size and considering the advances in parallel computing.

Differently from the direct methods where the matrix A

is decomposed into its factors, in iterative methods, the first

approximate solution is somehow guessed and equations to

systematically improve it are then used. For this purpose it is

assumed A¼M–N, consequently:

Ax ¼ b , (M�N)x ¼ b ,
M�1(M�N)x ¼ M�1b

(6)

where M¼ pre-conditioner of the iterative method. For the

effectiveness of the method, M should be easily inverted

(i.e. from a practical point of view it should be diagonal,
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tri-diagonal, triangular, block tri-diagonal or triangular, etc.)

and a good approximation to A so that N is small in some

sense. Equation (6) opportunely rewritten provides:

I�M�1N
� �

x ¼ M�1b , Ix ¼ M�1NxþM�1b ,
xkþ1 ¼ M�1Nxk þM�1b

(7)

The third of Equation (7) is the general formulation of

iterative methods to solve a linear system of equations. It

is easy to demonstrate that if xk approaches to xkþ1 it con-

verges to the original solution of the linear system, i.e. the

first of Equation (7) which is a pre-conditioned Ax¼ b. It

is worth noting that for iterative methods to be effective, sol-

ving the system (7) must be computationally not expensive

and the method must converge rapidly if a good initial

guess of x is given. Furthermore, if for example M¼A¼
LU, the iteration form in (7) becomes x¼ (LU)–1b being

N¼ 0, then the direct method arises.

As presented in a previous section, the incomplete LL

zero fill-in (ILL) is usually used as a pre-conditioner for

the Preconditioned Conjugate Gradient (PCG) iterative

solver. As reported above, in order to explain the use of

LDL factorization instead of LL, it was found in Giustolisi

et al. () that, for the same reason the ILUTP factorization

(Saad ) (staying for incomplete LU factorization with

Threshold and Pivoting) instead of ILL is effective. Other

pre-conditioners have been found unstable and ineffectual

with respect to convergence and robustness performance

in steady-state WDN modelling (Giustolisi et al. ).

It is noted that increasing the problem (network) size,

i.e. the condition number of the linear problem, the conver-

gence rate, for a given accuracy, of the iterative solvers

generally decreases.

Algebraic multi-grid methods

The accuracy and robustness of direct solvers decreases for

large size problems and the computational burden increases

more than linearly. On the other hand, finding and/or com-

puting a good pre-conditioner for iterative solvers can be

computationally more expensive than using a direct solver

and it results in the lack of robustness of the iterative

methods. Furthermore, the convergence rate of iterative

solvers is influenced by the condition number of the

system matrix.

The basic idea of multi-grid method MG is then to com-

bine results obtained on different scales to overcome the

drawback of direct solvers, applying results from one scale

to eliminate certain error components of the approximation

of the solution on another scale.

The general framework of MG is composed of three

phases:

1. Smoothing: reducing high frequency errors, for example

using a few iterations of the Gauss–Seidel method.

2. Restriction: down sampling the residual error to a coarser

grid.

3. Interpolation or Prolongation: interpolating a correction

computed on a coarser grid.

Algebraic multi-grid (AMG) method is a subcategory of

MG which is best developed for symmetric, positive (semi-)

definite problems. Various recent research activities aim to

apply AMG to systems of partial differential equations

such as Navier–Stokes equations or structural mechanics

problems, and recently in WDN modelling (Zecchin et al.

). Therefore, AMG is guaranteed to converge for Ann

(a sparse square symmetric positive definite matrix) of GGA.

The AMG method combines the effect of a smoother

and a coarse grid correction. The smoother is fixed and gen-

erally based on a simple iterative method such as the Gauss–

Seidel method. The coarse grid correction consists of com-

puting an approximate solution to the residual equation on

a coarser grid. This solution is then transferred back to the

actual grid by means of an appropriate prolongation. This

coarse grid correction is entirely defined once the pro-

longation is known, that is, once an appropriate

prolongation matrix has been set up by applying a so-

called coarsening algorithm to the system matrix.

A famous approach to accelerate AMG is to use them as

pre-conditioners for Krylov methods such as the PCG

method (Saad ).

Here we use Aggregation Based Algebraic Multi-grid

(AGMG) which considers coarsening by aggregation of the

unknown nodal heads and leads to prolongation matrices

with at most one non-zero entry per row, which are much

sparser than the ones obtained by the classical AMG
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approach (Notay ), therefore AGMG should be effective

for the linear system inside GGA.

Furthermore, AGMG is used as pre-conditioner of a

specialized conjugate gradient method, named flexible, if

the matrix is symmetric positive definite in order to enhance

the stability of the method in the presence of variable pre-

conditioning (Notay ). For the details of this algorithm,

readers can refer to Notay (, ).

CASE STUDY

We will use the eight real networks reported from Figure 1–8:

1. Apulian, 24 nodes, 34 pipes, one reservoir, average

number of pipes incident the nodes equal to 2.84 (Giusto-

lisi et al. ).

2. C-Town, 396 nodes, 444 pipes, eight reservoirs/tanks and

average number of pipes incident the nodes equal to 2.24

(Ostfeld et al. ).

3. Campania, 799 nodes, 847 pipes, 11 reservoirs/tanks and

average number of pipes incident the nodes equal to 2.12.

4. Richmond, 872 nodes, 957 pipes, seven reservoirs/tanks

and average number of pipes incident the nodes equal

to 2.18 (Van Zyl et al. ).

5. WRC, 1,786 nodes, 1,995 pipes, four reservoirs/tanks and

average number of pipes incident the nodes equal to 2.24

(Lippai ).

6. Exnet, 1,894 nodes, 2,467 pipes, two reservoirs/tanks and

average number of pipes incident the nodes equal to 2.6

(Farmani et al. ).

7. BWSN, 12,527 nodes, 14,831 pipes, three reservoirs/

tanks and average number of pipes incident the nodes

equal to 2.36 (Ostfeld et al. ).Figure 1 | Apulian network.

Figure 2 | C-TOWN network.
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8. Big-Town, 26,967 nodes, 32,331 pipes, 28 reservoirs/

tanks and average number of pipes incident the nodes

equal to 2.4. Big-Town is a commercial sensitive network

and thus it is not publicly available.

The numerical tests were performed by assuming 100

different networks in terms of demand variations which

were randomly varied using a beta-decreasing function

using as maximum demand eight times the original

Figure 3 | Campania network.

Figure 4 | Richmond network.
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demand (Giustolisi et al. ), i.e. 100 steady-state analyses

were run.

We will test some direct and iterative methods for linear

solvers applied to GGA. As ordering methods, the

approximate minimum degree permutation is here used

(Giustolisi et al. ).

As reported by Giustolisi et al. (), EPANET uses a

bandwidth minimization method, while it was found that

Figure 5 | WRC network.

Figure 6 | Exnet network.
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approximate minimum degree permutation is more effec-

tive in GGA. In fact, minimum degree minimizes the

number of fill entries introduced at each step of sparse Cho-

lesky factorization and in theory is suboptimal but in

practice often wins for medium-size problems, while band-

width minimization try to keep all non-zero close to the

diagonal and in theory and practice often wins for ‘long,

thin’ problems.

The factorization used for direct methods are the stan-

dard Cholesky LL and LDL. Furthermore, a specialized

version of the LDL for real matrices of coefficients is also

used (Davis ) and the Matlab backslash function.

Figure 7 | BWSN network.

Figure 8 | Big-Town network.
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Backslash uses the LL method when a symmetric sparse

matrix of coefficients is detected, but it performs the

matrix analysis at each function call. In addition, three

iterative methods have been investigated: the PCG; the

symmetric least square (SYMLQ); and minimum residual

(MINRES). They are all specific for symmetric positive

sometimes semi-definite problems and they were all pre-

conditioned using the ILUTP factorization as reported

in the ‘Iterative methods’ section. Finally the AGMG was

used as pre-conditioner of the flexible conjugate gradient

method (Notay ).

The environment for analysis was Matlab R2011a-32bit

for Windows 7.0 installed on a Notebook equipped with

an Intel vPro i7 processor. The accuracy of each steady-

state analysis was set as equal to 10–7, i.e. the accuracy is

computed as average value of the squared errors on mass

and energy balance (Giustolisi et al. ).

RESULTS AND DISCUSSION

Tables 1 and 2 report the results of different linear solvers in

eight real networks for demand-driven and pressure-driven

steady-state analyses, respectively. For each strategy used,

in the first and second columns the size of networks and

the acronyms identifying the linear solvers are reported

(i.e. LL¼Cholesky LL decomposition, LDL¼Cholesky

LDL decomposition, LDL spec.¼Cholesky LDL decompo-

sition specialized for real number matrix, AGMG¼
Aggregation Based Algebraic Multi-grid, PCG¼ precondi-

tioned conjugate gradient method, MINRES¼minimum

residual method, SYMLQ¼ symmetric least square

method, Matlab¼Backslash use ‘\’ in Matlab software).

In the third column, the average CPU time for the single

steady-state analysis, in the fourth and fifth columns, regard-

ing the solution of the linear system, the average CPU time

and the percentage of CPU time required (i.e. considering

the number of times the linear system inside GGA is solved)

with respect steady-state analysis, respectively, are reported.

It is first to report that all the tested linear solvers show

the same robustness meaning that the use for regularization

of the solution, a simple flow threshold equal to 10–6/R m3/sec

which is especially useful in PDA when flow can approach

null values, is effective.

Tables 1 and 2 show that the ranking of solvers with

respect to CPU time is LDL spec, LL, LDL, PCG,

MINRES, SYMLQ, Matlab and AGMG, in DDA, while

PCG becomes the third and LDL the forth, in PDA.

Tables 1 and 2 demonstrate that the LDL decomposition

(specialized for sparse symmetric positive definite real matrix)

has the best performance both in DDA and PDA being

between two and three times faster than the LL decompo-

sition. This is due to the fact that, as already reported, the

LDL specialized has a more compact code which takes

some computational advantages from the restriction to real

matrices. Furthermore, the results demonstrate that the

direct solvers are the most effective for steady-state WDN

modelling with GGA, while among the iterative solvers the

PCG with the ILUP pre-conditioner is the most effective.

The standard use in Matlab of the backslash is not

advised because it is a general routine implementing some

controls to determine for example the matrix type, ordering,

etc., which makes it much more robust as a general purpose

linear system solver but much slower than specialized sol-

vers for sparse, symmetric and positive definite matrix.

It is worth noting that PCG increases its effectiveness in

PDA because the system of linear equations is better con-

ditioned, i.e. the matrix of coefficients tends to being strictly

diagonally dominant (becausematrixAnn inEquation (3) is gen-

erally strictly diagonal dominant),which improves convergence

of iterative solvers together with the problem regularization.

In general, the tests show that the problem size of steady-

state modelling does not increase the computational burden

of direct solvers so that iterative solvers can be better alterna-

tives, although an effective pre-conditioner is used and the

problem regularization increases their convergence rate.

AGMG shows the least effective performance because it

is actually well-suited for very large linear systems of

equations (million nodes) which are inherently weakly con-

ditioned (high condition numbers). On the contrary, the

large size hydraulic systems in WDN modelling are far

from the mathematical concept of large size systems. It is

also reported that the average number of pipes incident

(average number of pipes connecting to each node) is low

in real networks, see the last column in Table 3 reporting

the average nodal degree of each network that is a topology

indicator which could be related to the sparseness of the

system matrix of the linear problem inside GGA. In fact,
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AGMG works better for denser coefficient matrix not corre-

sponding to real hydraulic systems.

The computational burden of the solution of the linear

system clearly depends on its effectiveness with respect to

the other parts of the code implementing steady-state

analysis. Tables 1 and 2 show that computational time of

WDN modelling can decrease to less than 20% using the

specialized routine for LDL.

However, it is considered that the parallelization, e.g.

of PCG iterative solver, or the use of multi-thread

Table 1 | Performance of different solvers in demand-driven modelling

Network Method
CPU WDN
model (sec)

CPU Linear
solver (sec)

% Solver
time Network Method

CPU WDN
model (sec)

CPU Linear
solver (sec)

% Linear
solver time

24 × 34 LL 0.0022 1.14E-04 23.63 396 × 444 LL 0.0084 4.82E-04 31.09

LDL 0.0024 1.31E-04 25.53 LDL 0.0108 7.55E-04 37.73

LDL spec 0.0020 5.99E-05 13.95 LDL spec 0.0078 2.35E-04 16.42

AGMG 0.0041 4.61E-04 52.23 AGMG 0.0226 2.94E-03 70.43

PCG 0.0029 2.34E-04 38.12 PCG 0.0113 8.52E-04 40.93

MINRES 0.0029 2.34E-04 37.76 MINRES 0.0119 9.86E-04 44.78

SYMLQ 0.0029 2.53E-04 40.27 SYMLQ 0.0123 1.03E-03 45.55

Matlab 0.0027 1.89E-04 32.57 Matlab 0.0140 1.32E-03 51.47

799 × 847 LL 0.0242 8.26E-04 36.86 872 × 957 LL 0.0223 9.10E-04 36.14

LDL 0.0306 1.30E-03 45.95 LDL 0.0284 1.44E-03 44.77

LDL spec 0.0210 3.90E-04 20.02 LDL spec 0.0194 4.24E-04 19.32

AGMG 0.0730 5.22E-03 77.26 AGMG 0.0667 5.80E-03 76.85

PCG 0.0307 1.31E-03 46.16 PCG 0.0278 1.40E-03 44.67

MINRES 0.0340 1.62E-03 51.27 MINRES 0.0308 1.74E-03 49.88

SYMLQ 0.0345 1.66E-03 51.82 SYMLQ 0.0310 1.77E-03 50.46

Matlab 0.0417 2.33E-03 60.27 Matlab 0.0382 2.56E-03 59.36

1,786 × 1,995 LL 0.0274 1.92E-03 34.94 1,894 × 2,467 LL 0.0386 2.36E-03 45.65

LDL 0.0333 2.83E-03 42.58 LDL 0.0464 3.36E-03 53.83

LDL spec 0.0235 8.79E-04 18.73 LDL spec 0.0287 1.02E-03 26.59

AGMG 0.0794 1.20E-02 75.78 AGMG 0.1198 1.31E-02 81.60

PCG 0.0327 2.76E-03 42.20 PCG 0.0451 3.20E-03 52.82

MINRES 0.0361 3.43E-03 47.57 MINRES 0.0504 3.93E-03 58.06

SYMLQ 0.0363 3.47E-03 47.86 SYMLQ 0.0510 4.00E-03 58.34

Matlab 0.0447 5.16E-03 57.70 Matlab 0.0676 6.20E-03 68.26

12,527 × 14,831 LL 0.2407 1.40E-02 40.74 26,967 × 32,331 LL 0.9354 3.70E-02 49.51

LDL 0.3075 2.36E-02 53.72 LDL 1.2654 6.30E-02 62.43

LDL spec 0.1826 5.99E-03 22.96 LDL spec 0.6964 1.80E-02 32.25

AGMG 0.7406 8.55E-02 80.80 AGMG 3.3240 2.23E-01 84.16

PCG 0.2765 1.93E-02 48.95 PCG 1.1709 5.52E-02 59.06

MINRES 0.3158 2.47E-02 54.79 MINRES 1.3203 6.74E-02 64.01

SYMLQ 0.3131 2.46E-02 54.99 SYMLQ 1.3285 6.80E-02 64.12

Matlab 0.4087 3.81E-02 65.32 Matlab 1.7640 1.02E-01 72.69

LL¼ Cholesky LL decomposition, LDL¼ Cholesky LDL decomposition, LDL spec.¼ Cholesky LDL decomposition specialized for real number matrix, AGMG¼ Aggregation Based Algebraic

Multi-grid, PCG¼ preconditioned conjugate gradient, MINRES¼minimum residual, SYMLQ¼ symmetric least square, Matlab¼ Backslash use ‘\’ in Matlab software.
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computing, e.g. in specialized LDL direct solver, can

further decrease the computational burden related to the

solution of the linear system inside GGA. Nevertheless,

the parallelization or the use of multi-thread computing

for other parts of the steady-state model code (e.g. matrix

operations, head-loss and, for PDA, pressure-relationship

computations) is more advisable if the linear solver is

already efficient.

Considering the LDL specialized (Cholesky LDL

decomposition specialized for real number matrix), its compu-

tational burden for the smallest network (24 × 34) is 13.95 and

9.09% in DDA and PDA, respectively. The computational

Table 2 | Performance of different solvers in pressure-driven modelling

Network Method
CPU WDN
model (sec)

CPU Linear
solver (sec)

% Solver
time Network Method

CPU WDN
model (sec)

CPU Linear
solver (sec)

% Linear
solver

24 × 34 LL 0.0182 1.12E-04 16.42 396 × 444 LL 0.0287 5.13E-04 29.66

LDL 0.0190 1.24E-04 17.43 LDL 0.0318 6.99E-04 36.48

LDL spec 0.0172 5.85E-05 9.09 LDL spec 0.0238 2.24E-04 15.67

AGMG 0.0262 3.87E-04 38.98 AGMG 0.0660 2.78E-03 69.93

PCG 0.0212 2.23E-04 27.76 PCG 0.0313 6.86E-04 36.40

MINRES 0.0211 2.17E-04 27.19 MINRES 0.0329 7.79E-04 39.33

SYMLQ 0.0216 2.39E-04 29.33 SYMLQ 0.0331 8.01E-04 40.12

Matlab 0.0206 1.86E-04 24.02 Matlab 0.0400 1.21E-03 50.33

799 × 847 LL 0.0297 8.76E-04 30.17 872 × 957 LL 0.0262 9.67E-04 29.53

LDL 0.0341 1.30E-03 38.92 LDL 0.0297 1.43E-03 38.48

LDL spec 0.0249 3.88E-04 15.96 LDL spec 0.0217 4.20E-04 15.47

AGMG 0.0733 5.15E-03 71.86 AGMG 0.0647 5.81E-03 71.83

PCG 0.0336 1.26E-03 38.42 PCG 0.0293 1.37E-03 37.55

MINRES 0.0365 1.55E-03 43.58 MINRES 0.0318 1.69E-03 42.58

SYMLQ 0.0369 1.59E-03 44.04 SYMLQ 0.0321 1.73E-03 43.18

Matlab 0.0442 2.29E-03 52.95 Matlab 0.0388 2.55E-03 52.58

1,786 × 1,995 LL 0.1094 1.91E-03 36.62 1,894 × 2,467 LL 0.1661 2.38E-03 43.11

LDL 0.1273 2.75E-03 45.19 LDL 0.1906 3.36E-03 51.34

LDL spec 0.0867 8.35E-04 20.17 LDL spec 0.1194 1.03E-03 24.83

AGMG 0.3179 1.18E-02 77.56 AGMG 0.5039 1.32E-02 79.78

PCG 0.1123 2.05E-03 38.22 PCG 0.1827 3.08E-03 49.39

MINRES 0.1140 2.14E-03 39.30 MINRES 0.1986 3.77E-03 54.27

SYMLQ 0.1143 2.16E-03 39.63 SYMLQ 0.2056 3.77E-03 54.61

Matlab 0.1759 5.05E-03 60.11 Matlab 0.2795 6.11E-03 65.63

12,527 × 14,831 LL 0.2965 1.39E-02 36.03 26,967 × 32,331 LL 1.4216 3.78E-02 45.89

LDL 0.3741 2.38E-02 48.99 LDL 1.8789 6.43E-02 59.06

LDL spec 0.2359 6.02E-03 19.61 LDL spec 1.0793 1.83E-02 29.24

AGMG 0.8508 8.60E-02 77.65 AGMG 4.7823 2.27E-01 82.09

PCG 0.3372 1.91E-02 43.58 PCG 1.7151 5.52E-02 55.61

MINRES 0.3760 2.42E-02 49.44 MINRES 1.9131 6.71E-02 60.57

SYMLQ 0.3777 2.42E-02 49.31 SYMLQ 1.9114 6.71E-02 60.66

Matlab 0.4849 3.83E-02 60.67 Matlab 2.4977 1.01E-01 69.71

LL¼ Cholesky LL decomposition, LDL¼ Cholesky LDL decomposition, LDL spec.¼ Cholesky LDL decomposition specialized for real number matrix, AGMG¼Aggregation Based Algebraic

Multi-grid, PCG¼ preconditioned conjugate gradient, MINRES¼minimum residual, SYMLQ¼ symmetric least square, Matlab¼ Backslash use ‘\’ in Matlab software.
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burden of that solver generally increases with network size as

well as for the other solvers, especially direct ones. For

example, in the largest network (26,967 × 32,331), it is 32.25

and 29.24% for DDA and PDA, respectively. This fact is con-

sistent with the circumstance that increasing the model size

(i.e. the linear system size) the computational burden of the

direct solvers inside GGA increases more than linearly.

Table 3 summarizes the results of the number of iter-

ations, fifth and sixth columns, required by GGA in DDA

and PDA for each of the eight networks. It is noted that

for the tested solvers the number of iterations required by

the steady-state WDN modelling do not vary because they

show a comparable accuracy.

This is a consequence of the small regularization which

decreases the condition number of the linear problem inside

GGA. Therefore, the accuracy of any tested linear solver is

greater than the required accuracy for steady-state WDN

modelling. In fact, it is noted that, actually, the related math-

ematical nonlinear problem is not very complex or large size

from a numerical perspective.

Moreover, Table 3 reports the degree of pressure

deficiency for the PDA case in the second, third and

fourth columns. It is the percentage of nodal demands

lower than 10, 50 and 95% of the customer requests, respect-

ively, and the seventh column reports the difference of the

number of iterations between PDA and DDA. Finally the

last column of Table 3 reports the average nodal degree of

each network.

Table 3 shows that the increase of the number of iter-

ations is dependent on the level of pressure deficiency as it

is easy to argue in advance. However, the network 799 ×

847 and 872 × 957, which are similar because of less compact

due to some long pipes connecting more compact network

sections, show a similar number of iterations in DDA and

PDA. This is caused by the fact that a pressure deficient con-

dition in such a network should influence much fewer long

pipes and related nodal demands than the compact areas.

For a similar reason the two largest networks (12,527 ×

14,831 and 26,967 × 32,331) are characterized by a compar-

able number of iterations between PDA and DDA. In fact,

the pressure deficient concept is not scalable because large

size networks are characterized by an increasing number

of flow paths allowing to find the extra hydraulic capacity,

to deliver a greater nodal demand, with respect to small

size network as for example the Apulian (24 × 34).

Thus, the only unquestionable source of increase of

computational burden in PDA is the need of computing

demands through pressure-demand relationships.

CONCLUSIONS

The present work describes the application of three methods

which can be used to solve the linear system of equations

inside GGA. They are tested considering both demand-

driven and pressure-driven steady-state analysis of WDNs.

The linear system inside GGA belong to the class of

sparse, symmetric and positive definite; the fast and robust

solution of such linear systems is an important issue in

order to achieve computational efficiency, especially with

respect to large size hydraulic networks and multiple runs,

e.g. for system optimization.

Table 3 | Pressure deficiency and number of iterations in demand-driven and pressure-driven modelling

Network
Deficiency index
[10%]

Deficiency index
[50%]

Deficiency index
[95%]

Number of
Iteration DDA

Number of
Iteration PDA

Number of Iteration
PDA-DDA

Average nodal
degree

24 × 34 4.48% 35.57% 78.87% 4.66 26.77 22.11 2.84

396 × 444 0.17% 2.78% 11.54% 5.43 16.61 11.18 2.24

799 × 847 3.13% 4.65% 43.93% 10.79 10.23 �0.56 2.12

872 × 957 0.00% 0.42% 23.87% 8.84 8 �0.84 2.18

1,786 × 1,995 0.00% 1.66% 73.56% 5 20.94 15.94 2.24

1,894 × 2,467 1.56% 21.20% 79.66% 7.45 30.53 23.08 2.6

12,527 × 14,831 0.05% 0.62% 72.86% 7 7.69 0.69 2.36

26,967 × 32,331 0.00% 0.00% 100.00% 12.58 17.3 4.72 2.4
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The tests of several solvers using eight real networks

show that direct solvers are the most effective from a compu-

tational burden perspective and a specialized code for real

matrices using LDL decomposition has the best perform-

ance. The computational burden of the solution of the

linear system can decrease to less than 20% using direct sol-

vers, although the percentage of the linear solver weight

inside the steady-state analysis is greatly influenced by the

effectiveness of the rest of the WDN model code. Addition-

ally, we demonstrate that the number of iterations (i.e.

number of times the linear system is solved) does not

relate to the specific solver. In fact the accuracy at each iter-

ation, using a small regularization involving minimum flow,

is sufficient considering the required accuracy of the steady-

state analysis.

Finally, the results show that the increase in the number of

iterations inPDA is dependent not only on the level of pressure

deficiency, but also on the size and topology of the network.
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