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LEARNING OBJECTIVES

After completing this course, the reader will be able to:

1. Identify important sources of variability in drug exposure caused by drug interactions mediated by P-glycoprotein.

2. Describe how unwanted drug–drug interactions may lead to unexpected serious toxicity or undertreatment.

3. Prevent these interactions by individualizing pharmacotherapy; this means selecting noninteracting drugs or
adapting the dose of (the) interacting drug(s).

Access and take the CME test online and receive 1 AMA PRA Category 1 Credit™ at CME.TheOncologist.comCMECME

ABSTRACT

The importance of P-glycoprotein (P-gp) in drug–drug in-
teractions is increasingly being identified. P-gp has been
reported to affect the pharmacokinetics of numerous
structurally and pharmacologically diverse substrate
drugs. Furthermore, genetic variability in the multidrug
resistance 1 gene influences absorption and tissue distribu-
tion of drugs transported. Inhibition or induction of P-gp
by coadministered drugs or food as well as herbal constit-
uents may result in pharmacokinetic interactions leading
to unexpected toxicities or undertreatment. On the other
hand, modulation of P-gp expression and/or activity may
be a useful strategy to improve the pharmacological pro-
file of anticancer P-gp substrate drugs.

In recent years, the use of complementary and alter-

native medicine (CAM), like herbs, food, and vitamins,
by cancer patients has increased significantly. CAM use
substantially increases the risk for interactions with an-
ticancer drugs, especially because of the narrow thera-
peutic window of these compounds. However, for most
CAMs, it is unknown whether they affect metabolizing
enzymes and/or drug transporter activity. Clinically
relevant interactions are reported between St John’s
wort or grapefruit juice and anticancer as well as non-
anticancer drugs. CAM– drug interactions could ex-
plain, at least in part, the large interindividual variation
in efficacy and toxicity associated with drug therapy in
both cancer and noncancer patients.

The study of drug–drug, food–drug, and herb–drug
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interactions and of genetic factors affecting pharmaco-
kinetics and pharmacodynamics is expected to improve

drug safety and will enable individualized drug therapy.
The Oncologist 2007;12:927–941

Disclosure of potential conflicts of interest is found at the end of this article.

INTRODUCTION

In patients, drug–drug interactions can result in unexpected
life-threatening and even lethal toxicities. Up to 10% of all
admissions in general hospitals are caused by improper use
of drugs and combinations of drugs, resulting in potentially
severe drug–drug interactions [1, 2]. Adverse drug reac-
tions can especially be severe when these interactions in-
volve cytotoxic anticancer agents [3, 4]. Anticancer drugs
are dosed close to the maximum-tolerated dose, and factors
affecting the pharmacokinetics may therefore greatly in-
crease the likelihood of development of life-threatening
toxicities.

Thus far drug–drug interactions have been thought to
result from inhibition of drug metabolism, inhibition of re-
nal drug excretion, displacement out of the protein binding,
or pharmaceutical interactions. However, interference at
the level of ATP binding cassette (ABC) and other trans-
porters is increasingly being identified as the mechanism
behind clinically important drug–drug interactions. Drug–
drug and herb– drug interactions at the level of ABCB1
(multidrug resistance 1 [MDR1], P-glycoprotein [P-gp]) is
the subject of this paper.

MILESTONES, POSITION IN ABC TRANSPORTER

FAMILY, MAIN MOLECULAR MECHANISM

P-gp was first identified by Juliano and Ling in 1976 as a
surface glycoprotein in Chinese hamster ovary cells ex-
pressing the MDR phenotype [5]. Cloning of the encoding
gene and structure analysis of the protein revealed that P-gp
is a 160-kDa ATP-dependent efflux transporter, belonging
to the ABC transporter superfamily [6, 7].

TISSUE DISTRIBUTION AND

PHYSIOLOGICAL FUNCTION

The anatomical localization of P-gp in various tumors
(where it confers the MDR phenotype) and at the apical/
luminal membrane of polarized cells in several normal hu-
man tissues with excretory (liver, kidney, adrenal gland)
and barrier (intestine, blood–brain barrier, placenta, blood–
testis and blood– ovarian barriers) functions [8 –11] sug-
gests for P-gp a physiological role in detoxification and
protection of the body against toxic xenobiotics and metab-
olites by secreting these compounds into bile, urine, and the
intestinal lumen and by preventing their accumulation in
the brain, testis, and fetus (Fig. 1) [12].

IMPACT OF GENETIC POLYMORPHISM IN THE

ABCB1 GENE ON FUNCTION

Currently, at least 105 variants in the ABCB1 gene have
been identified, with significant differences in their fre-
quencies among different ethnic groups. The majority of
these single nucleotide polymorphisms (SNPs) involve in-
tronic or noncoding regions, thus not affecting the P-gp
amino acid sequence. However, several variants in the
ABCB1 coding regions result in amino acid change and po-
tentially affect P-gp expression and activity. Hoffmeyer et
al. [13] reported an association among a SNP in exon 26
(C3435T) of ABCB1, reduction in duodenal P-gp levels,
and higher peak plasma concentrations of the P-gp substrate
digoxin in healthy volunteers. Confirming and contradict-
ing studies have subsequently been published about the in-
fluence of SNPs in ABCB1 on disposition of digoxin and
also on other P-gp substrate drugs (such as fexofenadine,
tacrolimus, irinotecan, SN-38, paclitaxel, and cyclosporin
A) and on P-gp expression and activity (see reviews [14–
21]). Moreover, genetic variation in ABCB1, by potentially
altering the physiologic protective role of P-gp, has recently
been assessed in the etiology of several human pathophys-
iological conditions. An increasing number of studies have
associated certain SNPs in ABCB1 with susceptibility to
diseases such as pharmacoresistant epilepsy, Parkinson’s
disease, inflammatory bowel diseases (ulcerative colitis
and Crohn’s disease), colorectal cancer, and renal carci-
noma [22–27].

Recently the ABCB1 SNP C3435T has been associated
with the efficacy of antiemetic treatment with 5-hydroxy-
tryptamine type 3 receptor antagonists (such as granisetron,
ondansetron, tropisetron) in patients with cancer [28],
whereas in patients affected by depression, the same poly-
morphism has been linked to the development of postural
hypotension induced by the antidepressant nortriptyline
[29].

MDR1 gene polymorphism has also been suggested to
affect the therapy outcome of patients with several malig-
nancies. Goreva et al. [30] reported an association between
C3435T and G3677T SNPs in ABCB1 and the risk for drug
resistance in patients with lymphoproliferative diseases. A
correlation between several commonly occurring ABCB1
SNPs and overall survival and the risk for relapse has been
reported in patients affected by acute myeloid leukemia
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treated with etoposide, mitoxantrone, or daunorubicin
(well-known P-gp substrates) [31]. Moreover, the ABCB1
SNP C3435T has been suggested as a significant predictor
of treatment outcome in children affected by acute lympho-
blastic leukemia, although these findings have not been
confirmed in adults [32, 33]. Another study showed a
greater response to preoperative chemotherapy in breast
cancer patients homozygous for the C3435T genotype [34],
whereas conflicting results have been reported about the
impact of genetic variation in the MDR1 gene (in particular,
G2677T/A) on the response to paclitaxel chemotherapy in
patients with ovarian carcinoma [35].

Several factors may have contributed to the conflicting
findings reported in the literature: demographic data from
subjects selected for the various MDR1 SNPs and the meth-
ods used to measure P-gp expression differ from one study
to another (i.e., protein detection by Western blot versus
immunohistochemistry, various antibodies used, etc.).
Moreover, discrepancies may be related to the route of drug
administration and extent of metabolism relative to P-gp–
mediated transport. For instance, cyclosporine is a P-gp but
also a cytochrome P450 3A4 enzyme (CYP3A4) substrate,
therefore a potential P-gp effect may be hidden by CYP3A4
activity. In this regard, environmental factors, such as diet,
that affect CYP enzyme activity could also influence trans-
porter function. Differences in dietary constituents among

different populations may have contributed to the conflict-
ing results among studies. For example, one of the possible
reasons hypothesized for the reported divergent effects of
MDR1 SNPs on fexofenadine disposition among whites liv-
ing in the U.S. and in Germany was the difference in dietary
salt intake between the two populations [14, 36, 37]. Fur-
thermore, although well-known P-gp substrate drugs that
are not metabolized to a relevant extent in humans (such as
digoxin, fexofenadine, talinolol) have been used as probe
drugs for P-gp function in humans, the involvement of other
transporters and associated genetic variability could have
influenced study results. Another possible reason for the
contradictory reports associating ABCB1 variants with vari-
ation in drug response is that most of the studies have not
considered haplotypes, whereas several recent studies sug-
gested that the primary determinant of functional differ-
ences in P-gp resides not in SNP differences but in ABCB1
haplotypes [38]. Given the known interpopulation differ-
ences in drug response, it is especially important to consider
variability among ethnic groups and to characterize vari-
ability in haplotype structure and linkage disequilibrium
and recombination within and among ethnic populations.

Additional studies involving larger samples sizes and
stratification according to haplotype are required for a com-
plete understanding of the contribution of genetic variabil-
ity in ABCB1 and related proteins to drug disposition,

Figure 1. Schematic representations of the main sites of localization of P-glycoprotein in the body.
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therapeutic response, and toxicity [21, 39]. To reduce the
risk of a spurious association between MDR1 genotypes
and in vivo phenotypes, demographic data of subjects se-
lected for the various MDR1 SNPs as well as sample size
and environmental factors should also be considered care-
fully. Moreover, standardization of assays relating to P-gp
protein and mRNA detection and quantification is desirable
too [14].

MAIN CLINICALLY APPLIED SUBSTRATE CLASSES

P-gp presents high transport capacity and broad substrate
specificity: a wide number of clinically relevant drugs with
structurally different features and belonging to different
classes (e.g., several anticancer drugs, some HIV protease
inhibitors [HPIs], H2-receptor antagonists, antiarrhyth-
mics—cardiac glycosides and calcium channel blockers—
immunosuppressive agents, corticosteroids, antiemetic and
antidiarrheal agents, analgesics, antibiotics, anthelmintics,
antiepileptics, sedatives, antidepressants) can be trans-
ported by P-gp (for review, see [14, 40]); in general, they
are hydrophobic and amphipathic molecules in nature, un-
charged or basic, although zwitterionic and negatively
charged compounds can also be transported.

INHIBITORS (COMPETITIVE, NONCOMPETITIVE)
Some P-gp drug substrates are able to inhibit P-gp–medi-
ated transport of other substrates. The discovery by Tsuruo
and colleagues [41] that verapamil (weak P-gp substrate)
could reverse P-gp–mediated MDR in leukemia cells was
followed by the identification of several other P-gp inhibi-
tors [42, 43] that can block P-gp activity by competition for
drug-binding sites (competitive inhibitors) or by blockade
of the ATP hydrolysis process (noncompetitive inhibitors).
The first agents identified as P-gp inhibitors were drugs
(e.g., verapamil and cyclosporin A) already used in the
clinic that were themselves transported by P-gp (so-called
first-generation inhibitors). Because of their low substrate
selectivity and the concomitant inhibition of the drug-me-
tabolizing CYP3A4, so-called second-generation (cyclo-
sporin A analog PSC833) and third-generation (LY335979,
VX710, GF120918, XR9576) P-gp inhibitors were devel-
oped. These and other selective P-gp inhibitors have been
extensively tested preclinically and in patients to reverse
MDR. Of interest is that GF120918 (elacridar), originally
developed as a P-gp inhibitor, was also identified as an ef-
fective breast cancer resistance protein (BCRP; ABCG2) in-
hibitor [44].

Recently it has been reported that benzimidazole gastric
H�, K� -ATPase proton pump inhibitors (PPIs—omepra-
zole, pantoprazole, lansoprazole, and rabeprazole), which
are used by up to 50% of patients with cancer, are effective

inhibitors of P-gp in vitro [45], although their potency to-
wards BCRP inhibition is even greater [46]. Drug interac-
tions with benzimidazoles are increasingly reported [1, 2,
47–50]. However, it has been noted that the 50% inhibitory
concentration (IC50) values of PPIs in inhibiting P-gp ob-
served in vitro are higher than their expected intraluminal
(intestinal) and plasma concentrations obtained after oral
dosing in humans, making a drug–drug interaction at these
levels unlikely. Considering that PPIs have also been
shown to be CYP3A4 and CYP2C19 substrates, and that
they are able to inhibit BCRP activity, under certain cir-
cumstances, for instance in poor metabolizers of CYP2C19,
plasma levels of omeprazole and pantoprazole would reach
the range of reported IC50 values, thus making a clinical
drug–drug interaction possible with coadministered sub-
strate drugs for P-gp and/or BCRP [45].

In addition, several widely used drugs have been described
to inhibit P-gp function, thus potentially leading to relevant
drug–drug interactions. They include various antimicrobial
agents (e.g., ceftriaxone, cefoperazone, clarithromycin, eryth-
romycin, itraconazole, ketoconazole), Ca2� antagonists (vera-
pamil, diltiazem, quinidine, quinine, nifedipine, nicardipine),
HPIs (ritonavir, indinavir, saquinavir, nelfinavir), and other
compounds such as amiodarone, propranolol, dipyridamole,
tacrolimus, hydrocortisone, progesterone, and tamoxifen, to
name a few [51, 52].

Furthermore, many pure herbal constituents commonly
used as complementary and alternative medicines (CAMs)
by cancer patients and dietary phytochemicals have been
reported to modulate P-gp expression and/or activity. In-
deed, piperine [53], ginsenosides [54, 55], silymarin from
milk thistle and other flavonoids [56], capsaicin [57], and
resveratrol [57] were reported to inhibit P-gp activity in
vitro, whereas curcumin [58, 59] and curcuminoids [60]
and several catechins from green tea [61–63] were shown
to reduce P-gp expression and activity in vitro. Importantly,
some of these herbal constituents (such as piperine, silyma-
rin) have been observed to interact with P-gp at dietary con-
centrations, thus making a drug–herbal interaction in vivo
more likely [53, 56]. Similarly, constituents of grapefruit
and orange juice were also found to block P-gp function and
certain juice–drug interactions for commonly used drugs
have been described too [64–70]. The modulation of P-gp
as well as other transporters (i.e., organic anion transporting
polypeptides [OATPs]) or drug-metabolizing enzymes
(such as CYP3A4) may provide an explanation for many
reported clinical herb/juice–drug interactions.

INDUCERS

Clinical and preclinical findings reveal that the expression
of P-gp (like some of the CYP isoenzymes) is inducible.
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Expression levels of P-gp (as well as other transporters) and
drug-metabolizing enzymes appear to be regulated by nu-
clear receptors like the pregnane X receptor (PXR), consti-
tutive androstane receptor, and vitamin D binding receptor
[71]. Some (active constituents of) herbs, like hyperforin
from St John’s wort (SJW), can activate one or more of
these receptors, thereby increasing the expression of metab-
olizing enzymes and transporters [72, 73]. Several carote-
noids and their metabolites (such as retinol and �-carotene)
have been shown to activate the PXR in vitro [74]. Recent
in vitro studies demonstrated that several drugs, including
rifampicin, paclitaxel, and reserpine, can induce CYP3A4
and MDR1 gene expression through a similar mechanism
[75–77]. Other putative P-gp inducers are clotrimazole,
phenobarbital, phenytoin, troglitazone, and the flavonoids
kaempferol and quercetin [51]. However, thus far, only ri-
fampin and SJW have been documented to significantly in-
duce intestinal P-gp in humans: in duodenal biopsies
performed in healthy volunteers after rifampin administra-
tion, P-gp was induced 3.5-fold [78]. Similarly, administra-
tion of SJW induced human intestinal P-gp 1.4 fold [79].
For the other inducers, only in vitro data are available, thus
raising doubts whether results obtained in cell lines can be
extrapolated to the human in vivo situation. Moreover, re-
cent preclinical studies demonstrate a tissue specificity of
P-gp induction with potential differences among species
[80]. Therefore, although interactions between P-gp sub-
strates and commonly used drugs/CAMs that are reported
to induce P-gp expression in vitro have been described in
the literature (see below), clearly, preclinical animal mod-
els that behave similarly to humans in terms of transporter
and metabolism induction as well as further studies in hu-
mans are needed to evaluate their clinical relevance.

PHARMACOLOGICAL AND

TOXICOLOGICAL FUNCTIONS

The pharmacological functions of P-gp have been exten-
sively studied in in vitro and in vivo models: P-gp was first
described as a plasma membrane protein that could cause
MDR in tumor cells by actively extruding a wide range of
structurally diverse compounds, thus contributing to the re-
sistance against chemotherapy occurring in several cancers.
In addition, the strategic physiological distribution of P-gp
in organs that play key roles in processes of drug absorp-
tion, distribution, and elimination suggests that P-gp has a
relevant impact on limiting cellular uptake of drugs out of
the blood circulation into the brain, placenta, and testis and
from the intestinal lumen into epithelial cells lining the gut.
In addition, P-gp may also mediate excretion of drugs out of
hepatocytes into the bile canalicuIi and out of renal tubules
into the urine.

The effect of P-gp on the pharmacokinetics of substrate
drugs has been demonstrated in vivo using mdr1a and
mdr1a/1b knockout mice. Mice lacking one or both mdr
genes showed significant alterations in drug absorption,
distribution, and elimination [81–84]: compared with wild-
type mdr1a(�/�) and mdr1a/1b(�/�) mice displayed greater
sensitivity to the centrally neurotoxic anthelmintic iver-
mectin and other known P-gp substrates like vinblastine,
digoxin, and cyclosporin A. Compared with wild-type,
mdr1a(�/�) and mdr1a/1b(�/�) mice also presented higher
concentrations of drugs in many tissues (especially in the
brain) and a slower rate of drug elimination. Other in vitro
and in vivo studies documented the effect of P-gp expres-
sion on the apparent oral bioavailability of substrate drugs.
Hunter et al. [85] reported the apical efflux of vinblastine
across intestinal Caco-2 cell layers and the efflux was in-
hibited in the presence of the P-gp inhibitor verapamil and
other P-gp modulators. In in vivo experiments, the apparent
bioavailability of the P-gp substrate paclitaxel after oral ad-
ministration was 11% in wild-type and 35% in mdr1a(�/�)

mice [86]. Bardelmeijer et al. [87] reported an apparent bio-
availability after oral administration of docetaxel, another
P-gp substrate, of 3.6% in wild-type and 22.7% in mdr1a/
1b(�/�) mice. In other studies, oral administration of the
P-gp inhibitors valspodar (PSC 833) or cyclosporin A or
elacridar (GF120918) followed by oral paclitaxel [88–90]
or by oral docetaxel [87] resulted in significantly greater ap-
parent oral bioavailability in wild-type mice compared with
those treated without the P-gp inhibitor (Fig. 2A). These
findings led to important potential clinical implications:
drug–drug interactions between substrates and P-gp inhib-
itors can modify the drug’s pharmacokinetics by increasing
bioavailability and organ uptake, leading to more adverse
drug reactions and toxicities. Possibly, coadministration of
substrates for P-gp and P-gp–inducing agents may lead to a
reduction in plasma drug levels and consequently under-
treatment.

Furthermore, the localization of P-gp in the placenta has
been shown to play a key role in preventing fetal exposure
to various potentially harmful or therapeutic compounds.
Inhibition of P-gp activity in the placenta can affect the dis-
tribution and consequently the fetal toxicity and/or efficacy
of P-gp substrate drugs [91–94]. Drug– drug interactions
should be considered very carefully in pregnant or lactating
breast cancer patients who will be treated with anticancer
drugs, substrates for P-gp, such as anthracyclines.

DRUG–DRUG INTERACTIONS

In the literature several drug–drug interactions mediated by
P-gp transporters have been described (Table 1). In general,
the involvement of P-gp in drug–drug interactions is diffi-
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cult to prove in humans because, as a result of the overlap-
ping substrate specificity of inhibitors and inducers

between CYP3A4 and P-gp, many drug interactions may
involve both CYP3A4 enzymes and P-gp [95]. Moreover,
P-gp and CYP3A4 may be functionally linked, and several
potential mechanisms whereby the functions of P-gp and
CYP3A4 could be complementary have been proposed
[96]. Furthermore, drug–drug interactions may involve ad-
ditional ABC transporters as well.

Clinical drug–drug interactions were reported in the
literature between digoxin (a good P-gp substrate) and other
drugs, such as quinidine [97–99], verapamil [100 –102],
talinolol [103], clarithromycin [104], itraconazole [105],
erythromycin [106], and propafenone [101, 107, 108].

Other clinically relevant drug interactions described in
the literature involve the antimicrobial drug rifampicin. Ri-
fampicin is a well-known inducer of intestinal CYP3A4.
However, recent findings indicate that it can also induce
P-gp expression. In a clinical study, the oral bioavailability
of digoxin in eight healthy volunteers was decreased by
30% during rifampicin therapy. Intestinal biopsies obtained
from the same patients before and after administration of
rifampicin showed a significant increase in intestinal P-gp
expression after administration of the antimicrobial drug,
which correlated inversely with the oral area under the con-
centration–time curve (AUC) of digoxin. In addition, pre-
treatment with rifampicin had little effect on the renal
clearance of digoxin. These results suggest that the digox-
in–rifampicin interaction mainly occurs at the intestinal
level and that chronic exposure to rifampicin can result in
P-gp induction [78]. Similar interactions with rifampicin
have been reported for talinolol [109], fexofenadine [110],
and cyclosporin A [111].

Interactions mediated by P-gp that may have clinically
relevant consequences have also been reported for some ex-
cipients used in pharmaceutical formulations. In in vitro
experiments, polysorbate 80 was able to inhibit P-gp activ-
ity and to increase daunorubicin intracellular levels in cell
cultures [112]. Polyoxyl castor oil and polysorbate 80 (sub-
stances used in drug formulations to dissolve some lipophy-
lic and/or poorly soluble drugs, especially paclitaxel and
docetaxel) were reported to increase the oral absorption of
saquinavir and digoxin, respectively, through interaction
with P-gp activity [113, 114].

In addition, food and dietary constituents, such as
grapefruit, orange, apple, and pummelo juice, are also pos-
sible P-gp modulators. The in vivo effect of fruit juices, and
in particular, grapefruit juice, on drug transport is still con-
troversial, because some authors have predicted or reported
greater whereas others have predicted or reported lower
amounts of coadministered drugs reaching the systemic cir-
culation. Indeed, several authors reported that flavonoids
and furanocoumarins of grapefruit juice were able to inhibit

Figure 2. Effect of cyclosporin A on the oral absorption of pac-
litaxel. (A): Coadministration of oral paclitaxel and cyclosporin A
(CsA) in wild-type (WT) mice resulted in a significantly greater
area under the curve (AUC) of paclitaxel in plasma. The effect
was even greater than the AUC of paclitaxel when given to P-
glycoprotein–deficient mdr1a/b knockout (KO) mice. The results
indicate that P-glycoprotein effectively prevents oral uptake of
paclitaxel from the gut. CsA may also have inhibited cytochrome
P450 3A4 enzyme (CYP3A4) to explain the additional difference
in the AUC compared with the experiment in KO mice. From
Sparreboom A, van Asperen J, Mayer U et al. Limited oral bio-
availability and active epithelial excretion of paclitaxel (Taxol)
caused by P-glycoprotein in the intestine. Proc Natl Acad Sci U S
A 1997;94:2031–2035, with permission. (B): Coadministration
of oral paclitaxel and CsA in patients with advanced cancer re-
sulted in a significantly greater AUC of paclitaxel in plasma.
These results are the clinical proof of the concept that inhibition of
P-glycoprotein (and possibly also CYP3A4 in the gut epithelium)
results in a significantly greater uptake of paclitaxel from the gut
leading to a significantly greater systemic exposure to paclitaxel.
Reprinted from Meerum Terwogt JM, Beijnen JH, ten Bokkel
Huinink WW et al. Co-administration of oral cyclosporin enables
oral therapy with paclitaxel. Lancet 1998;352:285, with permis-
sion from Elsevier.
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Table 1. Clinically relevant drug-drug interactions involving MDR1

Drug Inhibitor/inducer
Measured
effect/toxicity Putative mechanism References

Digoxin Quinidine Greater plasma levels,
lower renal clearance

Inhibition of MDR1 [97–99]

Digoxin Verapamil Greater plasma levels,
lower renal clearance

Inhibition of MDR1 [100–102]

Digoxin Talinolol Greater plasma levels
and AUC, lower renal
clearance

Inhibition of MDR1 [103]

Digoxin Clarithromycin Greater plasma levels,
lower renal clearance

Inhibition of MDR1 [104]

Digoxin Erythromycin Greater plasma levels,
lower renal clearance

Inhibition of MDR1 [106, 177]

Digoxin Itraconazole Greater plasma levels,
lower renal clearance

Inhibition of MDR1 [105, 178]

Digoxin Ritonavir Greater plasma AUC
and terminal half-life
and toxicity of digoxin

Inhibition of MDR1 [179, 180]

Paclitaxel Cyclosporin A Greater apparent
bioavailability

Inhibition of MDR1, CYP3A4 [157, 192]

Paclitaxel Elacridar (GF120918)a Greater bioavailability Inhibition of MDR1, CYP3A4 [181]

Paclitaxel Valspodar (PSC-833)a Greater plasma AUC Inhibition of MDR1 [151]

Docetaxel Cyclosporin A Greater bioavailability Inhibition of MDR1, CYP3A4 [158]

Saquinavir Ritonavir Greater apparent oral
bioavailability

Inhibition of MDR1, CYP3A4 [182, 183]

Tacrolimus Verapamil Greater plasma levels
and toxicity of
tacrolimus

Inhibition of MDR1, CYP3A4 [184]

Talinolol Erythromycin Greater AUC Inhibition of MDR1 [185]

Cyclosporin A Erythromycin Greater plasma AUC
and peak plasma
concentrations

Inhibition of MDR1, CYP3A4 [186, 187]

Loperamide Quinidine Greater CNS adverse
effects

Inhibition of MDR1 [175]

Digoxin Rifampin Lower plasma levels
and AUC

Induction of MDR1, CYP3A4 [78]

Talinolol Rifampin Lower AUC Induction of MDR1 [109]

Tacrolimus Rifampin Lower apparent oral
bioavailability, lower
total clearance

Induction of MDR1, CYP3A4 [188]

Cyclosporin A Rifampin Lower oral
bioavailability

Induction of MDR1, CYP3A4 [111]

Digoxin St John’s wort Lower AUC and peak
plasma concentrations

Induction of MDR1 [79, 189]

Cyclosporin A St John’s wort Lower plasma levels Induction of MDR1 [121, 122]

Indinavir St John’s wort Lower plasma levels Induction of MDR1, CYP3A4 [123]

Tacrolimus St John’s wort Lower plasma levels Induction of MDR1, CYP3A4 [190]

Topotecan Elacridar (GF120918) Greater apparent oral
availability

Inhibition of BCRP, MDR1 [159]

Methotrexate Omeprazole/
pantoprazole

Greater AUC, lower
clearance

Inhibition of BCRP, MDR1 [191]

aExperimental compound.
Abbreviations: AUC, area under the concentration–time curve; CNS, central nervous system; CYP3A4, cytochrome P450
3A4 enzyme; MDR, multidrug resistance
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P-gp and CYP3A4 activity, thus influencing accumulation
and efflux of anticancer drugs (well-known P-gp sub-
strates) in P-gp– overexpressing cell lines [66, 70, 115–
117]. In contrast, the apparent bioavailability after oral
administration and the plasma concentrations of etoposide
were significantly lower in subjects taking grapefruit juice
[118]. Similar results were reported in healthy volunteers
taking grapefruit juice and the nonmetabolized and P-gp–
transported drug talinolol [119], whereas in rats, adminis-
tration of grapefruit juice resulted in higher plasma
concentrations and lower apparent oral clearance of talino-
lol [115]. The reasons for these discrepancies are still un-
known: differences in the concentrations of drug-
interacting compounds in the juices (such as fourano-
coumarins and flavonoids) have been proposed to contrib-
ute to the discrepancies in the results [120], as well as the
modulation of other transporters (such as OATPs, multi-
drug resistance–associated proteins [MRPs]) and metabo-
lizing enzymes by grapefruit juice constituents and other
environmental factors (i.e., dietary constituents). All these
findings make it difficult to predict whether a grapefruit
juice–drug interaction will occur and the magnitude of such
interaction. Therefore, patients should be cautious with the
consumption of grapefruit juice when treated with narrow-
therapeutic-index drugs (especially with drugs whose ab-
sorption has been reported to be affected by P-gp, MRPs,
OATPs).

Furthermore, many other dietary food and pure
herbal constituents (see above) commonly used as CAMs
directly inhibit CYP and P-gp activity in vitro, and some of
them (like piperine and silymarin) were shown to act as
P-gp inhibitors at dietary concentrations. P-gp expression is
clearly induced by the over-the-counter antidepressant
herbal SJW, and clinically relevant drug–drug interactions
have been reported between SJW and a wide range of drugs.
Chronic administration of SJW together with cyclosporin A
has been associated with a significant reduction in cyclo-
sporin plasma levels and a higher risk for acute organ rejec-
tion in transplanted patients [121, 122]. In healthy
volunteers, administration of SJW together with the HPI
indinavir produced an approximately 57% lower plasma
AUC of indinavir [123]. Coadministration of SJW with
digoxin produced an 18% lower plasma AUC of digoxin
and a 40% higher expression level of intestinal P-gp [79].
Other clinical studies confirmed that coadministration of
SJW significantly reduced plasma concentrations of drugs
like oral contraceptives, tacrolimus, warfarin, verapamil,
fexofenadine, and some others, leading to important clini-
cal implications, that is undertreatment and failure of ther-
apies. Similarly, in rats and in cancer patients, the plasma
concentrations of SN-38 (the active metabolite of irinote-

can) were significantly lower and hematological and gas-
trointestinal toxicities were less when SJW was coadmin-
istered [124, 125]. Furthermore, in healthy volunteers,
administration of SJW together with the protein tyrosine ki-
nase inhibitor imatinib resulted in a significantly greater
oral clearance and lower AUC, maximum concentration,
and half-life of imatinib [126, 127]. Induction of CYP3A4
and enhanced P-gp expression have been suggested to be
responsible for these interactions (for review, see [128 –
135]).

However, for most CAMs, it is unknown whether they
affect metabolizing enzymes and/or drug transporters, po-
tentially leading to unwanted pharmacokinetic interactions
with drug therapy. Altered expression or activity of several
drug transporters and drug-metabolizing enzymes can lead
to lower therapeutic efficacy or greater toxicity.

The risk for interactions is significantly high in cancer
patients, considering that several anticancer drugs (such as
vincristine, vinblastine, vinorelbine, irinotecan, etoposide,
docetaxel, and paclitaxel) are P-gp and/or CYP3A4 sub-
strates, as well as certain supportive care agents concomi-
tantly and commonly used by cancer patients, such as
ondansetron, fentanyl, morphine, loperamide, and domp-
eridone [83, 136–138]. Clearly, the risk for interaction is
further increased by the intake of CAMs, products that are
frequently used by people affected by cancer.

POSSIBLE CLINICAL BENEFIT OF

DRUG–DRUG INTERACTIONS

On the other hand, the study of drug–drug interactions with
P-gp modulators is an interesting research field, because
P-gp was discovered and described for its ability to confer
the MDR phenotype to cancer cells. The modulation of
P-gp activity was at first seen as a useful strategy for in-
creasing the penetration and retention of anticancer drugs in
resistant tumor cells, thus overcoming the intrinsic or ac-
quired resistance against chemotherapy occurring in sev-
eral cancers. Since the mid-1980s, various clinical trials
with anticancer drugs in combination with P-gp modulators
(calcium channel blockers—nifedipine or verapamil—or
cyclosporin A) have been performed [139–141]. Unfortu-
nately, with only few exceptions [142–146], these studies
did not show any survival benefit for the combination of an
anticancer drug plus a P-gp inhibitor [147–151]. In addi-
tion, because the P-gp inhibitors used in those trials pre-
sented overlap in substrate specificity with CYP3A4
inhibitors, pharmacokinetic interactions occurred, resulting
in greater toxicity. To date, some clinical trials using sec-
ond- and third-generation P-gp inhibitors with the aim of
reversing MDR in tumor cells have been performed and
others are still ongoing [152–154]. In a recent pilot phase II
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trial, the combination of valspodar (PSC 833, a second-
generation P-gp inhibitor) plus paclitaxel (administered i.v.
at a reduced dose because of the expected pharmacokinetic
interaction [155]) in patients with metastatic breast cancer
showed acceptable toxicity but the activity was not signif-
icantly increased compared with single-agent paclitaxel
[156]. Additional trials will further explore the feasibility
and efficacy of this strategy.

Modulation of P-gp activity with selective inhibitors
could also be a useful strategy to increase the oral bioavail-
ability of P-gp substrate drugs, in particular, to develop oral
formulations of anticancer drugs transported by P-gp. Sev-
eral preclinical animal studies (see above) and clinical trials
in humans have been performed to evaluate the feasibility
and the safety of this approach (coadministration of a sub-
strate drug and a P-gp inhibitor). In a clinical study, cyclo-
sporin A, an effective P-gp blocker, followed by oral
paclitaxel (a well-known P-gp substrate) resulted in an
eightfold higher systemic exposure to paclitaxel (Fig. 2B)
[157]. Cyclosporin A also effectively resulted in a greater
oral bioavailability of docetaxel, 91% versus 8% [158].
Elacridar, an effective inhibitor of BCRP as well as of P-gp
produced a greater oral bioavailability of topotecan, 97%
versus 40% [159]. Further studies in patients with advanced
solid tumors confirmed that this strategy for oral treatment
is at least as effective and safe as standard i.v. administra-
tion of these drugs, and clinical trials with third-generation
modulators of P-gp (e.g., biricodar, zosuquidar, and laniq-
uidar) specifically developed for MDR reversal are ongo-
ing. The results will give insight into the possible clinical
feasibility of this strategy [159–163]. Indeed, an interesting
clinical application of selective modulation of P-gp activity
might lead to greater passage of certain drugs across the
blood– brain barrier, which might profoundly extend the
range of drugs available for treatment of brain disorders
[164]. These include primary and metastatic tumors, micro-
bial infections, HIV infections, mood disorders, and neuro-
logical treatment–resistant disease, for example, refractory
epilepsy and schizophrenia. Furthermore, preclinical stud-
ies have shown that the brain penetration of anticancer
drugs that are transported by P-gp, such as paclitaxel, do-
cetaxel, and imatinib, can be improved by concomitant use
of P-gp inhibitors, such as cyclosporin A, valspodar, elac-
ridar, and zosuquidar [165–169]. A clinical study determin-
ing the brain penetration of paclitaxel in combination with
elacridar in patients with primary brain tumors is ongoing
and the preliminary results are reported to be promising
[170]. Similarly, clinical trials are exploring the activity of
imatinib (Gleevec�; Novartis Pharmaceuticals Corpora-
tion, East Hanover, NJ) against the central nervous system
(CNS) tumor glioblastoma [171] based on promising pre-

clinical results. Taking into account that imatinib is a good
P-gp and BCRP substrate drug with a limited distribution to
the brain [172, 173] and that preclinical studies reported
that the combination of imatinib with an effective P-gp in-
hibitor resulted in greater CNS accumulation [168, 174],
modulation of P-gp as well as BCRP activity can be a useful
strategy to improve CNS penetration of imatinib [170, 174].

However, the safety of this approach should be explored
carefully as modulation of P-gp in the blood–brain barrier
may lead to greater CNS accumulation of unwanted poten-
tially toxic xenobiotics and endogenous compounds. Pre-
clinical studies in wild-type and mdr1a/b knockout mice
demonstrated that mdr1a/1b knockout mice are fertile and
viable, but they are more sensitive to a range of drugs and
toxins [81, 83, 84]. Moreover, absence or inhibition of P-gp
activity can alter the specific pharmacodynamic activity of
some P-gp substrate drugs, leading to CNS toxicity and ad-
verse drug effects. For instance, the safe clinical use of the
antidiarrheal drug loperamide may also be critically depen-
dent on the presence of P-gp in the blood– brain barrier.
Loperamide is a potent opiate, which demonstrates nearly
exclusively peripheral opiate-like effects on the gastroin-
testinal tract and no central effects because it is a P-gp sub-
strate. Thus, normally it cannot accumulate in the CNS. In
mdr1a knockout mice, however, loperamide showed pro-
nounced opiate-like effects and sometimes lethal effects at
doses that are safe in wild-type mice [83]. In humans, co-
administration of loperamide with the P-gp inhibitor quin-
idine produced opiate-induced respiratory depression, a
clear central opiate effect that is normally not seen in hu-
mans [175].

On the same line, blocking of placental P-gp in HIV-
infected pregnant women might be used to enhance HPI
levels in the unborn child shortly before and during the de-
livery, thereby reducing the risk for HIV infection of the fe-
tus. However, the safety of this approach needs to be
studied in greater detail. Indeed, preclinical data using
mdr1a/1b knockout mice demonstrated significantly
greater fetal penetration of the HPIs indinavir and saquina-
vir, but also of other drugs and toxic compounds, indicating
that placental P-gp might have a protective role for the fetus
[92, 176].

SUMMARY, CONCLUSIONS, AND PERSPECTIVES

The importance of ABC transporters in drug–drug interac-
tions is increasingly being identified. P-gp is involved in the
interactions between cyclosporin A or verapamil and oral
digoxin. Azole antifungals, such as fluconazole and itra-
conazole, interact with P-gp, explaining drug interactions
with digoxin and other drugs. Benzimidazoles are trans-
ported by and inhibit P-gp. P-gp regulates oral bioavailabil-
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ity and tissue distribution of the immunosuppressant
tacrolimus. P-gp mediates drug interactions between anti-
retroviral drugs and comedications. Also, genetic variabil-
ity in the MDR1 gene affects absorption and tissue
distribution of P-gp substrate drugs.

Furthermore, CAM use, like herbs, food, and vitamins,
by patients has increased significantly in recent years. Sur-
veys have shown that the prevalence of CAM use among
cancer patients receiving conventional therapy is 54%–
77%, and that about 72% of patients do not inform their
treating physician. CAM use significantly increases the risk
for interactions with anticancer drugs, especially because of
the small therapeutic range and steep dose–toxicity curve of
these drugs. Clinically relevant problems are seen with
SJW and grapefruit juice. SJW significantly decreases the
plasma levels of SN-38, the active metabolite of irinotecan,
and increases imatinib clearance. Grapefruit juice affects
the oral bioavailability of etoposide. However, it is ex-
pected that CAM– drug interactions are responsible for

more of the, so far unresolved, interindividual variation and
clinical problems seen in cancer and noncancer patients.

The main causes of interactions are changes in the phar-
macokinetics of drugs, although interactions at the pharma-
codynamic level are also possible. Many drugs are cleared
by biotransformation and subsequently transported by
P-gp, BCRP, or other transporters. Altered expression or
activity of these proteins can lead to lower therapeutic effi-
cacy or greater toxicity.

Increased knowledge of drug– drug, food– drug, and
herb– drug interactions and of genetic factors affecting
pharmacokinetics and pharmacodynamics is expected to
improve drug safety and will enable drug therapy tailored to
the individual patients’ needs.
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