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Abstract: Structural analysis is an intricate subject when
nonlinearities occur. They make the structural behavior
complex and may have important consequences in the de-
sign choice as well. Especially for lattice domes, as snap-
through phenomena and local Eulerian instabilities gen-
erally affect the structural response, linear analysis is not
enough. In this paper, a semi-analytical formulation is
used in order to study the geometrically nonlinear behav-
ior of lattice domes subject to vertical loads. The formu-
lation is derived from the equilibrium equations written
in the deformed configuration, considering large displace-
ments and taking also into account local buckling con-
ditions. The resulted system of equations, being strongly
nonlinear, has been solved bymeans of a numerical proce-
dure, based on amixed load-displacement control scheme,
leading to the evaluation of the complete equilibriumpath.
The influence of geometrical parameters on the critical
load multiplier and shape of the load-displacement curve
is also discussed. In particular, a complex equilibrium
path for a sixteen-member five-node lattice structure is an-
alyzed, which is characterized by several branches which
can generate ‘snapping’ conditions.

Keywords: geometrically nonlinear analysis, mechanical
instability, snap-through, critical load multiplier, local
buckling, equilibrium path

1 Introduction
In the field of Structural Engineering, one of the main is-
sues when dealing with thin, slender or long-span struc-
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tures is represented by the occurrence of catastrophic fail-
ures which are associated with instability phenomena, e.g.
the sudden collapse of the single-layer lattice dome in
Bucharest (Romania) which occurred in 1963 as a result of
local snap-through due to an unexpected snow accumula-
tion on a small area [1]. Predicting these kinds of failure
is generally challenging, since there exist several factors
which play a key role in determining the critical load fac-
tor as well as the collapse mode.

Plenty of research has been conducted on the sub-
ject of structural instabilities especially in the twentieth
century. For example, in the same year in which the
Bucharest dome collapsed (1963), Thompson published
an article in which the basic principles of ‘snapping’
and ‘buckling’ instabilities were examined and defined
from a mathematical perspective [2]. Several years before,
the subject of buckling instability in thin and slender
elements was deeply investigated by Von Karman via a
theoretical approach [3–5]. Nonlinear load-displacement
curves, highlighting potential snap-through instabilities,
were found when analyzing spherical shells under ex-
ternal pressure [3] and curved bars under concentrated
loads [4]. The same theoretical framework was applied by
Von Karman and Tsien [5] andMichielsen [6] to investigate
the buckling of thin cylinders subjected to axial compres-
sion: in this case, the buckling collapse was associated to
sharp cusp points in the stress-strain equilibrium curve,
underlying potential snap-back instabilities.

It is worth noting that these different kinds of insta-
bilities (i.e. local buckling, snap-through, snap-back) do
not depend only on the considered structural system (e.g.
axially-loaded cylinders, spherical shells under pressure,
etc.), but all of them can occur in the same structural el-
ement when changing its geometrical or material proper-
ties. For example, in his work [7], Bushnell showed how
the load-deflection curves of a spherical cap clamped at
the edges, under external pressure, vary when changing a
slenderness parameter λ, defined as follows:

λ = 2
[︁
3
(︁
1 − ν2

)︁]︁ 1
4
(︂
H
h

)︂ 1
2

, (1)

being ν the Poisson’s ratio of the material, H the total rise
of the spherical cap above the plane in which the edges lie
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Figure 1: Equilibrium curves exhibiting different stability phenomena: (a) hardening-stiffening behavior (no instability); (b) snap-through
instability; (c) snap-back instability

and h the shell thickness. It was found that, by increasing
λ (i.e. by decreasing the shallowness of the cap), the shape
of the equilibrium path changed considerably. Hardening-
stiffening behaviorwas observed for low λ values (λ < 3.5),
snap-through-like curves were obtained for medium λ val-
ues (3.5 < λ < 7), whereas cusp limit points with snap-
back branches were found for higher values (λ > 7) [7].
This was mainly due to the fact that, by decreasing the
shallowness, the spherical cap passed from a purely flex-
ural regime to a mixed membrane-flexural condition, and
this strongly modifies both the equilibrium path and the
instability collapse mode.

Hence, it is evident that geometric properties can af-
fect the structural behavior in a way that they modify the
shape of the load-deflection curve and have a crucial in-
fluence on the structural stability. Summarizing, we may
assume to deal with the three general cases for the equi-
librium curves when considering large displacements, as
shown in Figure 1, i.e.no instability phenomena, if no limit
points are found in the load-deflection path (Figure 1a),
snap-through-like instabilities, if some limit points can
produce a ‘snapping’ of the structure for increasing loads
(Figure 1b), and snap-back-like instabilities, if the limit
points can trigger a ‘snapping’ for increasing loads and
displacements (Figure 1c). These equilibrium curves may
also be affected by bifurcation points, which are generally
associated to local buckling conditions. It is interesting
to observe that snap-back instabilities were also obtained
when considering critical failure phenomena in materials,
e.g.within unstable fracture processes in brittle and quasi-
brittle materials [8], as well as during friction contact loss
between rough surfaces (stick-slip phenomenon) [9]. In a
sense, snap-back phenomena may be considered as the

unified concept of catastrophic collapses, which is com-
mon to structures and materials.

As briefly mentioned above with respect to the col-
lapse of the Bucharest dome, the problem of structural
stability is pivotal when dealing with lattice space struc-
tures [10–13]. These have been ones of the most exploited
structural systems for the realization of long-span roofs
since the second half of the twentieth century. Moreover,
starting from the last few decades, they have experienced
a further significant growth among other structural solu-
tions. Remarkable examples around the world are the Frei
Otto’s Multihalle (Mannheim), the Arata Isozaki’s Palau
Sant Jordi (Barcelona), the FrankO.Ghery’s DZBankBuild-
ing (Berlin), the Foster’s Queen Elizabeth II Great Court
(London), etc. Two main factors can be evidenced which
induced the growing success of lattice domes. On one side,
being composed by the assembly of bars generating dif-
ferent geometrical patterns (triangular, hexagonal, etc.),
these structures can lead to remarkable architectural ef-
fects, allowing engineers and architects to realize impres-
sive complex-shaped long-span roofs. On the other hand,
light and slender structures can be obtained, especially
when optimization processes are conducted aimed at min-
imizing the amount of structural weight, while complying
with safety standards as well.

Dealing with this kind of structures, material resis-
tance is not the only driving parameter affecting the max-
imum loading capacity, as this can be strongly affected
by instability phenomena, such as local Eulerian buckling
and global instabilities [10]. Furthermore, coupled insta-
bility phenomena might also occur and the interaction be-
tween different collapsemodesmay be crucial in determin-
ing the bearing capacity of the structure [14–16]. Therefore,
from a design point of view, starting from a defined load
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scheme, the search for the critical load factor is needed,
which can be associated to single member failures as well
as to the collapse of entire dome portions, and geometric
nonlinear analysis must be performed in order to trace the
equilibrium path [10, 17, 18].

In addition to buckling failures which affect single bar
members or dome portions, the most important stability
problem occurring in this kind of structure is usually as-
sociated to the snap-through phenomenon (Figure 1b). It
arises when the structure reaches itsmaximum loading ca-
pacity and, if the load still increases a little, the construc-
tion suddenly changes its shape in order to reach a new
equilibrium configuration [17, 18]. In most cases, this con-
formational change is incompatible with the structure ser-
viceability and, as this always occurs with high dynami-
cal effects, it can cause the sudden collapse of the struc-
ture [1, 19]. Finally, it is important to note that in real struc-
tures the members are characterized by geometrical and
mechanical imperfections. These can reduce the critical
load even more, interacting both with the local Eulerian
instability and the snap-through phenomenon [10, 20].

In this paper, a semi-analytical formulation has been
used for the evaluation of the geometrically nonlinear be-
havior of lattice domes under vertical loads. It is based on
the equilibrium equations written in the deformed config-
uration of the structure, taking also into account the possi-
ble occurrence of local buckling condition. Due to the fact
that the resulting system is composed by nonlinear equa-
tions, a numerical method has been used in order to solve
the structural problem. For a well-defined load scheme,
the semi-analytical formulation allowed to trace the entire
nonlinear equilibriumpath and to identify the critical load
factors and the correspondent instability modes of differ-
ent lattice structures.

2 Methodology
As mentioned in the Introduction, in this paper a semi-
analytical formulation is used in order to perform the ge-
ometric nonlinear analysis of lattice domes, taking also
into account local Eulerian instabilities. A generic lattice
dome is considered in a three-dimensional reference sys-
tem, made up of N free nodes and V external constrained
nodes. At this stage and in favor of structural safety as re-
gards instability phenomena, both internal and external
constraints are assumed to be perfect hinges without fric-
tion. Moreover, the eccentricity between themembers con-
verging into the nodes are neglected, as well as the imper-
fections of the bars, which will be addressed in future re-

search efforts; therefore, the bars are subject only to axial
forces. Finally, the load scheme is assumed as a combina-
tion of vertical forces acting on free nodes, which generate
vertical node displacements.

The vertical forces acting on the N free nodes being
grouped into theN-size vectorFand the correspondingver-
tical node displacements into the N-size vector δ, the rela-
tion between F and δ can be formalized into the following
analytical form:

F = f (δ) , (2)

where f is the (nonlinear) system linking the force vector
to the displacement vector. Eq. (2) can be expanded as fol-
lows, highlighting the terms referring to each node of the
structure:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

F1
. . .
Fi
. . .
FN

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f1(δ)
. . .
fi(δ)
. . .
fN(δ)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f1(δ1, . . . δN)
. . .

fi(δ1, . . . δN)
. . .

fN(δ1, . . . δN)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (3)

In Eq. (3) the nonlinear system which characterizes the
structural problem is directly represented: it is a system
of N nonlinear scalar equations f1, . . . fN depending on
the N unknowns δ1, . . . δN . The nonlinear functions con-
tained in Eq. (3) can be analytically written down if a gen-
eral displacement vector δ is applied to the structure, and
the equilibrium equations are formulated in each node
within the deformed configuration.

Figure 2: Reference geometrical scheme for the semi-analytical
formulation (unloaded structure is shown by dotted lines, deformed
structure by continuous lines)

The vector δ being applied to the structure, the ith and
jth nodes undergo vertical displacements δi and δj respec-
tively (Figure 2). The bar connecting the ith and jth nodes,



250 | A. Carpinteri et al.

which in the initial configuration was characterized by a
length Lij equal to:

Lij =
√︁
(xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2, (4)

in the deformed configuration is characterized by a differ-
ent length L′ ij, which is equal to:

L′ ij =
√︁
(xi − xj)

2 + (yi − yj)
2 + ((zi + δi) − (zj + δj))

2. (5)

Thus, the axial deformation of the bar connecting the ith

and jth nodes can be easily calculated evaluating the rela-
tive engineering strain, as follows:

ϵij =
L′ ij − Lij
Lij

(6)

=

⎯⎸⎸⎷ (xi − xj)
2 + (yi − yj)

2 + ((zi + δi) − (zj + δj))
2

(xi − xj)
2 + (yi − yj)

2 + (zi − zj)
2 − 1.

In this study, only geometrical nonlinearities are ad-
dressed, therefore an elastic constitutive law for the ma-
terial is assumed. Indicating by Eij and Aij the material
Young’s Modulus and the bar cross-sectional area respec-
tively, the axial force Nij can be evaluated as follows:

Nij = EijAijϵij = EijAij (7)⎛⎝
⎯⎸⎸⎷(︀

xi − xj
)︀2 + (︀

yi − yj
)︀2 + (︀

(zi + δi) −
(︀
zj + δj

)︀)︀2(︀
xi − xj

)︀2 + (︀
yi − yj

)︀2 + (︀
zi − zj

)︀2 − 1

⎞⎠ .

Referring to Figure 2, the equilibrium equation to the
vertical translation can be then formulated in the ith node
where the external applied force Fi is balanced by the axial
forces in the bars converging into the node. Decomposing
the axial forces along the vertical direction, one obtains
the following equation:

Fi =
∑︁
k
Nik

(zi + δi) − (zk + δk)
L′ ik

, (8)

where the index k refers to the kth node, which is linked to
the ith node. Substituting Eq. (7) into Eq. (8), the analytical
form of the ith nonlinear function fi(δ1, . . . δN) reported in
Eq. (3) can be finally obtained, as follows:

Fi =
∑︁
k
EikAik (9)

⎛⎝
⎯⎸⎸⎷(︀

xi − xj
)︀2 + (︀

yi − yj
)︀2 + (︀

(zi + δi) −
(︀
zj + δj

)︀)︀2(︀
xi − xj

)︀2 + (︀
yi − yj

)︀2 + (︀
zi − zj

)︀2 − 1

⎞⎠
(︂
(zi + δi) − (zk + δk)

L′ ik

)︂
.

The previous equation is valid only if the axial force in
the generic bar connecting the ith and kth nodes, expressed
byEq. (7), is lower than the Euler critic load. This is defined
by the following expression:

Ncr,ij = π2
Eij Iij
Lij2

, (10)

Iij being the minimum moment of inertia of the bar sec-
tion. If the axial force expressed by Eq. (7) exceeds the
Euler critic load defined by Eq. (10), the bar buckles and
cannot sustain further axial load increases. Therefore, the
complete analytical formulation of the nonlinear function
fi(δ1, . . . δN), which takes also into account the buckling
conditions of the singlemembers, is represented by the fol-
lowing equation:

Fi =
∑︁
k,nb

EikAik
(︂
L′ ik
Lik

− 1
)︂(︂

(zi + δi) − (zk + δk)
L′ ik

)︂
(11)

+
∑︁
k,b

π2 Eik Iik
Lik2

(︂
(zi + δi) − (zk + δk)

L′ ik

)︂
,

where thefirst summation involvesnot buckledbars,while
the second one refers to buckled members.

In order to solve the structural problem reported
in Eq. (1), the system being composed by nonlinear
equations, a numerical procedure implemented into the
MATLABr environment has been used. The analysis starts
from the unloaded state, in which both the force and
displacement vectors are null. Then, the load scheme is
defined through an initial force vector F0, and the cor-
responding structure displacements are obtained from
Eq. (2). Since the nonlinear system reported in Eq. (2) is not
directly invertible, the displacements corresponding to F0
are obtained by usingMATLABr tools which find the roots
of analytical functions starting from a close input solution.
Starting from the input solutionwhich is set as the null dis-
placement vector (i.e. δ = 0), the displacement vector δ0
which satisfies the following system can then be obtained:

f (δ0) − F0 = 0. (12)

Subsequently, the load factor α is introduced which
multiplies the initial load vector F0. At each step, the load
factor is increased and the starting input solution is set as
the previously obtained displacement vector. The subse-
quent equation is then solved using the above mentioned
MATLABr functions to follow the nonlinear equilibrium
path of the structure:

f
(︀
δ(α)

)︀
− αF0 = 0. (13)

As can be inferred, the problem has been solved by
adopting a load-control scheme, i.e. by increasing the load
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vector via the factor α and solving at each step the nonlin-
ear system reported in Eq. (13). However, since the struc-
tural problem defined by Eq. (13) contains nonlinear func-
tions which may exhibit limit points, i.e. relative maxima
and minima, the numerical procedure has been imple-
mented in away that, when a localmaximumorminimum
is reached, an alert flag is activated. In that case, a local
displacement-control scheme becomes active just in order
to overcome the limit point, i.e. looking for a solution of
Eq. (13) beyond the detected limit point. After passing the
limit point, the numerical procedure takes back onto the
load-control scheme, taking into account the fact that a lo-
calmaximumorminimumwas just reached. If the load fac-
torwaspreviously increasingand thealert flagbecomesac-
tive, that means that a local maximum has been reached
and the load factor is subsequently made decreasing af-
ter passing the limit point; vice versa, if the load factor
was previously decreasing and the alert flag becomes ac-
tive, that means that a local minimum has been reached
and the load factor is subsequently made increasing. In
thisway, the complete equilibriumpath could generally be
followed. It is worth mentioning that the problem of trac-
ing nonlinear equilibrium paths and passing limit points
has been an important issue for long time, and several
numerical methodologies have been proposed [21–25]. To-
day, the most efficient methods are already implemented
within various commercial software.

3 Results and discussion
Based on the semi-analytical formulation described in Sec-
tion 2, three examples of lattice dome structures are pre-
sented here.

3.1 Eight-member lattice structure with one
free node

The first example refers to a structuremadeup of eight con-
strained nodes and one top free node, as shown in Figure 3.
The eight bars arehinged to thegroundand to the topnode,
and the structure is subject to adownward force applied on
the top node, whose initial value is equal to 20 kN (corre-
sponding to α = 1).

The Young’s Modulus and the cross-sectional area are
set equal for the eight members and their values are re-
ported in Table 1. In order to investigate the influence of Eu-
lerian instabilities on the geometrically nonlinear behav-
ior of the structure, three differentmoments of inertia have

Figure 3: Geometry of the eight-member lattice structure: (a) top
view; (b) lateral view

been assigned to the bars, so that three slenderness values
are considered for these members (Table 1). The slender-
ness is defined as:

λ = L√︁
I
A

, (14)

L being the bar length, I and A its minimum moment of
inertia and its cross-sectional area, respectively.

Table 1: Eight-member lattice structure properties

Case 1 2 3
E [GPa] 30 30 30
A [cm2] 100 100 100
Imin [cm4] 3.2 · 105 8 · 104 4 · 104

λmax [-] 25.2 50.5 71.4
αcrit [-] 121 96 55

In Figure 4 the equilibrium paths of the structure are
reported for the three cases. As can be noted, the higher
the bar slenderness, themore important the Eulerian buck-
lingphenomenon indetermining the critical load factor. In
particular, in Case 1 (λmax = 25.2) the critical load factor
is equal to 121 and no Eulerian instabilities occur, whereas
in Case 2 and 3 the critical load factor is equal to 96 and 55,
respectively, and the snap-through instability is activated
by the Eulerian buckling, as can be observed from the pres-
ence of bifurcation points within the load-deflection curve.
When the critical load factor is reached, if a further load
increase is applied to the structure, the snap-through phe-
nomenon occurs as the new equilibrium configuration cor-
responds to very large displacements (more than4meters),
which imply the structure reversal.
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Figure 4: Eight-member structure load-displacement curve

In Figures 5 and 6, some deformed configurations are
reported referring to the points shown in Figure 4 for λmax
equal to 25.2 (Case 1) and 71.4 (Case 3). As can be noted, the
critical condition is associated to different displacement
values for the two cases: 0.85 meters for Case 1 (point A1)
and 0.21 meters for Case 3 (point A3). Moreover, the unsta-
ble branch of the equilibrium path is associated with the
Eulerianbuckling inCase 3 (A3-B-C3),whereasnoEulerian
instabilities occur in Case 1 (A1-B-C1).

Figure 5: Eight-member structure displacements - λmax = 25.2

3.2 Four-member lattice structure with one
free node

The second example refers to a structure made up of four
constrained nodes and one free node, which is shown
in Figure 7. The structure is composed by a simple two-
member shallow truss (Figure 7b), stiffened by two hori-

Figure 6: Eight-member structure displacements - λmax = 71.4

zontal transverse bars (Figure 7c). The structure is subject
to a downward force applied on the free node, whose ini-
tial value is equal to 20 kN.

Figure 7: Geometry of the four-member lattice structure: (a) top
view; (b) lateral view; (c) frontal view

In order to study the effect of transverse stiffeners to
the structural behavior of the reticular dome, three Cases
are considered by varying the cross-sectional area of the
horizontal bars (At), whereas the cross-sectional area of
the inclined bars (A) is kept constant, as shown in Table 2.
The other geometrical and mechanical properties are the
same for the four bars.

In Figure 8 the equilibrium paths of the structure are
reported for the three cases. As can be noted, by increas-
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Table 2: Four-member lattice structure properties

Case 1 2 3
E [GPa] 30 30 30
A [cm2] 100 100 100
Imin [cm4] 3.2 · 105 3.2 · 105 3.2 · 105

At [cm2] 0 25 50
αcrit [-] 45 48 -

ing the cross-sectional area of the transverse bars, which
are always subject to tensile stress, the unstable branch
of the equilibrium path gets smaller and smaller, until it
completely disappears in Case 3. Consequently, the snap-
through instability occurs just in Case 1 (αcrit = 45) and
Case 2 (αcrit = 48), whereas no instability phenomena are
present in Case 3, which shows just a hardening-stiffening
behavior (see Figure 8 and Figure 1a).

Figure 8: Four-member structure load-displacement curve

3.3 Sixteen-member lattice structure with
five free nodes

The third example refers to a two-level structure made up
of four constrained nodes and five free nodes, as shown
in Figure 9. While in the previous examples only one free
node was considered, therefore the system reported in
Eq. (2) was just made up of one equation in function of one
unknown, in the present example five equations depend-
ing on five unknowns, i.e. the five vertical displacements
of the five free nodes, are considered. The load scheme is
identified by a downward vertical force initially equal to

100 kN applied on the top node. The Young’s Modulus of
all the bars has been set equal to 30 GPa.

Figure 9: Geometry of the sixteen-member lattice structure: (a) top
view; (b) lateral view

In order to investigate the influence of the Eulerian
buckling on the global equilibrium path, two Cases are
considered regarding the geometrical properties of the
bars: in Case 1 the cross-sectional area and the minimum
moment of inertia are equal for all the bars, whereas in
Case 2 a lowerminimummoment of inertiawas considered
for the upper bars (i.e. for the bars of the upper level). The
geometrical properties used for the analysis are shown in
Table 3 (the subscripts down and up indicate the bars be-
longing to the lower or the upper level, respectively).

Table 3: Sixteen-member lattice structure properties

Case 1 2
A [cm2] 100 100

Imin,down [cm4] 3.2 · 105 3.2 · 105

Imin,up [cm4] 3.2 · 105 0.4 · 105

λdown [-] 13.0 13.0
λup [-] 13.0 36.7
αcrit [-] 49 22

In Figures 10 and 11, the equilibrium paths are re-
ported for Case 1 and 2, respectively. In the left graphs
the curves regarding the load factor in function of the top
node displacement (δ1) are shown, while the right graphs
represent the load-displacement curve with respect to the
lower nodes (δ2). Note that Figure 10a is consistent with
the load-deflection curve obtained by Hrinda [17], who an-
alyzed a similar miniaturized structure by using an arc-



254 | A. Carpinteri et al.

Figure 10: Sixteen-member structure load-displacement curves (Case 1 – λup = 13.0)

Figure 11: Sixteen-member structure load-displacement curves (Case 2 – λup = 36.7)

length approach within a Finite Element framework. This
indicates that, in this case, the horizontal displacements
of the nodes in the lower level (which are not considered
in the present formulation) have not a strong influence on
the structural response for the selected structure and load
scheme.

The following features in the equilibriumpaths can be
recognized, referring to the portions of the curves identi-
fied by the marker points in Figures 10 and 11:

(1) 0-1: an increase in the external load corresponds
to an increasing downward displacement in each
free node. Marker points 1 identify the critical load
factors in each figure: at these points, if the load
further increases, the upper part of the structure
abruptly changes its configuration, leading to a
snap-through-like instability. Note that in Case 2,
marker point 1 corresponds to a lower critical load
factor (αcrit = 22) than in Case 1 (αcrit = 49), since
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the former is associated with a local Eulerian insta-
bility, identified by the bifurcation point within the
load-deflection curve. This confirms that, also for
more complex structures, the local buckling condi-
tions are able to trigger the snap-through instabili-
ties at lower loading levels;

(2) 1-2-3: in this region, the equilibrium paths imply that
the top node keeps moving downward, whereas the
lower nodes are progressively going back upward
as the load is decreasing. Although both branches
represent unstable domains in the load-deflection
curves, the branch associated with Case 2 implies
the local buckling of the upper members, whereas
no Eulerian instabilities are present in Case 1;

(3) 3-4-5: the load starts to increase again, and both the
top node and the lower nodes are moving down-
ward. In correspondence to marker points 5, a sec-
ond critical load factor can be identified, since at
these points, if the load further increases, another
abrupt configurational change occurs involving the
lower portion of the structure. Note that there are no
differences between Case 1 and Case 2 regarding the
position ofmarker point 5, due to the fact that no Eu-
lerian buckling of the lower part of the structure is
found to occur;

(4) 5-6-7: in this region of the load-deflection curves,
while the load is decreasing and the lower nodes are
moving downward, the top down node initially gets
down and then starts to go back upward;

(5) 7-8-9: starting from theprevious equilibriumconfigu-
ration, an increase of the external load corresponds
to an increasing upward displacement in each free
node. Note that in Case 2, in this region of the equi-
librium path, the local buckling of the upper part of
the structure occurs, due to the presence of bifurca-
tion points;

(6) 9-10-11: symmetrically to the branch 5-6-7, while the
load is decreasing and the lower nodes are mov-
ing downward, the top down node initially gets up
and then starts to go back downward. Note that af-
ter marker point 10 the lower nodes are associated
to downward displacements bigger than 2 meters,
therefore they are located at a lower level with re-
spect to the edge plane;

(7) 11-12-13: in this sequence, as in 0-1 and 3-4-5, an in-
crease of the external load implies an increasing
downward displacement in each free node;

(8) 13-14-15: the top node keeps on moving downward,
whereas the lower nodes are progressively going
back upward as the load is decreasing, as in 1-2-3.
Note that, again, in Case 2 this region of the load-

deflection curve is characterized by the Eulerian in-
stability of the upper members;

(9) 15-16-: from this point on, increasing the external
load leads to an increasing downward displacement
in each free node, as the structure is completely over-
turned. In correspondence to marker point 16, the
structure is characterized by a configuration which
is symmetrical to the initial one with respect to the
edge plane. Therefore, from this points on, all the
bars are subject to tensile axial forces, a stiffening
behavior arises in the equilibrium paths and no Eu-
lerian buckling can occur any longer.

In Figures 12 and 13, the deformed shapes of the struc-
ture are reported for the marker points reported in Fig-
ures 10 and 11 respectively. In Figure 13 only the marker
points associated with Eulerian buckling conditions are
represented, since the other ones are identical to those
from Case 1. As can be seen, if the complete equilibrium
path is followed, the structure undergoes large displace-

Figure 12: Sixteen-member structure displacements (Case 1 - λup =
13.0)
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Figure 13: Sixteen-member structure displacements (Case 2 - λup =
36.7)

ments, which can also lead to the reversal of the structure
(e.g. Figure 12 points 11-16, and Figure 13 points 13-15).

The information about the equilibriumpath contained
in Figures 10 and 11 can be shown in a single representa-
tion, putting together the information regarding the load
multiplier, the displacement of the top node and the dis-
placements of the lower nodes. This leads to a three-
dimensional representation of the load-deflection curves,
which is shown in the left graphs of Figures 14 and 15 for
Case 1 and Case 2, respectively. By observing the three-
dimensional representations, it is interesting to note how
the equilibrium paths imply continuous lines without self-

intersections, i.e. all the points lying on the curve are char-
acterized by a single specific combination of coordinates
(displacement of the top node, displacement of the lower
nodes, load multiplier). The graphs shown in Figures 10
and 11 can then be seen as the projection on vertical planes
(loadmultiplier vs displacement of the top node, loadmul-
tiplier vs displacement of the lower nodes) of the three-
dimensional curves in Figures 14 and 15.

In the right graphs of Figures 14 and 15, the top pro-
jections of the three-dimensional curves are also reported,
showing the pathway followed by the nodes during the
loading process (δ1 vs δ2). As can be seen, the pathway
is rather complex involving various nonlinear branches.
When the loading process comes to the structural configu-
ration associated to the marker point 6, the displacement
of the top node is supposed to decrease to guarantee the
equilibrium. However, if the loading process is controlled
by increasing the displacement of the top node, then the
branch frommarker point 6 tomarker point 14 becomes vir-
tual, and the structure suddenly snaps to the configuration
associated to marker point 14 (see the black dotted arrow
in the graphs). This new configuration is characterized by
the same displacement of the top node (6 meters), while
the lower nodes experience an abrupt increase of their dis-
placements (from 2 meters up to 4 meters).

In the same way, if the loading process is controlled
by continuously increasing the downward force, the equi-
librium paths are not covered entirely and the resulting
load-deflection curves can be divided into three main

Figure 14: Sixteen-member structure load-displacement curve (Case 1 – λup = 13.0): three-dimensional view (left) and top projection (right)
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Figure 15: Sixteen-member structure load-displacement curves (Case 2 – λup = 36.7): three-dimensional view (left) and top projection
(right)

Figure 16: Sixteen-member structure load-displacement curves for increasing load (Case 1)

sequences, involving two subsequent snap-through phe-
nomena (Figures 16 and 17):

1. Initially, the branch 0-1 is covered. When marker
point 1 is reached, if the load still increases, the new
equilibrium configuration is found on the branch 4-
5, at the same critical load factor correspondent to
marker point 1 (Figures 16 and 17). As can be seen
from the equilibrium paths referring to the top and
lower nodes (Figures 10 and 11), this snap-through

phenomenon involves only the top node, as it ex-
hibit a large downward displacement, higher than
4 meters. Contrariwise, it does not involve the lower
nodes, since they remain in the same position they
occupied in correspondence of marker point 1;

2. The load being increased again, the equilibrium
branch is travelled towards marker point 5. When
this point is reached, if the load still increases, a
new equilibrium configuration is found on the last
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Figure 17: Sixteen-member structure load-displacement curves for increasing load (Case 2)

Figure 18: δ1 vs δ2 curves for increasing load: Case 1 (left graph) and Case 2 (right graph)

branch after marker point 16, at the same critical
load factor correspondent to marker point 5 (Fig-
ures 16 and 17). As can be seen from the equilib-
rium paths (Figures 10 and 11), in this case the snap-
through involves both the top node, which exhibits
a large downward displacement (higher than 8 me-
ters), and the lower nodes, which exhibit a down-
ward displacement (higher than 4 meters). At this
point the structure is completely overturned;

3. From this moment on, the structure is only subject
to tensile axial forces and the equilibrium path of

the structure assumes a stiffening behavior, since
further loading increases cause increasingly smaller
displacements both in the top and in the lower
nodes (Figures 16 and 17).

In Figure 18 the displacement pathway which is fol-
lowed by the top and lower nodes is shown, for Case 1 (left
graph) and Case 2 (right graph). Note that these graphs
are the projections of the three-dimensional curves shown
in Figures 16 and 17, respectively. The first snap-through
clearly implies a ‘snapping’ phenomenon involving only
the top nodes, whereas the second snap-through involves
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mainly the lower nodes. The top node undergoes another
significant displacement which is just caused by the sud-
den downward displacements of the lower portion of the
structure. It is clear that, both in Case 1 and Case 2, these
snap-through instabilities can be accompanied by signifi-
cant dynamic effects. If these effects are strong enough to
compromise the resistance of the members, a sudden fail-
ure of the structure can occur and the equilibrium curves
are interrupted.

The difference between Case 1 (Figure 16) and Case 2
(Figure 17) is that, while in Case 1 no Eulerian buckling oc-
curs, in Case 2 the upper bars undergo local Eulerian in-
stability. This phenomenon lowers the critical load factor
associated to the first snap-through phenomenon, which
is related to the upper part of the structure; contrariwise,
since the second snap-through is only related to the lower
part of the structure, there are no differences concerning
the value of the second critical load factor (αcrit,2 = 97).

4 Conclusions
In designing thin, slender or long-span structures, linear
analysis could be not enough to fully understand the struc-
tural behavior. As a matter of fact, nonlinearities can oc-
cur both considering material and geometrical parame-
ters, and can cause important consequences in the design
choice. This is especially true for lattice domes, whose de-
signing criteria can be influenced not only by material re-
sistance, but also by snap-through phenomena and local
Eulerian buckling. All these aspects are usually investi-
gated using Finite Element Method simulations.

In this paper, we made use of a developed semi-
analytical formulationwhich ismeant to study the geomet-
rically nonlinear behavior of lattice structures subject to
vertical load. The approach is based onwriting the equilib-
rium equations in the deformed configuration of the struc-
ture. Although a linear constitutive law is considered re-
garding the material, the Eulerian critical axial load is as-
sumed to represent themaximum compressive loadwhich
the bars can bear: in this way, it was possible to perform
a geometric nonlinear analysis coupled with the local Eu-
lerian buckling instabilities. Due to the fact that the ana-
lytical functions involved a system of nonlinear equations,
dedicated MATLABr functions were used in order to solve
the structural problemand to follow thewhole equilibrium
paths, by means of a dedicated mixed load-displacement
control scheme.

Via this approach, the geometrically nonlinear behav-
ior of some space lattice structures was investigated, e.g.

showing the influence of some geometrical parameters on
the equilibrium paths, such as the bar slenderness and
the cross-sectional area of transverse stiffeners. A com-
plex load-deflection curve was also investigated regarding
a sixteen-member lattice structure and several regions of
the equilibriumpathwere identifieddepending on the evo-
lution of the load factor and the nodes displacements. Also
in this case, the influence of the bar slenderness on the
modification of the branches of the load-deflection curve
was examined.

The last example, i.e. the sixteen-member dome, high-
lighted the complexity hiddenbehind thenonlinear behav-
ior of spatial lattice structures. The geometrical nonlineari-
ties cause the load-deflection curves todeviate from the lin-
earity and inducepost-critical brancheswhich canbe asso-
ciated to both stable and unstable conditions, depending
on the value of the load and corresponding structural con-
figuration. Various snap-through and snap-back branches
can occur in the unstable regions, which depend not only
on the specific geometrical properties of the structure but
also on the loading scheme. Although these branches may
be not of interest for designing purposes, since these struc-
tures are designed to work under much lower loads than
the critical ones, they can provide important information
on their intrinsic structural stability. The knowledge of the
whole load-deflection curve, with the information on the
possible post-critical behaviors, can in fact claim attention
on the likeliness for the structure to experience the various
instability phenomena.

Tracing such complex curves through experimental
tests, e.g. in laboratory, would be unachievable, due to
the difficulty to manage many degrees of freedom and be-
cause of the presence of imperfections and material non-
linearities, which can modify the structural response. For
this reason, Finite Element simulations and ad-hoc ana-
lytical formulations, like the one used here, are useful to
investigate the occurrence of such post-critical behaviors.
The presented semi-analyticalmethodology has then been
developed as a simple yet powerful tool to shed light on
these critical phenomena. At this stage, it does not take
into account material nonlinearities and geometrical im-
perfections, which are known to play a key role in mod-
ifying both the critical load multiplier and the equilib-
riumpath. In future contributions, this formulationwill be
enriched by considering also nonlinear constitutive laws
for the bars included within the three-dimensional domes.
The presence of horizontal forces and horizontal displace-
ments will be taken into account as well, in order to con-
sider more complex loading schemes.
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