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Abstract: The existence of unbounded solutions and their asymptotic behavior is studied for higher order
differential equations considered as perturbations of certain linear differential equations. In particular, the
existence of solutions with polynomial-like or noninteger power-law asymptotic behavior is proved. These
results give a relation between solutions to nonlinear and corresponding linear equations, which can be
interpreted, roughly speaking, as an asymptotic proximity between the linear case and the nonlinear one.
Our approach is based on the induction method, an iterative process and suitable estimates for solutions to
the linear equation.
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1 Introduction

Consider the higher order nonlinear equation

u q t u r t u u n λsgn , 2, 0,n n λ2( ) ( )∣ ∣( ) ( )
+ = ≥ >

− (1)

where the functions r and q are continuous and q t 0( ) > for t 1≥ .
Our aim is to study some asymptotic properties of solutions to (1), by considering (1) as a perturbation of

the two-term linear equation

y q t y 0.n n 2( )( ) ( )
+ =

− (2)

Equation (1) is a particular case of the more general equation

u a t u r t u u n λsgn , 2, 0,n

j

n

j
j λ

0

1
( ) ( )∣ ∣( ) ( )

∑+ = ≥ >

=

−

(3)

where the functions aj, j n0, , 1= … − , are continuous for t 1≥ .
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By a solution to (1) [(3)] we mean a function u differentiable up to order n, which satisfies (1) [(3)] on
T ,x[ )∞ , T 1x ≥ and such that

u t t T T Tsup : 0 for any .x{∣ ( )∣ }≥ > ≥

As usual, a solution u to (1) [(3)] is said to be oscillatory if u changes its sign for arbitrary large t and
nonoscillatory if u is different from zero for any sufficiently large t.

These equations have been investigated from different points of view as a generalization of Emden-
Fowler-type differential equation

u r t u u λ λsgn , 0, 1,n λ( )∣ ∣( )
= > ≠ (4)

see, for example, [13, Chapter IV], [4, Ch.I], and references therein for more details.
The problem of the proximity of solutions of two differential equations has a long history and has been

studied in various directions for a large variety of equations. Here, we recall the monograph [13], previous
papers [1–3,5–7,9,14,16,17,20], and references therein. More precisely, in [1,2] sufficient conditions are
obtained for the existence of solutions of (3) which are close in a neighborhood of infinity to any nonzero
constant or, more generally to a polynomial of j degree, j n0, , 1.= … − In [3], the problem of asymptotic
equivalence of (4) and its perturbations is studied. In [5], an asymptotic classification of solutions of (3)
with n 3, 4= is given by topological methods. In [6,7], motivated by [12], some asymptotic relationships
between (1) and (2) are obtained by using a topological approach. In [9], the existence, uniqueness, and the
asymptotic equivalence of a linear differential system and one of its nonlinear perturbation with advanced
and retarded argument is considered. In [14], some general relationship between solutions of a linear
differential system and its perturbed form with maxima are given. In [16,17], a certain type of asymptotic
equivalence between a dynamic equation and its perturbations has been considered. In [20], a type of an
asymptotic equivalence between two different differential systems has been examined by using the concept
of reflecting functions and these results are applied to the search of periodic solutions.

In particular, in [6,7] an important role is played by the second-order linear equation

h q t h 0.( )″ + = (5)

If the function q is bounded away from zero, then (5) is oscillatory, that is, any of its solution is oscillatory.
Under this additional assumption, in [6, Theorem 1] it is shown that solutions of (2) are, roughly speaking,
in asymptotic proximity with solutions of (1) and in [7, Theorem 2, Theorem 3] their boundedness is
examined. If the function q tends to some positive constant, then (2) has n 2( )− parametric set of poly-
nomial solutions, and (1) with λ 1= has n 2( )− parametric set of polynomial-like solutions, see [7, The-
orem 5].

Here we consider the case in which the linear equation (5) is nonoscillatory, that is, any of its solution is
nonoscillatory. Under this assumption, a direct computation shows that (1) can be written for large t as the
two-term equation

h t x t
h t

h t r t u usgn ,
n

λ2
2

⎜ ⎟

⎛

⎝
⎜ ( )⎛

⎝

( )

( )
⎞

⎠

⎞

⎠
⎟ ( ) ( )∣ ∣

( ) ′ ′

=

−

where h is a nonoscillatory solution of (5). Using this fact and an iterative method, which is similar to the
one given in [6], we study the existence of a n-parameter set of nonoscillatory solutions to equation (1) with
polynomial and noninteger power-law growth, which are, roughly speaking, in asymptotic proximity with
solutions of the linear unperturbed equation (2).

As usual, we use the following notation.
Let gi, i 1, 2, 3= be continuous functions and g 03 ≠ near infinity. Then:

– The symbol g O g1 2( )= means that ultimately g t M g t1 2∣ ( )∣ ∣ ( )∣≤ for some constant M , that is, there exist
T 0≥ and M 0> such that

g t M g t Ton , ;1 2∣ ( )∣ ∣ ( )∣ [ )≤ ∞
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– The symbol g o g1 3( )= means that g t g tlim 0t 1 3( ) ( )/ =→∞ ;

– The symbol g g~1 3 means that g t g tlim 1t 1 3( ) ( )/ =→∞ ;

– For λ 0> and u �∈ the symbol u λ[ ]
±
means u usgnλ∣ ∣ , for short.

Equation (3) has been studied in the literature as a perturbation of the linear differential equation

y a t y 0.n

j

n

j
j

0

1
( )( ) ( )

∑+ =

=

−

(6)

We start by referring Sobol’s result [18] obtained for equation (6).

Theorem A. [18, Theorem 1] Under the condition

t a t t for j nd 0, 1, , 1,n j
j

1

1∣ ( )∣∫ < ∞ = … −

∞

− − (7)

equation (6) has a fundamental family of solutions yj satisfying for large t the conditions

y t t o for j n1 1 0, 1, , 1.j
j( ) ( ( ))= + = … − (8)

In this paper, it is also proved that the derivatives of such solutions also have a power-law growth.

This result has been extended by I. Kiguradze to equation (4) and to a more general higher order
equation.

Theorem B. [11, Theorem 1] Let λ 1≥ and k n1 ≤ ≤ . In order equation (4) has solutions u ti( ) (i k1, 2, ,= … )
such that for t → ∞

u t c t u t i c t u t i c~ , ~ 1 , ~ 1 0,i i
i

i i
i

i
i

i
1 2 1( ) ( ) ( ) ( ) ( )( )

′ − … − ! ≠
− − −

it is sufficient, and if r does not change its sign, it is also necessary that

r t t td .n λ k

1

1 1 1∣ ( )∣ ( )( )
∫ < ∞

∞

− + − −

The next result follows from [13, Corollary 8.2] applying to equation

u q t u u u, , , , ,n n 1( )( ) ( )
= ′ …

− (9)

where q t x x, , , n1( )… is a continuous function on 1, n�[ )∞ × .

Theorem C. Let there exist l n1, ,{ }∈ … , μ 0,( )∈ ∞ , μ 0≠ , and a continuous function q T R: ,[ )∞ →
∗

+,
T 1≥ , such that

q t x x q t for t T

x α l
l k

t μt k l

x μt k l n

, , , ,
1 1, , ,

1, , ,

n

k
l k l k

k
l k

1∣ ( )∣ ( )

( )

( )
( )

∣ ∣ ( )

… ≤ ≥

−

− !

− !

≤ = …

≤ = + …

∗

− −

−

and

t q t td .
T

n l ( )∫ < ∞

∞

− ∗
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Then equation (9) possesses a solution u having the asymptotic representation

u t α l
l k

t o t k l

u t o t k l n

1 1, , ,

1, , .

k l k l k

k l k

1

1

( )
( )

( )
( ) ( )

( ) ( ) ( )

( )

( )

=

− !

− !

+ = …

= = + …

− − −

− −

Using this result it is easy to give conditions if (3) has solutions with a polynomial power-law growth at
infinity. These results are presented in Section 3, along with a discussion on the proximity between
equations (1) and (2). Finally, in Section 4 some comments, examples, and suggestions for future research
studies are presented.

2 Asymptotic representation of solutions to equation (1)
Our main result in this section concerns the existence of solutions with polynomial-like or noninteger
power-law asymptotic behavior and reads as follows.

Theorem 1. Let the second-order differential equation (5) be nonoscillatory. Assume that for some real
number m n0, 1[ ]∈ −

t r t td ,n mλ i

1

1 q∣ ( )∣∫ < ∞

∞

− + + (10)

where i 0q = in the case

tq t td
1

( )∫ < ∞

∞

(11)

and i 1q = in the case

tq t td .
1

( )∫ = ∞

∞

(12)

Then for any solution y to (2) such that y t O t m( ) ( )= there exists a solution u to (1) such that for large t

u t y t ε t i n, 0, 1, , 1,i i
i( ) ( ) ( )( ) ( )

= + = … − (13)

where all εi are functions of bounded variation and ε tlim 0t i( ) =→∞ .

To prove Theorem 1, we use a similar approach to that given in [6], which is based on the induction
method, an iterative process, and suitable estimates for solutions to (2).

Equations (2) and (5) are strictly related. When q t 0( ) ≡ , the space of solutions to (2) has a fundamental
system of solutions consisting of

t j n, 0, 1, , 1.j
= … −

In the general case, it is easy to see that the space of solutions to (2) has a fundamental system of solutions
consisting of

t j nΓ , Γ , , 0, 1, , 3,j
1 2 = … − (14)

where t j are missing in case n 2= , and

t t s h s s t t s h s sΓ d , Γ d ,
t

n

t

n
1

1

3
1 2

1

3
2( ) ( ) ( ) ( ) ( ) ( )∫ ∫= − = −

− − (15)
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in case n 3≥ ,

t h t t h t nΓ , Γ in case 2;1 1 2 2( ) ( ) ( ) ( )= = =

h1, h2 are two independent solutions to (5), see [6].
Let h1 and h2 be two linearly independent solutions to (5) with Wronskian d 0> . Put

w s t h s h t h t h s z s t
t

w s t, , , , .1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( )= − =

∂

∂

(16)

Lemma 1. Let (5) be nonoscillatory.
(i) If (11) holds, then there exists a constant K 0> such that

w s t Ks z s t Ks for s t, , , 1,∣ ( )∣ ∣ ( )∣≤ ≤ ≥ ≥

and

t O t t O tΓ , Γ .n n
1

2
2

1( ) ( ) ( ) ( )= =
− −

(ii) If (12) holds, then there exists a constant K 0> such that

w s t Ks z s t Ks for s t, , , 1,2∣ ( )∣ ∣ ( )∣≤ ≤ ≥ ≥

and

t O t t O tΓ , Γ .n n
1

1
2

1( ) ( ) ( ) ( )= =
− −

Proof. Let h1, h2 be two linearly independent solutions to (5) with Wronskian d 0> . According to [8],
Theorem 1(i2), (i3), and Theorem 2(i2), (i3), we can choose

h t c h t h t h t clim 0, lim 0, lim , lim 0
t t t t

1 1 1 2 2 2∣ ( )∣ ( ) ∣ ( )∣ ∣ ( )∣= > ′ = = ∞ ′ = >

→∞ →∞ →∞ →∞

in case (11). Hence, h t c t2 2∣ ( )∣ ≤ and from (16) we obtain w s t Ks,∣ ( )∣ ≤ for t 1≥ and K c c1 2= . Similarly,

h t h t ilim , lim 0, 1, 2,
t

i
t

i∣ ( )∣ ( )= ∞ ′ = =

→∞ →∞

in case (12). From these, (15), and (16) the conclusions follow. □

The following lemma is a modification of [6, Lemma 1], where it has been stated for (1) in the case that
(5) is oscillatory.

Lemma 2. Let equation (5) be nonoscillatory and let uk k �{ } ∈ be a sequence of continuous functions on t ,0[ )∞ ,
t 10 ≥ . Consider for k 2≥ and t t0≥ the sequence αk{ } is given by

α t
d

σ t
n

r s u s w s σ s σ1
3

, d d ,k
n

t

T
n

σ

T

k
λ

1 3
1

k k

( )
( ) ( )

( )
( ) [ ( )] ( )∫ ∫=

− −

− !

+ −

− ±

in case n 3≥ and

α t
d

r s u s w s t s1 , dk

t

T

k
λ

1

k

( ) ( )[ ( )] ( )∫= − − ±

in case n 2= , where T t kk 0= + .
(i) If (11) holds, then, for t t0≥ ,

α t M s r s u s s i nd , 0, 1, , 3,k
i

t

T

n i
k

λ1
1

k

∣ ( )∣ ∣ ( )∣ ∣ ( )∣( )
∫≤ = … −

− −

− (17)
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α t M s r s u s s i n nd , 2, 1;k
i

t

T

k
λ

1

k

∣ ( )∣ ∣ ( )∣ ∣ ( )∣( )
∫≤ = − −− (18)

(ii) If (12) holds, then, for t t0≥ ,

α t M s r s u s s i n

α t M s r s u s s

α t M s r s u s s

d , 0, 1, , 3,

d ,

d ,

k
i

t

T

n i
k

λ

k
n

t

T

k
λ

k
n

t

T

k
λ

1

2 2
1

1
1

k

k

k

∣ ( )∣ ∣ ( )∣ ∣ ( )∣

∣ ( )∣ ∣ ( )∣ ∣ ( )∣

∣ ( )∣ ∣ ( )∣ ∣ ( )∣

( )

( )

( )

∫

∫

∫

≤ = … −

≤

≤

−

−

−

−

−

−

(19)

where M K d= / and K is given in Lemma 1. Note that (17) and (19) are missing if n 2= .

Proof. Suppose (11) holds, case (12) can be treated similarly. For n 3≥ , t t0≥ , and i n1, 2, , 3= … − we have

α t
d

σ t
n i

r s u s w s σ s σ1 1
3

, d d .k
i n i

t

T
n i

σ

T

k
λ1

3
1

k k

( ) ( )
( )

( )
( )[ ( )] ( )( )

∫ ∫= −

−

− − !

+ +

− −

− ±
(20)

Hence, for n 2≥

α t
d

r s u s w s t s1 , d ,k

t

T

k
λ

1
n

k
2
( ) ( )[ ( )] ( )

( )

∫= − − ±

− (21)

α t
d

r s u s z s t s1 , d ,k

t

T

k
λ

1
n

k
1
( ) ( )[ ( )] ( )

( )

∫= − − ±

− (22)

α t r t u t q t α t .k k
λ

k1
n n 2

( ) ( )[ ( )] ( ) ( )
( ) ( )

= −− ±

− (23)

If n 2= the statement follows from (21), (22), and Lemma 1.
Let n 3≥ . From (20) and Lemma 1(i) we have

α t K
d

s r s u sdk
n

t

T

k
λ3 2

1

k

∣ ( )∣ ∣ ( )∣∣ ∣( )
∫≤

−

−

and the conclusion holds for i n 3= − . Furthermore, for i n0, 1, , 4= … − we obtain

α t α s s K
d

s t r s u sd d .k
i

t

T

k
i

t

T

n i
k

λ1 1
1

k k

∣ ( )∣ ∣ ( )∣ ( ) ∣ ( )∣∣ ∣( ) ( )
∫ ∫≤ ≤ −

+ − −

− (24)

Thus, the conclusion holds for these i. Finally, the estimates for i n 2= − , n 1,− follow from (21), (22), and
Lemma 1(i). □

Proof of Theorem 1. The idea of the proof is similar to that of Theorem 1 in [6].
Suppose (11) holds, i.e., i 0q = . Since y t O tm( ) ( )= , there exists L 0> such that for t 1≥

y t Lt .m∣ ( )∣ < (25)

Put L L 1 2= + / and choose t 10 > such that
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LK
d

s r s sd 1
2

,
t

n λm1

0

∣ ( )∣∫ ≤

∞

− + (26)

where K is given by Lemma 1. Put T t kk 0= + . On t ,0[ )∞ , consider the sequence uk{ } defined by

u t y t

u t y t
d

σ t
n

r s u s s σ s σ

,

1
3

, d dk
n

t

T
n

σ

T

k
λ

1

1 3
1

k k

( ) ( )

( ) ( )
( ) ( )

( )
( )[ ( )] ( )∫ ∫

=

= +

− −

− !

+ −

− ±

in case n 3≥ , and

u t y t
d

r s u s w s t s1 , dk

t

T

k
λ

1

k

( ) ( ) ( )[ ( )] ( )∫= − − ±

in case n 2= .
For the functions αk defined on t ,0[ )∞ in Lemma 2, we have

α t u t y t i n, 0, , 1,k
i

k
i i( ) ( ) ( )( ) ( ) ( )

= − = … −

and, in view of (23),

α t r t u t q t u t q t y t u t y t .k k
λ

k k
n

k
n n

1
2n n 2

( ) ( )[ ( )] ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( )

= − + = −− ±

−
− (27)

Thus, for t t0≥ we have

u t q t u t r t u t .k
n

k k
λ

1
n 2

( ) ( ) ( ) ( )[ ( )]( ) ( )

+ = − ±

− (28)

We show that for all i n0, ,= … the sequences uk
i{ }( ) are uniformly bounded and equicontinuous on each

finite subinterval of t ,0[ )∞ .
First, let us show that

u t y t t t1
2

, , .k 0∣ ( ) ( )∣ [ )− ≤ ∈ ∞

Clearly, this holds for k 1= . We proceed by induction and assume that

u t y t t t1
2

, , .k 1 0∣ ( ) ( )∣ [ )− ≤ ∈ ∞−

From this and (25), we have u t Lt .k
m

1∣ ( )∣ <− In view of Lemma 2(i) and (25), we obtain

α t KL
d

s r s sd .k

λ

t

T

n λm1
k

∣ ( )∣ ∣ ( )∣∫≤
− +

Thus, in view of (26), we obtain

u t y t KL
d

s r s sd 1
2

.k

λ

t

n λm1∣ ( ) ( )∣ ∣ ( )∣∫− ≤ ≤

∞

− + (29)

Similarly, using again Lemma 2(i),

u t y t α t M s r s sdk
i i

k
i

t

n i λm
1

1∣ ( ) ( )∣ ∣ ( )∣ ∣ ( )∣( ) ( ) ( )
∫− = ≤

∞

− − + (30)

for i n1, , 2= … − , and n 3≥ , and
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u t y t α t M s r s sdk
n n

k
n

t

λm1 1 1
1

1∣ ( ) ( )∣ ∣ ( )∣ ∣ ( )∣( ) ( ) ( )
∫− = ≤

− − −

∞

+ (31)

for n 2≥ , where M KL d1 = / and K is given by Lemma 1.

Hence, uk
i{ }( ) , i n0, 1, , 1= … − , are uniformly bounded on each finite subinterval of t ,0[ )∞ . Moreover,

in view of (28), the same holds for uk
n{ }( ) . Then uk

i{ }( ) , i n0, , 1,= … − are equicontinuous on each finite

subinterval in t ,0[ )∞ and, from (28), the same holds for uk
n{ }( ) . Hence, uk{ } admits a converging subsequence

ukj{ } such that uk
i
j

( )
{ }, i n0, , ,= … uniformly converge to a function u i( ) on each finite subinterval of t , .0[ )∞

Again from (28) we obtain that u is a solution to (1). From (10), (30), and (31), using the Lebesgue
dominated convergence theorem, we obtain

u s y s s i nd , 1, 2, , 1,
t

i i

0

∣ ( ) ( )∣( ) ( )
∫ − < ∞ = … −

∞

whence all u y i n, 0, , 2i i( ) ( )
− = … − , are of bounded variation in a neighborhood of infinity. Taking into

account (27), we obtain

u t y t r t u t q t u t y t .n n λ n n2 2∣ ( ) ( )∣ ∣ ( )∣∣ ( )∣ ( )∣ ( ) ( )∣( ) ( ) ( ) ( )
− ≤ + −

− −

Since u t Lt ,m∣ ( )∣ < we obtain

u t y t L r t t q t u t y t .n n λ λm n n2 2∣ ( ) ( )∣ ∣ ( )∣ ( )∣ ( ) ( )∣( ) ( ) ( ) ( )
− ≤ + −

− −

Thus, u yn n1 1( ) ( )
−

− − is also of bounded variation in a neighborhood of infinity. Finally, from (29), (30), and
(31) we obtain (13).

If (12) holds, then the proof is similar, we use Lemma 2(ii) instead of Lemma 2(i). □

From Theorem 1 we obtain the following.

Corollary 1. Let (5) be nonoscillatory and n 3≥ . Assume that (10) holds with iq as in Theorem 1 and some
m n0, 1, , 3{ }∈ … − . Then for any polynomial Q with Q mdeg ≤ there exists a solution u of (1) such that for
large t

u t Q t ε t i n, 0, 1, , 1,i i
i( ) ( ) ( )( ) ( )

= + = … −

where all εi are functions of bounded variation and ε tlim 0t i( ) =→∞ .

Proof. Since Q is a solution of (2), the conclusion follows from Theorem 1. □

Corollary 2. Let (5) be nonoscillatory. Assume that

t r t td ,n λ i

1

1 1 q∣ ( )∣( )( )
∫ < ∞

∞

− + + (32)

where iq is as in Theorem 1. Then for any polynomial Q with Q ndeg 3≤ − in case n 3≥ , Q 0≡ in case n 2= ,
there exist solutions u to (1) such that for large t

u t c t c t Q t ε t i nΓ Γ , 0, , 1,i i
i1 1 2 2( ) ( ( ) ( ) ( )) ( )( ) ( )

= + + + = … −

where Γ1 and Γ2 are given by (15), c1 and c2 are arbitrary constants, and εi are functions of bounded variation
and ε tlim 0t i( ) =→∞ .

Proof. Take the fundamental system of solutions to (2) given in (14). Applying Theorem 1 for m n 1= − , we
obtain the conclusion. □
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We complete this section by considering the special case of (1)

u t ε
t

u t r t u ,n n λ
2

2( ) ( ) ( )∣ ∣( ) ( )
+ =

−

± (33)

and the related linear equation

y t ε
t

y t 0,n n
2

2( ) ( )( ) ( )
+ =

− (34)

where ε 0, 1 4( )∈ / . Then the estimations given in Lemma 1(ii) can be improved and we obtain the following
results.

Theorem 2. Let ε 0, 1 4( )∈ / , and, for some real number m n0, 1[ ]∈ − ,

t r t td .n mλ

1

1 ∣ ( )∣∫ < ∞

∞

− + (35)

Then for any solution y to (34) such that y t O tm( ) ( )= there exists a solution u to (33) such that for large t

u t y t ε t i n, 0, 1, , 1,i i
i( ) ( ) ( )( ) ( )

= + = … −

where all εi are functions of bounded variation and ε tlim 0t i( ) =→∞ .

Proof. The corresponding second-order linear equation

h ε
t

h 02
″ + =

is nonoscillatory and has a fundamental system of solutions h t t μ
1 1( ) = , h t t μ

2 2( ) = , where

μ ε μ ε1 1 4 2, 1 1 4 2,1 2( ) ( )= − − / = + − /

see, e.g., [19, Chapter 2.1]. Take the fundamental system of solutions to (34) given in (14). If n 3≥ , then

t t s s s O tΓ d ,
t

n μ β
1

1

3 1( ) ( ) ( )∫= − =
− (36)

t t s s s O tΓ d ,
t

n μ γ
2

1

3 2( ) ( ) ( )∫= − =
− (37)

where

β n ε γ n ε3
2

1 4
2

, 3
2

1 4
2

.= − −

−

= − +

−

If n 2= ,

t h t O t t h t O tΓ , Γ .β γ
1 1 2 2( ) ( ) ( ) ( ) ( ) ( )= = = = (38)

Furthermore,

w s t h s h t h t h s s s t, 2 for 1.1 2 1 2∣ ( )∣ ( ) ( ) ( ) ( )= − ≤ ≥ ≥

Now we proceed by the similar way as in the proof of Theorem 1 replacing the estimation of w from Lemma
1(ii) by w s t s, 2∣ ( )∣ ≤ . □

From Theorem 2 we obtain immediately the following.

Corollary 3. Assume that
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t r t td ,n γλ

1

1 ∣ ( )∣∫ < ∞

∞

− +

where γ n ε3
2

1 4
2= − +
− .

Then for any polynomialQ with Q ndeg 3≤ − in case n 3≥ ,Q 0≡ in case n 2= , there exist solutions u of
(33), such that for large t

u t c t c t Q t ε t i nΓ Γ , 0, , 1,i i
i1 1 2 2( ) ( ( ) ( ) ( )) ( )( ) ( )

= + + + = … −

where Γ1 and Γ2 are given by (36), (37), and (38), c1 and c2 are arbitrary constants, and εi are functions of
bounded variation and ε tlim 0t i( ) =→∞ .

Proof. We apply Theorem 2 with m γ= . □

3 Asymptotic representation of solutions to equation (3)
In this section, we study some asymptotic properties of equation (3) and discuss the proximity of this
equation to the unperturbed linear equation (6). We start by presenting conditions under which equation
(3) has solutions with asymptotic growth of polynomial type. This result can be obtained as a corollary of
Theorem C.

Corollary 4. Suppose that the continuous functions a a, , n0 1… − satisfy (7) and for some integer number
m n0, 1, , 1{ }∈ … −

t r t td .n λ m

1

1 1 ∣ ( )∣( )
∫ < ∞

∞

− + − (39)

Then for any C 0≠ there exists a solution u to equation (3) satisfying for large t

u t Cm
m j

t o for j m

u t o t for j m n

1 1 0, 1, , ,

1, , 1.

j m j

j m j

( )
( )

( ( ))

( ) ( )

( )

( )

=

!

− !

+ = …

= = + … −

−

−

(40)

In particular, if

t r t td ,w

1

∣ ( )∣∫ < ∞

∞

(41)

where w λ n 1( )= − if λ 1≥ and w n 1= − if λ 1< , then for any solution y of (6) there exists a solution u of (3)
such that for large t

u t y t o1 1 ,( ) ( )( ( ))= + (42)

u t y t o o t i n1 1 , 1, , 1.i i 1( ) ( )( ( )) ( )( ) ( )
= + + = … −

− (43)

Proof. In Theorem C, choose l m 1= + , k j 1= + , α C= , μ 1= . Put

q t x x r t x a t x, , , ,n
λ

k

n

k k1 1
1

1( ) ( )∣ ∣ ( )∑… = −
±

=

−

q t c t r t c a t t ,λ l

k

n

k
l k

1
1

2
1

1( ) ∣ ( )∣ ∣ ( )∣( )
∑= +

∗ −

=

−

−
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and c α1 λ
1 ( ∣ ∣)= + , c α l1 12 ∣ ∣( )= + − ! .
We claim that

q t x x q t, , , n1∣ ( )∣ ( )… ≤
∗

for t 1≥ and

x α l
l k

t t k l

x t k l n

1 , 1, , ,

, 1, , .

k
l k l k

k
l k

∣
( )

( )
∣

∣ ∣

−

− !

− !

≤ = …

≤ = + …

− −

−

Indeed, we have

q t x x r t t α t a t t α l
l k

t a t t

c t r t c a t t q t

, , , 1

.

n
l l λ

k

l

k
l k l k

k l

n

k
l k

λ l

k

n

k
l k

1
1 1

1
1

1
1

1
1

2
1

1

⎜ ⎟∣ ( )∣ ∣ ( )∣( ∣ ∣ ) ∣ ( )∣⎛

⎝
∣ ∣

( )

( )
⎞

⎠
∣ ( )∣

∣ ( )∣ ∣ ( )∣ ( )( )

∑ ∑

∑

… ≤ + + +

− !

− !

+

≤ + =

− −

=

−

− −

= +

−

−

−

=

−

− ∗

Thus, using (7) and (39)

t q t t c t r t t c a t t td d d .n l n l λ l

k

n

k
n k

1

1

1

1
2

1 1
1( ) ∣ ( )∣ ∣ ( )∣( )

∫ ∫ ∫∑= + < ∞

∞

− ∗

∞

− + −

∞

=

−

−

Hence, both relations in (40) hold.
In order to complete the proof, let us show that (42) and (43) are satisfied. Assume that (41) holds. Then

(39) is valid for m n0, 1, , 1= … − . Indeed, denoting w n λ m1 1m ( )= − + − , we have

w w λ n λ

w w n λ

max 1 if 1,

max 1 if 1.
m n

m n

m n
m

0,1, , 1
1

0,1, , 1
0

( )= = − ≥

= = − <

= … −

−

= … −

Let y be an arbitrary solution of (6). Then according to the proved part of Corollary 4 with r t 0( ) ≡ , there
exist a fundamental system of solutions to (6), say y t y t, , n0 1( ) ( )…

−
such that

y t m
m j

t o j l

y t o t j l n

1 1 for 0, 1, ,

for 1, , 1,

l
j m j

l
j m j

( )
( )

( ( ))

( ) ( )

( )

( )

=

!

− !

+ = …

= = + … −

−

−

(44)

where l n0, 1, , 1∈ … − , and

y t c y t t, 1,
l

n

l l
0

1
( ) ( )∑= ≥

=

−

where cl, l n0, 1, , 1= … − are suitable constants. Let m n0, 1, , 1{ }∈ … − be such that c 0m ≠ , c 0l = for
l m> . Using (44) we have

y t c y t c m
m j

t o j m

y t c y t o t j m n

1 1 for 1, , ,

for 1, , 1.

j

l

m

l l
j

m
m j

j

l

m

l l
j m j

0

0

( ) ( )
( )

( ( ))

( ) ( ) ( )

( ) ( )

( ) ( )

∑

∑

= =

!

− !

+ = …

= = = + … −

=

−

=

−

From here and (40), equation (3) has a solution u with the same asymptotics, letting C cm= . Therefore, for
large t

u t y t o k m
u t y t o t y t o t k m n

1 1 for 1, , ,
for 1, , .

k k

k k m k k

1 1

1 1 1 1
( ) ( )( ( ))

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

= + = …

= + = + = + …

− −

− − − − −
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If k 1= , then (42) holds, in other cases we obtain (43). □

Observe that if y i( ) for some i n1, , 1{ }∈ … − is bounded away from zero, then (43) is equivalent to

u t y t o1 1 .i i( ) ( )( ( ))( ) ( )
= +

If y o ti 1( )( )
=

− , then (43) is equivalent to

u t y t o t .i i 1( ) ( ) ( )( ) ( )
= +

−

Remark 1. If (7) and (41) hold, then for anyC 0≠ and every m n0, 1, , 1= … − there exist solutions y y, , n1 …

of equation (6) with different asymptotic representation (40), and by Corollary 4 there exists n-parametric
set of solutions of equation (3).

Remark 2. In [12, Section 8.3, p. 163], there is an example of Emden-Fowler-type equation (4) having
solution u with a noninteger power-law asymptotic behavior. Thus, the corresponding linear equation
y 0n( )

= has no solution y satisfying u t y tlim 0t ∣ ( ) ( )∣− =→∞ .

Remark 3. Applying Corollary 4 to equation (1), we obtain the following comparison between Corollary 4
and Theorem 1: Condition (7) of Corollary 4 reads as condition (11) of Theorem 1. If (39) holds but not (10),
Corollary 4 is applicable while Theorem 1 is not applicable. The same holds if q changes its sign. If m is not
integer or (12) holds, Theorem 1 is applicable, while the application of Corollary 4 is not possible.

Remark 4. In [2, Theorem 2.4] it is proved that if λ 1> , (7) and (32) with i 0q = hold, then there exist
solutions u to equation (3) such that for large t

u t C y t o 1 ,
j

n

j j
0

1
( ) ( ) ( )∑= +

=

−

(45)

where Cj are arbitrary constants and the functions yj are a fundamental system of solutions to equation (6)
such that for large t

y t t
j

o1 1 .j

j
( ) ( ( ))=

!

+

Corollary 2 extends this result for equation (1).

4 Examples and suggestions

The following examples illustrate Theorems 1, 2, and Corollary 4.

Example 1. Let λ 0> and consider the nonlinear equation for t 1≥

u
t et

u e t et
e t et

u1
log

log 1
1 log

.
t

t λ
λ4

2
2

2

2
( )

( )
∣ ∣( ) ( )

+ =

+

+

−

−
±

(46)

A standard calculation shows that

u t t e t( ) = +
− (47)

is a solution of (46). Setting

q t
t et

r t e t et
e t et

1
log

, log 1
1 log

,
t

t λ2

2

2( ) ( )
( )

( )
= =

+

+

−

−
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we obtain that (5) is nonoscillatory and (12) is valid. Moreover, we have for any σ 0>

t r t td .σ

1

( )∫ < ∞

∞

Thus, all the assumptions of Theorem 1 are verified with m 1= and so equation (46) has a solution u such
that for any large t

u t y t ε t i, 0, , 3,i i
i( ) ( ) ( )( ) ( )

= + = …

where εi are functions of bounded variation such that ε tlim 0t i( ) =→∞ and y t t( ) = , as solution (47)
illustrates.

Example 2. Consider the nonlinear equation for t 1≥

u
t

u t
t

u3
16

1 cos .3
2 5

1 2∣ ∣( )
+ ′ =

±

/ (48)

A standard calculation shows that a fundamental system of solutions of the linear equation

y
t

y3
16

1 03
2

( )
+ ′ =

is given by

y t y t t y t1, , .1 2
5 4

3
7 4( ) ( )= = =

/ /

Since

t t tcos d ,
1

2∣ ∣∫ < ∞

∞

−

condition (35) is satisfied for n 3= , λ 2 1
=

− , r t t tcos5( ) =
− , and any m 0, 1, 2{ }∈ . Hence, from Theorem 2

equation (48) has a solution uk such that for any large t

u t y t ε t k i, , 0, 1, 2,k
i

k
i

k i,( ) ( ) ( )( ) ( )
= + =

where εk i, are functions of bounded variation such that ε tlim 0.t k i, ( ) =→∞

Example 3. Consider the nonlinear equation for t 1≥

u
t t

u
t t

u r t u1
2 1

1
2 1

,λ3 2
2( ) ( )

( )∣ ∣( ) ( )
+

−

−

−

′ =
± (49)

where λ0 1< < and r is a continuous function for t 1≥ such that

t r t td .
1

2∣ ( )∣∫ < ∞

∞

(50)

A standard calculation shows that the corresponding linear equation to (49), that is, the equation

y
t t

y
t t

y t1
2 1

1
2 1

0, 1,3 2
2( ) ( )

( ) ( )
+

−

−

−

′ = ≥

has the fundamental system of solutions consisting of

y t y t t y t s s
s

s1, , log 2
2 1

d .
t

1 2
2

3

1

( ) ( ) ( ) ⎛
⎝

⎞
⎠

∫= = =

−
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Denoting by a i, 0, 1, 2,i = the functions

a t a t
t t

a t
t t

0, 1
2 1

, 1
2 1

,0 1 2 2( ) ( )
( )

( )
( )

= = −

−

=

−

it is immediate to verify that (7) holds for all j 0, 1, 2.= From (50), also conditions (39) and (41) are valid,
and so, in virtue of Corollary 4, there exist three solutions u i, 1, 2, 3,i = of (49) such that

u t y t o o
u t y t o t o

u t y t o s s
s

s o o

1 1 1 1 ,
1 1 1 1 ,

1 1 log 2
2 1

d 1 1 1 .
t

1 1

2 2
2

3 3

1

( ) ( )( ( )) ( )

( ) ( )( ( )) ( ( ))

( ) ( )( ( )) ⎛
⎝

⎞
⎠

( ( )) ( )∫

= + = +

= + = +

= + =

−

+ +

A similar asymptotic representation holds for the derivatives of u u i, , 1, 2, 3.i i′ ″ = For instance, we have

u t t o o t t o

u t o o t o

2 1 1 2 1 1 ,

2 1 1 2 1 ,
2

1

2
1

( ) ( ( )) ( ) ( ( ))

( ) ( ( )) ( ) ( )

′ = + + = +

= + + = +

−

−
″

and similarly for the first and second derivative of u1 and u3.
Open problems.
(1) Condition (35) in Theorem 2 is weaker than (10) in Theorem 1. This is due to the fact that it was

possible to explicitly calculate the fundamental system of solutions of (5), and from these solutions, to
obtain a fundamental system of (2). Since an explicit expression of solutions of (5) is possible also for
particular choices of q, like, for example, the Euler equation

h
t

h1
4

0,2
″ + =

see, e.g., [19, Chapter 2.1], it should be interesting to study whenever Theorem 2 remains to hold for
equations of the type

u φ t u r t u ,n n λ2( ) ( )∣ ∣( ) ( )
+ =

−

±

where φ is a continuous function for t 1≥ and asymptotic representations of solutions of the second-order
linear equation

h φ t h 0( )″ + =

are known.
(2) The study on the proximity of solutions could be extended to the one between delay and neutral

equations and the corresponding linear equations without delay or neutral argument, by applying the
proximity results obtained in Section 2. More precisely, this study could be accomplished in two steps.
First, by considering the possible proximity between the nonlinear equation (1) (or (3)) and the corre-
sponding nonlinear equation with functional argument and later to apply Theorem 1 or Theorem 2. Con-
cerning the first step, observe that the functional argument may produce a loss of proximity. To illustrate
this fact, consider the Emden-Fowler equation without deviating argument

x t b t x t ,λ( ) ( )∣ ( )∣″ =
±

(51)

where b is a continuous function for t 1≥ and the corresponding equation with deviating argument

x t b t x τ t τ t t, .λ( ) ( )∣ ( ( ))∣ ( )″ = <
±

(52)

When λ 1> and b is positive, equation (51) always has Kneser solutions, that is, solutions x such that
x t x t0, 0( ) ( )> ′ < for large t. Moreover, if, in addition,

sb s sd ,
1

( )∫ < ∞

∞
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then (51) does not have Kneser solutions which tend to zero as t ,→ ∞ see, e.g., [13, Section 13.2]. If τ t t( ) < ,
then this result may fail for (52), see, e.g., [15].

In the sublinear case, that is, λ0 1,< < it is known that there might exist equations of type (51) without
Kneser solutions. For instance, if

t b tliminf 0,
t

2 ( ) >

→∞

(53)

then (51) does not have Kneser solution, see [13, Corollary 17.3]. On the other hand, the equation

x t
t t

x τ t t1
log

, 2,λ
2( ) ∣ ( ( ))∣″ = ≥

±

has Kneser solutions, as [10, Corollary 2] illustrates.
In virtue of these facts, it should be interesting to show if an analogous type of proximity between

Kneser solutions arises for equations (1) and

w q t w r t w τ t w τ tsgn .n n λ2( ) ( )∣ ( ( ))∣ ( ( ))( ) ( )
+ =

−

Similarly, the same question concerns the proximity between Kneser solutions for equations (3) and

w a t w r t w τ t w τ tsgn ,n

j

n

j
j λ

0

1
( ) ( )∣ ( ( ))∣ ( ( ))( ) ( )

∑+ =

=

−

where n is even. Here the meaning of Kneser solution is that the solution x satisfies for large t

x t x t x t i n0, 0, 0, 1, , 1.i i 1( ) ( ) ( )( ) ( )
> < = … −

+
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