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Abstract

A detailed study of two classes of oscillatory global (and blow-up) solutions was began in
[20] for the semilinear heat equation in the subcritical Fujita range

ut = ∆u + |u|p−1u in RN × R+ for 1 < p ≤ p0 = 1 + 2
N , (0.1)

with bounded integrable initial data u(x, 0) = u0(x). This study is continued and extended
here for the 2mth-order heat equation, for m ≥ 2, with non-monotone nonlinearity

ut = −(−∆)mu + |u|p in RN × R+, in the range 1 < p ≤ p0 = 1 + 2m
N , (0.2)

with the same initial data u0. The fourth order biharmonic case m = 2 is studied in greater
detail. The blow-up Fujita-type result for (0.2) now reads as follows: blow-up occurs for
any initial data u0 with positive first Fourier coefficient:∫

u0(x) dx > 0,

i.e., as for (0.1), any such arbitrarily small initial function u0(x) leads to blow-up. The con-
struction of two countable families of global sign changing solutions is performed on the
basis of bifurcation/branching analysis and a further analytic-numerical study. In particular,
a countable sequence of bifurcation points of similarity solutions is obtained:

pl = 1 +
2m

N + l
, l = 0, 1, 2, ... .

2010 AMS Subject Classification: 35J85, 49J40, 58E05.
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1 Introduction: higher order semilinear heat equations, blow-
up, Fujita exponent, and global oscillatory solutions

This paper generalizes to higher order (polyharmonic) diffusion operators the study of [20] of the
semilinear second-order heat equation in the subcritical Fujita range

ut = ∆u + |u|p−1u in RN × R+, where 1 < p ≤ p0 = 1 + 2
N , (1.1)

with bounded integrable initial data u(x, 0) = u0(x). Necessary key references, results, and our main
motivation of the study of (1.1) and further related models can be found in [20, § 1].

1.1 Higher order semilinear heat equation: blow-up Fujita-like result

Thus, we intend to extend some of key results of [20] to semilinear parabolic equations with higher
order diffusion operators. Such models are steadily becoming more and more popular in various
applications and in general PDE theory. Namely, we consider the 2mth-order heat equation, for
m ≥ 2, in the subcritical Fujita range:

ut = −(−∆)mu + |u|p in RN × R+ for 1 < p ≤ p0 = 1 + 2m
N , (1.2)
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with sufficiently smooth, bounded, and integrable initial data,

u(x, 0) = u0(x) in RN . (1.3)

The choice of the non-monotone nonlinearity |u|p (a source term) in (1.2) is associated with the
necessity of having a standard sounding Fujita-type blow-up result. Namely, it is known [8] that
blow-up occurs for (1.2) for any solutions with initial data having positive first Fourier coefficient
(see [9] for further details and [21] for an alternative proof):∫

RN
u0(x) dx > 0, (1.4)

i.e., any, even arbitrarily small, such data lead to blow-up. A similar result for positive solutions of
(1.1) was well-known since Fujita work in 1966; see [20, § 1] for a survey.

1.2 Results and layout of the paper

In Sections 2–4, we perform construction of countable sets of global sign changing solutions on
the basis of bifurcation/branching analysis, as well as of a centre-stable manifold one. Here, we
apply spectral theory of related non-self-adjoint 2mth-order operators [9], which is available for
any m = 2, 3, ... . As for (1.1), i.e., for m = 1, this gives a similar sequence of critical bifurcation
exponents:

pl = 1 +
2m

N + l
, l = 0, 1, 2, ... . (1.5)

References and some results for analogous global similarity solutions of a different higher order
reaction diffusion PDE with a standard monotone nonlinearity as in (1.1),

ut = −(−∆)mu + |u|p−1u (m ≥ 2) (1.6)

can be found in [17]. It is remarkable (and rather surprising for us) that the bifurcation-branching
phenomena therein for (1.6) are entirely different from those for the present equation (1.2), which
turn out also to be more complicated, with various standard and non-standard bifurcation phenom-
ena.

It is worth mentioning here that our study also directly concerns blow-up solutions of (1.1): we
claim that, under the conditions that our two classes of its global oscillatory solutions are evolution-
ary complete (see [20, § 7] for a precise statement and some results for (1.1)), all other solutions of
(1.2) must blow-up in finite time. Then this describes a much wider class of blow-up solutions, and
actually says that almost all (with a.a. defined in a natural way) solutions of (1.2) in the subcritical
Fujita range blow-up in finite time.

2 Global similarity solutions and p-bifurcation branches

In what follows, we use a general scheme and “ideology” of the study in [20] of the second-order
semilinear equation (1.1). Therefore, omitting some obvious details, we now more briefly start
to describe which results on global solutions can be extended to the 2mth-order reaction-diffusion
equation (1.2) in the subcritical range.
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2.1 First family of global patterns: similarity solutions

As usual, for the higher order model (1.2) with m ≥ 2, we first study the existence and multiplicity
of the standard global (i.e., well defined for all t > 0) similarity solutions of the form

uS (x, t) = t−
1

p−1 f (y), y = x/t
1

2m . (2.7)

This leads to the semilinear elliptic problem for the rescaled similarity profile f : B1 f + | f |p ≡ −(−∆)m f + 1
2m y · ∇ f + 1

p−1 f + | f |p = 0 in RN ,

f (y) decays exponentially fast as |y| → ∞.
(2.8)

For m = 1, this problem admits a variational setting in a weighted metric of L2
ρ(R

N), where
ρ = e|y|

2/4. This positive fact was heavily used in [20], where category/fibering techniques allowed
us to detect a countable number of solutions and bifurcation branches.

However, for any m ≥ 2, (2.8) is not variational in any weighted L2 space; cf. reasons for
that and a similar negative result in [23, § 7]. So, those power tools of potential operator theory in
principle cannot be applied for (2.8), with any m ≥ 2.

Moreover, unlike the previous study of (1.1) in [20], we cannot use standard variational results
on bifurcation from eigenvalues of arbitrary multiplicity (for our purposes, the results for odd mul-
tiplicity [7, p. 381, 401] concerning local and global continuation of branches are sufficient). We
also do not have global multiplicity results via Lusternik–Schnirel’man (L–S, for short) and fibering
theory. As usual, higher order semilinear elliptic equations such as (2.8), or even the corresponding
ordinary differential equation for radially symmetric profiles f , become principally different and
more difficult than their second-order variational counterparts. We again refer to [2, § 6.7C] for gen-
eral results on bifurcation diagrams, and to [1, 29] for more detailed results for related 2mth-order
ordinary differential equation in 1D. These results do not apply directly but can be used for a better
understanding of global bifurcation diagrams of similarity patterns f (y).

Thus, as in [17] for a quite similar looking equation (1.6), for global continuation of branches,
we have to rely more heavily on numerical methods, and this is an unavoidable feature of such a
study of nonlinear higher order equations. Surprisingly, we detect completely different local and
global properties of p-branches in contrast with those in [17] for the equation (1.6), which therefore
are not so definitely attached to variational, monotone, or order-preserving (i.e., via the Maximum
Principle) features of these difficult global similarity problems studied since the 1980s.

2.2 Fundamental solution and Hermitian spectral theory

We begin with the necessary fundamental solution b(x, t) of the corresponding linear parabolic (poly-
harmonic) equation

ut = −(−∆)mu in RN × R+, (2.9)

which takes the standard similarity form

b(x, t) = t−
N

2m F(y), where y = x/t
1

2m . (2.10)

The rescaled kernel F is then the unique radial solution of the elliptic equation

BF ≡ −(−∆)mF + 1
2m y · ∇F + N

2m F = 0 in RN , with
∫

F = 1. (2.11)
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The rescaled kernel F(|y|) is oscillatory as |y| → ∞ and satisfies the estimate [10, 14]

|F(y)| < D e−d|y|α in RN , where α = 2m
2m−1 ∈ (1, 2), (2.12)

for some positive constants D and d depending on m and N. The linear operator B1 in equation (2.8)
is connected with the operator (2.11) for the rescaled kernel F in (2.10) by

B1 = B + c1I, where c1 =
1

p−1 −
N

2m ≡
N(p0−p)
2m(p−1) and p0 = 1 + 2m

N . (2.13)

In view of (2.13), in order to study the similarity solutions, we need the spectral properties of B
and of the corresponding adjoint operator B∗. Both are considered in weighted L2-spaces with the
weight functions induced by the exponential estimate of the rescaled kernel (2.12). For m ≥ 2, we
consider B in the weighted space L2

ρ(R
N) with the exponentially growing weight function

ρ(y) = ea|y|α > 0 in RN , (2.14)

where a ∈ (0, 2d) is any fixed constant and d is as in (2.12). We ascribe to B the domain H2m
ρ (RN)

being a Hilbert space with the norm

∥v∥2 =
∫
RN
ρ(y)

2m∑
k=0

|Dkv(y)|2 dy,

induced by the corresponding inner product. Then H2m
ρ ⊂ L2

ρ ⊂ L2. The spectral properties B are as
follows [9]:

Lemma 1 (i) B : H2m
ρ → L2

ρ is a bounded linear operator with the real point spectrum

σ(B) = {λl = − l
2m , l = 0, 1, 2, ...}. (2.15)

The eigenvalues λl have finite multiplicities with eigenfunctions

ψβ(y) = (−1)|β|√
β!

DβF(y), for any |β| = l. (2.16)

(ii) The set Φ = {ψβ}|β|≥0 is complete and the resolvent (B − λI)−1 is compact in L2
ρ.

By Lemma 1, the centre and stable subspaces of B are given by Ec = Span{ψ0 = F} and
E s = Span{ψβ, |β| > 0}.

Next, consider in the dual L2-metric the adjoint operator

B∗ = −(−∆)m − 1
2m y · ∇ . (2.17)

For m ≥ 2, we treat B∗ in L2
ρ∗ with the exponentially decaying weight function

ρ∗(y) = 1
ρ(y) ≡ e−a|y|α > 0. (2.18)

Lemma 2 (i) B∗ : H2m
ρ∗ → L2

ρ∗ is a bounded linear operator with the same spectrum (2.15) as B.
Eigenfunctions ψ∗β(y) with |β| = l are lth-order generalized Hermite polynomials given by

ψ∗β(y) = 1√
β!

[
yβ +

[|β|/2m]∑
j=1

1
j! (−∆)m jyβ

]
. (2.19)

(ii) The set Φ∗ = {ψ∗β}|β|≥0 is complete and resolvent (B∗ − λI)−1 compact in L2
ρ∗ .
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It follows that the orthonormality condition holds

⟨ψβ, ψ∗γ⟩ = δβγ, (2.20)

where ⟨·, ·⟩ denotes the standard L2(RN) inner product and δβγ is Kronecker’s delta.
Using (2.20), we introduce the subspaces of eigenfunction expansions and begin with the op-

erator B. We denote by L̃2
ρ the subspace of eigenfunction expansions v =

∑
cβψβ with coefficients

cβ = ⟨v, ψ∗⟩ defined as the closure of the finite sums {∑|β|≤M cβψβ} in the norm of L2
ρ. Similarly,

for the adjoint operator B∗, we define the subspace L̃2
ρ∗ ⊆ L2

ρ∗ . Note that since the operators are not
self-adjoint and the eigenfunction subsets are not orthonormal, in general, these subspaces can be
different from L2

ρ and L2
ρ∗ , and the equality is guaranteed in the self-adjoint case m = 1, a = 1

4 only.

2.3 Existence of similarity profiles close to transcritical bifurcations

Consider the elliptic problem (2.8). Using the above Hermitian spectral analysis of the operator
pair {B,B∗}, we formulate the bifurcation problems, which guarantee the existence of a similarity
solution in a neighbourhood of bifurcation points. In fact, our consideration is quite similar to that
for the second-order case in [20], so we may omit some details. Since p < p0, our analysis is
performed in the subcritical Sobolev range:

1 < p < pS =
N+2m
N−2m =⇒ Hm

ρ (RN) ⊂ Lp+1
ρ (RN) compactly. (2.21)

Taking p close to the critical values, as defined in (1.5), we look for small solutions of (2.8). At
p = pl, the linear operator B1 has a nontrivial kernel, hence:

Proposition 1 Let for an l ≥ 0, the eigenvalue λl = − l
2m of operator (2.11) be of odd multiplicity.

Then the critical exponent (1.5) is a bifurcation point for the problem (2.8).

Proof. Consider in L2
ρ our equation written as

B̂ f = −(1 + c1) f − | f |p, where B̂ = B1 − (1 + c1)I ≡ B − I. (2.22)

It follows that the spectrum σ(B̂) = {−1 − l
2m } consists of strictly negative eigenvalues. The in-

verse operator B̂−1 is known to be compact, [9, Prop. 2.4]. Therefore, in the corresponding integral
equation

f = Â( f ) ≡ −(1 + c1)B̂−1 f − B̂−1(| f |p), (2.23)

the right-hand side is a compact Hammerstein operator; see [26, Ch. V] and applications in [3,
17, 23]. In view of the known spectral properties of B̂−1, bifurcations in the problem (2.23) occur
if the derivative Â′(0) = −(1 + c1)B̂−1 has the eigenvalue 1 of odd multiplicity, [27, 26]. Since
σ(Â′(0)) = {(1 + c1)/(1 + l

2m )}, we obtain the critical values (1.5). By construction, the solutions of
(2.23) for p ≈ pl are small in L2

ρ and, as can be seen from the properties of the inverse operator, f is
small in the domain H2m

ρ of B. Since the weight (2.14) is a monotone growing function as |y| → ∞,
using the known asymptotic properties of solutions of (2.8), f ∈ H2m

ρ is a uniformly bounded,
continuous function (for N < 2m, this directly follows from Sobolev’s embedding theorem).

Thus, l = 0 is always a bifurcation point since λ0 = 0 is simple. In general, for l = 1, 2, ... the
odd multiplicity occurs depending on the dimension N. For instance, for l = 1, the multiplicity is
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N, and, for l = 2, it is N(N+1)
2 . In the case of even multiplicity of λl, an extra analysis is necessary

to guarantee that a bifurcation occurs [27] using the rotation γl of the vector field corresponding to
the nonlinear term in (2.23) on the unit sphere in the eigenspace Φl = Span{ψβ, |β| = l} (if γl , 1,
then bifurcation occurs). We do not perform this study here and note that the non-degeneracy of
this vector field is not straightforward; see related comments below. It is crucial that, for main
applications, for N = 1 and for the radial setting in RN , the eigenvalues (2.15) are simple and (1.5)
are always bifurcation points. Unlike Proposition 3.2 for m = 1 [20, § 3], we have the following
result describing the local behaviour of bifurcation branches occurring in the main applications, see
[26] and [27, Ch. 8]. Unlike the case m = 1, some bifurcations become transcritical.

Proposition 2 Let λl be a simple eigenvalue of B with eigenfunction ψl, and let

κl = ⟨|ψl|p, ψ∗l ⟩ , 0. (2.24)

Then the p-bifurcation branch crosses transversely the p-axis at p = pl.

We next describe the behaviour of solutions for p ≈ pl and apply the classical Lyapunov–
Schmidt method, [27, Ch. 8], to equation (2.23) with the operator Â that is differentiable at 0. Since,
under the assumptions of Proposition 2, the kernel E0 = ker Â′(0) = Span {ψl} is one-dimensional,
denoting by E1 the complementary (orthogonal to ψ∗l ) invariant subspace, we set

f = F0 + F1, where F0 = εlψl ∈ E0 and F1 =
∑

k,l εkψk ∈ E1. (2.25)

Let P0 and P1, P0 + P1 = I, be projections onto E0 and E1 respectively. Projecting (2.23) onto E0

yields
γlεl = −⟨B̂−1(| f |p), ψ∗l ⟩, γl = 1 − 1+c1

1+l/2m =
(N+l)s

(p−1)(2m+l) , s = p − pl. (2.26)

By bifurcation theory (see [27, p. 355] or [7, p. 383], where Â′(0) is Fredholm of index zero),
F1 = o(εl) as εl → 0, so that εl is calculated from (2.26) as:

γlεl = −|εl|p⟨B̂−1|ψl|p, ψ∗l ⟩ + o(εp
l ) =⇒ |εl|p−2εl = ĉl(p − pl)[1 + o(1)], (2.27)

where ĉl =
(N+l)2

4m2κl
. We have used the following calculation:

⟨B̂−1|ψl|p, ψ∗l ⟩ = ⟨|ψl|p, (B̂∗)−1ψ∗l ⟩ = −
κl

1+ l
2m
.

Recall the identity (B̂−1)∗ = (B̂∗)−1.
It follows from the algebraic equation in (2.27) that the bifurcations are transcritical provided

that κl , 0, while the sign of κl determines how the branches cross the p-axis. For l = 0, it is easy to
see that κ0 > 0, since ψ0 = F and ψ∗0 = 1, so that

κ0 = ⟨|ψ0|p, ψ∗0⟩ =
∫
RN
|F|p > 0 (p = p0). (2.28)

Moreover, for p0 ≈ 1+, by the definition of F in (2.11), we have that κ0 ≈ 1. The positivity or
negativity of the scalar product (2.24) for l ≥ 1 and arbitrary p > 1 is not straightforward, and we
should rely on a delicate numerical evidence; see [17]. It turns out that κl can be both positive and
negative for different l ≥ 1.
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Let us note the following principal difference in comparison with the case of monotone nonlin-
earity +| f |p−1 f studied before for m = 1, [20]. It turns out that

κl = 0 for odd l = 1, 3, 5, ..., (2.29)

since in (2.24), |ψl(y)|p is even, while the polynomial ψ∗l (y) is odd. This means the following:

p = pl for odd l ≥ 1 are not “standard” bifurcation points. (2.30)

The corresponding “non-standard” bifurcation phenomenon will be discussed shortly. On the other
hand, for the standard monotone nonlinearity as in (1.6), all critical exponents {pl} are pitchfork
bifurcations, [17].

Thus, under the assumption κl , 0 on the coefficients (2.24), we obtain a countable sequence of
bifurcation points (1.5) satisfying pl → 1+ as l → ∞, with typical transcritical bifurcation branches
appearing in a neighbourhood. The behaviour of solutions in H2m

ρ and uniformly in RN , for p < pS ,
takes the form

fl(y) = |ĉl(p − pl)|
1

p−1 sign (ĉl(p − pl)) (ψl(y) + o(1)) as p→ pl. (2.31)

Instability of all these local branches of similarity profiles is studied similar to the case m = 1 in [20,
§ 2]; see also [17].

2.4 Lyapunov–Schmidt branching equation in the general multiple case:
non-radial patterns

Let now λl = − l
2m have multiplicity M = M(l) > 1 given by the binomial coefficient

M(l) = dim Wc(B − λlI) = Cl
N+l−1 =

(N+l−1)!
l!(N−1)! , so that (2.32)

E0 = ker(B − λlI) = Span{ψl1, ..., ψlM}. (2.33)

Then, looking for a solution

f = f0 + f1, with f0 = ε1ψl1 + ... + εMψlM , where f1⊥E0, (2.34)

and substituting into the equation (2.23), multiplying by ψ∗li, and denoting, as usual, s = p − pl,
0 < |s| ≪ 1, we obtain the following generating system of M algebraic equations:

εi =
2m

s(N+l)2

∫
RN
|ε1ψl1 + ... + εMψlM |p ψ∗li ≡ Di(ε1, ..., εM), i = 1, 2, ..., M. (2.35)

Here p = pl. Denoting x = (ε1, ..., εM)T ∈ RM , the system (2.35) is written as a fixed point problem
for the given nonlinear operator D = (D1(x), ...,DM(x))T ,

x = D(x) in RM . (2.36)

In the second-order case m = 1 [20, § 3], the system (2.36) was variational, that allowed us to get a
multiplicity result. In view of the dual metric in (2.20), for any m ≥ 2, the algebraic system (2.35) is
not variational, so the multiplicity of admissible solutions remains an open problem.
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Global extension of the above local p-bifurcation branches is performed by classic theory of
nonlinear compact operators, [7, 26, 27]. However, since the problem is not variational, nothing
prevents existence of closed p sub-branches or appearances of turning, saddle-node bifurcations (we
will show that this can actually happens), so that the total number and structure of solutions for any
p ∈ (1, p0] remain a difficult problem. We will then inevitably should rely on careful numerics.

2.5 “Non-standard” pitchfork bifurcations for κl = 0

Without loss of generality, we consider the simplest case l = 1, N = 1, m = 2 (then p1 = 1 + m = 3
by (1.5)), where, from (2.24) and (2.16), (2.19), it is clear that κ1 vanishes:

κ1 = ⟨|ψ1|p1 , ψ∗1⟩ ≡
∫
R

∣∣∣F′(y)|3y dy = 0. (2.37)

Next, unlike the standard approximation (2.25) close to p = 3, we now use an improved one given
by the expansion on the 2D invariant subspace E12 = Span{ψ1, ψ2} (this choice will be explained
below):

f = F12 + F3, where F12 = ε1ψ1 + ε2ψ2 and F3⊥E12, (2.38)

with the scalar parameters ε1, ε2 to be determined. For simplicity, we next use the differential version
of the integral equation (2.23) for l = 1:

(B − λ1I) f − s
4 f = | f |p + ..., where s = p − p1 (2.39)

and where we omit the O(s2)-term. Substituting (2.38) into (2.39) and projecting onto corresponding
one-dimensional subspaces, quite similar to the system (2.35), we obtain the following asymptotic
system of two algebraic equations:

− s
4 ε1 = −

∫
R

|ε1ψ1 + ε2ψ2|3ψ∗1 + ...,

− 1
4 ε2 =

s
4 ε2 −

∫
R

|ε1ψ1 + ε2ψ2|3ψ∗2 + ... ,
(2.40)

where we put λ2 = − l
2m = −

1
2 (for l = m = 2) and where we have omitted higher order terms

associated with the orthogonal F3 in (2.38) and via replacing p by p1 = 3 in the integrals on the
right-hand sides. Then, the second equation, as s → 0, gives the dependence of ε2 on the leading
expansion coefficient ε1 on E12:

ε2 = 2|ε1|3µ12 + ..., where µ12 =

∫
R

|ψ1|3ψ∗2 , 0 and ψ∗2 =
1
√

2
y2. (2.41)

It is crucial that, unlike in (2.37), the coefficient µ12 is given by the integral of some even function, so
that, now, the assumption µ12 , 0 is not that restrictive and can be quite reliably checked numerically.

Next, the first equation in (2.40), after a Taylor expansion in the integral, by using that ε2 = o(ε1)
as s→ 0, provides us with the necessary bifurcation scalar equation on ε1,

s
4 ε1 =

∫
|Rε1ψ1|3ψ∗1 + 3ε2

1 sign ε1ε2ν12 + ..., with ν12 =

∫
R

ψ2
1(signψ1)ψ2ψ

∗
1 , 0, (2.42)
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where, again, in ν12, we face an even function in the integral. Since the first coefficient vanishes by
(2.29) for l = 1,

∫
|ψ1|3ψ∗1 = 0, using the dependence (2.41), we obtain

|ε1|5 = ĉ12 s + ..., where ĉ12 =
1

24µ12ν12
. (2.43)

It follows that we thus deal with a pitchfork bifurcation at p = p1 = 3, which is subcritical if ĉ12 < 0
and supercritical if ĉ12 > 0.

Overall, the bifurcation branches take the following form: for, e.g., ĉ12 > 0,

f (y) = ±[ĉ12(p − 3)]
1
5ψ1(y) + 2µ12[ĉ12(p − 3)]

3
5ψ2(y) + ... as p→ 3+. (2.44)

We will reveal this kind of bifurcation numerically in Section 4. Note that this non-standard bifur-
cation branch near p = 3 is more “steep”, ∼ O((p− 3)

1
5 )), than the standard one in (2.31), which, for

l = 1, is of the order ∼ O(
√

p − 3).

One can see that a similar bifurcation scenario, under the vanishing assumption (2.29), can be
developed by using other invariant subspaces rather than that in (2.38). The crucial conditions then
remain the same: the corresponding coefficients µ.. in (2.41) and ν.. in (2.42) must be non-zero. This
is possible by mixing even and odd eigenfunctions in the subspace, depending on the multiindices
chosen. This has an interesting and surprising consequence:

There can be more than one bifurcation branch, even for 1D eigenspace. (2.45)

In Section 4, we will observe this numerically for the one-dimensional eigenspace.

2.6 Transversality of intersections of subspaces

This was a permanent subject of an intense study for nonlinear second-order parabolic equations;
see related key references and further comments in [20, § 6.2]. We briefly recall these important
results below. This problem was completely solved rather recently for a scalar reaction-diffusion
equation on a circle of the form

ut = A(u) ≡ uxx + g(x, u, ux), x ∈ S 1 = R/2πZ, (2.46)

where the nonlinearity g(·) satisfies necessary conditions for existence of global classical bounded
solutions for arbitrary bounded smooth initial data. Then, if f is a hyperbolic equilibrium of A,
A( f ) = 0, known to be generic (or a rotating wave), then the global stable and unstable subspaces
of A′( f ) span the whole functional space Xα = H2α(S 1), α ∈ ( 32 , 1), where the global semiflow is
naturally defined, i.e.,

W s(A′( f )) ⊕Wu(A′( f )) = Xα, (2.47)

so that these subspaces intersect transversely. It is crucial that such a complete analysis can be
performed in 1D only, since it is based on Sturmian zero set arguments (see [16] for main references
and various extensions of these fundamental ideas), so, in principle, cannot be extended to equation
in RN . We refer to most recent papers [5, 13, 24], where earlier key references and most advances
results on the transversality and connecting orbits can be found.

We perform our transversality analysis for p close to the bifurcation points p ≈ pl in (1.5) by
using bifurcation theory from Section 2.3.
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Proposition 3 Fix, for a given p ≈ pl, p , pl, a hyperbolic equilibrium fβ, with a |β| = l, of the
operator A in (2.8),

A( f ) = −(−∆)m f + 1
2m y · ∇ f + 1

p−1 f + | f |p. (2.48)

Then the transversality conclusion holds:

W s(A′( fβ)) ⊕Wu(A′( fβ)) = H2m
ρ (RN). (2.49)

Proof. It follows from (2.48) and the expansion (2.31) that, for p = pl + ε, with 0 < |ε| ≪ 1,

A′( fβ) = −(−∆)m + 1
2m y · ∇ + 1

p−1 I + p| fβ|p−1 sign fβ I

= (B − λlI) + p|ĉl| |ε||ψl|p−1sign (clεψβ) + ... (l = |β|) .
(2.50)

Therefore, for p = pl, the following analogy of (2.49) is valid:

A′( fβ) = B − λlI =⇒ W s(B − λlI) ⊕Wu(B − λlI) ⊕Wc(B − λlI) = H2m
ρ (RN), (2.51)

and dim Wc(B − λlI) is equal to the algebraic multiplicity (2.32) of λl = − l
2m . By the assumption of

the hyperbolicity of fβ and in view of small perturbations (see, e.g., [4, 25]) of all the eigenfunctions
of A′( fβ) for any |ε| ≪ 1, ε , 0, which remain complete and closed as for p = pl, we arrive at
(2.49). Recall that, since by (2.50), A′( fβ), with eigenfunction {ψ̂β}, is a small perturbation of B−λβI
(with eigenfunctions {ψβ}) and, in addition, the perturbation is exponentially small as y → ∞, the
“perturbed” eigenfunctions ψ̂β(y) remain a small perturbation of the known ψβ(y) in any bounded
ball, and sharply approximate those as y → ∞. Therefore, close to p = pl, there is no doubt that
the well-known condition of completeness/closure of {ψ̂β} (the so-called property of stability of the
basis) is, indeed, valid: ∑

(β) ∥ψβ∥ρ ∥ψ̂β − ψβ∥ρ < 1.

Thus, close to any bifurcation point p = pl, we precisely know both the dimensions of the
unstable subspace of A′( fβ) of any hyperbolic equilibrium fβ (and, sometimes, we can prove the
latter) and the corresponding eigenfunctions {ψ̂β}:

by continuity, for all p ≈ pl : λ̂l ≈ −λl =
l

2m and ψ̂β ≈ ψβ, (2.52)

where convergence of eigenfunctions as p→ p−l holds in H2m
ρ and uniformly in RN .

Furthermore, moving along the given bifurcation p-branch, the transversality persists until a
saddle-node bifurcation appears, when a centre subspace for A′( fβ) occurs, and hence (2.49) does
not apply. If such a “turning” point of a given p-branch does not appear (but sometimes it does; see
Section 4 below), the transversality persists globally in p.

3 Numerical results: extension of even p-branches

Thus, the above bifurcation analysis establishes existence of a countable set of transcritical p-
bifurcations at p = pl for even l. As we have mentioned, since (2.8) is not variational for m ≥ 2,
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we do not have any chance to use power tools of category-genus-fibering theory in order to guaran-
tee nonlocal extensions of p-branches of similarity profiles f (y). However, as is well-known from
compact nonlinear integral operator theory [7, 26, 27], these branches are always extensible, but can
end up at other bifurcation points, so their global extension for all p > pl is not straightforward.
Actually, we show that precisely this happens for m = 2 in 1D.

3.1 Preliminaries for m = 2: well-posed shooting of even profiles

We first concentrate on the simplest fourth-order case:

N = 1 and m = 2, so that p0 = 1 + 2m
N = 5, (3.53)

in order to exhibit typical difficult and surprising behaviours of global p-branches of the first similar-
ity profile f0(y), which bifurcates from the first critical exponent p0 = 5 in (3.53). We also compare
f0 in dimensions N = 1, 2, 3, and 4. For convenience, we will denote by fl(y) the profiles that
bifurcate at the corresponding critical pl and hence, by (2.31), “inherit” the nodal set structure of the
eigenfunction ψl(y) in (2.16) for N = 1.

In the case (3.53), the problem (2.8) becomes an ordinary differential equation:A( f ) ≡ − f (4) + 1
4 y f ′ + 1

p−1 f + | f |p = 0 for y > 0,

f (y) decays exponentially fast as y→ ±∞.
(3.54)

We first easily prove the following result, somehow confirming our bifurcation analysis:

Proposition 4 (i) In the critical case p = 5, the only solution of (3.54) is f = 0; and
(ii) The total mass of solutions of (3.54) satisfies∫

R

f < 0 for p < p0 = 5 and
∫
R

f > 0 for p > 5. (3.55)

Proof. Integrating the ordinary differential equation (3.54) over R yields the following identity:∫
| f |p = p − 5

4(p − 1)

∫
f . (3.56)

Remark on bifurcation analysis. Firstly, according to the bi-orthogonality (2.20),∫
R

ψl = 0 for all l = 1, 2, 3, ... , and
∫

ψ0 =

∫
F = 1, (3.57)

so we see that (2.31) somehow “contradicts” (3.55). However, there is no any controversy here:
indeed, (2.25) assumes, in 1D, the following expansion:

f = εlψl + ε0ψ0 + ... , (3.58)

where we keep the only eigenfunction ψ0 with the unit non-zero mass. Then, the identity (3.56) is
perfectly valid provided that

ε0 =
4(p−1)

p−5 |εl|p
∫
|ψl|p(1 + o(1)) = o(εl), (3.59)
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so that this small correction in (3.58) allows one to keep the necessary non-zero mass on any even
p-bifurcation branch.

As usual, for the even profile f0 (and for f2, f4,...), since the ordinary differential equation (3.54)
is invariant under the symmetry reflection y 7→ −y, two symmetry conditions at the origin are im-
posed,

f ′(0) = f ′′′(0) = 0 (then f (−y) ≡ f (y)). (3.60)

Let us first reveal a natural “geometric” origin of existence of various solutions of the problem
(3.54), (3.60). This is important for the present non-variational problem. Notice that we do not have
other standard techniques for its global analysis.

It is easy to see that the ordinary differential equation in (3.54) admits 2D bundle of proper
exponential asymptotics as y→ +∞:

f (y) ∼ e−
a0
2 y4/3 [

C1 cos
( a0
√

3
2 y

4
3
)
+C2 sin

( a0
√

3
2 y

4
3
)]
, a0 = 3 · 2− 8

3 , (3.61)

where C1,2 ∈ R are arbitrary constants. Obviously, (3.54) also admits a lot of solutions with much
slower algebraic decay,

f (y) ∼ C0y−
4

p−1 as y→ +∞, C0 ∈ R, C0 , 0. (3.62)

However these solutions should be excluded from our consideration, hence we can always take
C0 = 0.

These two parameters C1,2 in (3.61) are used to satisfy (to “shoot”) also two conditions at the
origin (3.60). Overall, this looks like a well-posed (“2–2”, i.e., not over - and under-determined)
geometric shooting problem, but indeed extra difficult “oscillatory” properties of the ordinary differ-
ential equation involved are necessary to guarantee a proper mathematical conclusion on existence
of solutions and their multiplicity (in fact, an infinite number of those). This will be done with the
help of numerical methods, and, as was mentioned, the final conclusions are striking different from
those obtained in [17, 18, 19] for monotone nonlinearities.

Thus, we arrive at a well posed “2−2” shooting problem. Denoting by f = f (y; C1,C2) solutions
having the asymptotic behaviour (3.61) (note that such solutions can blow-up at finite y0 ≥ 0, but
we are interested in those with y0(C1,C2) < 0; see below), by (3.60), an algebraic system of two
equations with two unknowns occurs:  f ′(0; C1,C2) = 0,

f ′′′(0; C1,C2) = 0.
(3.63)

Proposition 5 For any even integers p = 2, 4, 6, ..., the system (3.63) admits not more than a count-
able set of solutions.

Proof. For such p’s, the ordinary differential equation (3.54) has an analytic nonlinearity, so by
classic ODE theory [6, Ch. I], both functions in (3.63) are also analytic, whence the result.

We expect that a similar result is true for arbitrary p > 1, but a proof of an analytic dependence
on parameters1, is expected to be very technical.

1As is well known, dependence on parameters in such ODE problems can be much better than the smoothness of co-
efficients involved. A classic example is: for elliptic operators with just measurable coefficients, the resolvent is often a
meromorphic function of the spectral parameter λ ∈ C.



582 V.A. Galaktionov, E. Mitidieri, S.I. Pohozaev

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y

f(y)

global similarity profile f
0
(y): N=1, m=2, p Î  [5.01, 6.4] (p

0
=5)

p=5.01

p=6.4

Figure 1: The first profile f0(y) of (3.54) for N = 1, m = 2 and p ∈ [5.01, 6.4].

3.2 The first symmetric profile f0(y)

For solving our problem (3.54), we use the bvp4c solver of the MathLabwith the enhanced accuracy
and tolerances in the range

10−6 − 10−12, (3.64)

and always, with a proper choice of initial approximations (data), observed fast convergence and did
not need more than 2000–8000 points, so that each computation usually took from 15 seconds to a
few minutes.

We begin with Figure 1 presenting a general view of the similarity profile f0(y) for various p
above the critical exponent p0 = 5. It is clearly seen that f0(y) is oscillatory for large y, but definitely
has a dominated “positive hump” on y ∈ (0, 3.4), so that overall (cf. (3.55))∫

f0 > 0.

However, by (1.4), this does not imply blow-up of the corresponding similarity solution u(x, t), since
this happens in the supercritical range p > p0 = 5, when, in particular, all sufficiently small solutions
are known to be global in time.

Figure 2 shows the dependence of the radial pattern f0 = f0(|y|) on dimensions N = 1, 2, 3, 4.
All the profiles look similar and their L∞-norm, f0(0), increases with N. However, the location of
the “positive hump” of each f0(y) remains practically unchanged, as well as the location of the first
“nonlinear transversal zero”, y0 ∼ 4 always; see more below.
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Figure 2: The first radially symmetric solution f0(y) of (2.8) for m = 2, p = 6, and dimensions N = 1, 2, 3, 4.
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Figure 3: p0-branch of f0 for N = 1, m = 2, extended for p ∈ [5.01, 200].

3.3 p-branches and further even profiles

More delicate results are shown in Figure 3, where we present the global p0-branch, initiated at
p = 5+ and extended up to p = 200. In particular, this shows that

∥ f0∥∞ ≡ f0(0)→ 1+ as p→ +∞, (3.65)

an asymptotic phenomenon with a possible difficult logarithmically perturbed behaviour that was
discovered and studied in [17, § 5] for another model (3.54) with the monotone nonlinearity | f |p−1 f .
The deformation of the profile f0 on the same interval p ∈ [5.01, 200] is shown in Figure 4, again
confirming (3.65).

We next study the extension of the p0-branch for p < p0 = 5. The transition through the first
transcritical bifurcation at p = p0 = 5 is explained in Figure 5, which shows a clear spatial similarity
of f0(y) ∼ ±ψ0(y) = ±F(y) along both limits p→ p±0 = 5±, according to (2.31) for l = 0.



584 V.A. Galaktionov, E. Mitidieri, S.I. Pohozaev

0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

y

f(y)
N=1, m=2, p Î  [5.01, 200]

p=5.01

p=200

Figure 4: p-deformation of f0 from Figure 3; N = 1, m = 2, p ∈ [5.01, 200].
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Figure 5: Transition of f0(y) to f2(y) of (3.54) for N = 1, m = 2 for p ≈ 5±.
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Figure 6: p2-branch of f2 for N = 1, m = 2, extended for p ∈ (p2, p0).

The global p2-branch, which is an extension of the positive p0-one in Figure 4, is shown in
Figure 6 while the corresponding deformation of f ’s in Figure 7. It turns out that it ends up at the
next (even) bifurcation point

p = p2 = 1 + 4
1+2 =

7
3 = 2.3333... , (3.66)

so that the branch is expected to be continued for p < p2 =
7
3 in a “positive” way, etc.

To justify such transcritical bifurcations at p = pl for even l ≥ 2, in Figure 8, we present a
transition through p = p2 =

7
3 . Similarly, in Figure 9, we show transition from f4(y) for p = 1.85 >

p4 = 1 + 4
5 = 1.8 to f6(y) for p = 1.75 < p4.

Thus, according to the results given above, we expect that there is a continuous deformation
along each connected branch of f0 into f2, f2 into f4, f4 into f6, etc., i.e., there exists a unique
global p-branch of even similarity profiles. Hence, we observe that all connected branches have
similar shapes with always two bifurcation points involved: the right-hand end point p = p4k and
the left-hand end one p4k+2.

3.4 “Approximate” Sturmian zero property

Let us comment on the “Sturmian property” of similarity profiles { fl(y)}. Figures 5 and 8 indicate
that, regardless the oscillatory exponential tails, each profile fl(y) has a clear “approximate” (“non-
linear”) Sturmian structure and exhibits l + 1 dominant extrema (meaning l “transversal” zeros in
between). In a rigorous mathematical sense, such properties are known to hold for the second-order
problems. In [20], where (1.1) was studied, Sturmian properties were connected with the category
of the functional subset for each fl, being the corresponding min-max critical point of the functional,
since the category assumes using the reflection of the functions (·) 7→ −(·) and hence the nodal sets
of fl(y) gets more and more complicated as l increases2. However, in the present non-variational

2There is no still and rigorous treatment of such zero-set phenomena.
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case, we cannot use even those rather obscure issues, though numerical evidence clearly suggests
that the approximate Sturmian nodal properties persist in both variational and non-potential prob-
lems. Honestly, we do not know, which “mathematical/functional structures” can be responsible
for such a hugely stable Sturmian-like phenomena, and this remains a challenging open problem of
nonlinear operator theory.

For the higher order equations, some extra mathematical reasons for Sturmian properties to
persist in an approximate fashion are discussed in [17, § 4.4]. These can be attributed to the fact that
the principal part of (3.54) contains the iteration of two positive operators

−D4
y = −(−D2

y)(−D2
y),

and for such pure higher order operators Sturm’s zero property is true [11]. Then the linear per-
turbations affect non-essential zeros in the exponential tails only. No rigor justification of such a
conclusion is available still.

4 Towards odd non-symmetric profiles and their p-branches

4.1 An auxiliary discussion

We begin by noting that, for such fourth-order nonlinear ordinary differential equation (3.54) with a
clearly principal non-coercive operator, for any p > 1, we expect to have, at least, a countable set of
different solutions (as in [17, 18, 19]).

However, in all our previous studies of higher order elliptic ODE problems, [17, 18, 19], exactly
half of such solutions were odd functions of y (in 1D; in the radial symmetry, obviously, odd profiles
are not admitted). In the present case, the profiles f1(y), f3(y),... , are not odd (anti-symmetric), since
the ordinary differential equation (3.54), unlike that for (1.6), does not admit the corresponding
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symmetry
f 7→ − f , y 7→ −y. (4.67)

Bearing in mind the multiplicity bifurcation results in Section 2.5, one concludes that other profiles
must be non-symmetric in any odd sense. Notice that precisely that explains the bifurcation expan-
sion (2.44), where the leading term is odd via ψ1(y), while there exists always an even correction via
ψ2(y).

We first check some analytical issues concerning such unusual similarity profiles. Thus, we
shoot from y = +∞ using the same bundle as (3.61), with the coefficients C+1,2,

f (y) ∼ e−
a0
2 y4/3 [

C+1 cos
( a0
√

3
2 y

4
3
)
+C+2 sin

( a0
√

3
2 y

4
3
)]
, where a0 = 3 · 2− 8

3 . (4.68)

Evidently, most of such solutions f = f (y; C+1 ,C
+
2 ) will blow-up at some finite y0 = y0(C+1 ,C

+
2 )

according to the following asymptotics: as y→ y+0 ,

f (4) = | f |p(1 + o(1)) =⇒ f (y) = C0(y − y0)−
4

p−1 (1 + o(1)),

where Cp−1
0 = 4

p−1
( 4

p−1 + 1
)( 4

p−1 + 2
)( 4

p−1 + 3
)
.

(4.69)

Therefore, in order to have a global profile, we have to require that

y0(C+1 ,C
+
2 ) = −∞. (4.70)

Once we have got such a global solution defined for all y ∈ R, we then need to require that, at
y = −∞, the algebraic decay component (3.62) therein vanishes, i.e.,

C−0 (C+1 ,C
+
2 ) = 0. (4.71)

We, thus, again arrive at a system of two algebraic equation (4.70), (4.71), where the result of
Proposition 5 applies directly to guarantee that the total number of possible solutions is not more
than countable.

In Figure 10, as a first typical example, we show a non-symmetric “dipole-like” profile, denoted
by f3(y) (see below why such a subscript) for p = 2.7, which with a sufficient accuracy ∼ 10−5

satisfies the identity (3.56). It turned out that this identity can be used as a “blueprint” for checking
the quality in some worse-converging cases.

4.2 p-branch of f3: from p1 = 3 to a saddle-node bifurcation

Starting from the profile f3 for p = 2.7 in Figure 10, we perform a continuation in the parameter p
to get to the bifurcation origin of this p-branch. Not that surprisingly (cf. Section 2.5), we observe
in Figure 11(a) that the corresponding bifurcation branch, with certain accuracy, goes to the odd
bifurcation point (1.5), with l = 1:

p1 = 1 + 4
2 = 3. (4.72)

In this calculation, we take the continuation step ∆p = 10−2 (then the calculation takes a couple
of hours), so, as seen, we cannot approach closely to this bifurcation point. To see approaching
p = p1 more clearly, we, in addition, took the continuation step ∆p = 10−4 (the calculation of the
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Figure 10: A non-symmetric profile f3(y) for p = 2.7, well satisfying the identity (3.56).

full branch then took about 16 hours) and observe approaching p1 = 3 up to p = 2.9991, so that
existence of such a “forbidden” earlier bifurcation is without any doubt. Figure 11(b) clearly shows
that, as p → p−1 = 3, the profile f3(y) (the bold dashed line at p = 2.998)) takes a typical “dipole”
behaviour governed by the second eigenfunction from (2.16):

ψ1(y) = −F′(y), (4.73)

where F(|y|) is the even “bi-harmonic Gaussian” satisfying (2.11) for m = 2. Therefore, this f3(y) ∼
C(p)ψ1(y), with some (unknown still) constant C(p), looks like a standard dipole for the Gaussian
for m = 1

ψ1(y) = 1
2
√

4π
y e−y2/4, (4.74)

but it has oscillatory tails and further dominant positive and negative humps.
Extending this p-branch of f3 for p < 2.7, we observe existence of a saddle-node bifurcation at

some p = ps−n, where we obtain the estimate

2.6148 < ps−n ≤ 2.6149, (4.75)

by using again the step ∆p = 10−4. The profiles f3 close to ps−n are shown in Figure 12.
The lower bifurcation branch of f3 is shown in Figure 13. The corresponding upper bifurcation

branch is shown in Figure 14, while the corresponding deformation of f3 is presented in Figure 15.
Quite surprisingly, the upper bifurcation branch in Figure 14 ends up at the previous bifurcation

point p0 = 5! Comparing with Figure 6 for symmetric even profiles, we thus obtain two different
bifurcation branches (of symmetric and non-symmetric) solutions originated at p = 5−. It is worth
mentioning that the kernel of the linearized operator at p = 5 is one-dimensional. We still do not
have a proper explanation of such a hard and unusual bifurcation phenomenon. However, the case
l = 0 is not degenerate by (2.28), so it seems one cannot create a bifurcation approach similar to that
in Section 2.5. This remains an open problems
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Figure 12: Non-symmetric profiles f3(y) close to the saddle-node bifurcation (4.75).
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Figure 14: The upper bifurcation branch of the non-symmetric profile f3(y) for p ∈ [2.6149, 5].
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5 Second countable family: global linearized patterns

5.1 Stable manifold patterns

This construction is similar to that for m = 1 and again relies on stable manifold [28] and Hermitian
spectral theory for the operator pair {B,B∗} in Section 2.2. We perform the same scaling of a global
solution u(x, t) of (1.2) for t ≫ 1,

u(x, t) = t−
1

p−1 v(y, τ), y = x/t
1

2m , τ = ln t, where (5.76)

vτ = A(v) ≡ −(−∆)mv + 1
2m y · ∇v + 1

p−1 v + |v|p, so (5.77)

A′(0) = B + c1I, c1 =
1

p−1 −
N

2m =
N(p0−p)
2(p−1) > 0 for p < p0. (5.78)

Thus, A′(0) has the infinite-dimensional stable subspace:

E s = Span{ψβ : λβ + c1 < 0, i.e., |β| > 2c1}. (5.79)

Using the above spectral properties of B [9], similar to [20, § 5], by invariant manifold theory for
parabolic equations [28, Ch. 9], we arrive at the following (see also [15, 17]):

Proposition 6 For any multiindex β satisfying |β| = l > 2c1, equation (5.77) admits global solutions
with the behaviour, as τ→ +∞,

vβ(y, τ) = e(λβ+c1)τφβ(y)(1 + o(1)), where φβ ∈ Span{ψβ : |β| = l}, φβ , 0. (5.80)

In the original variables (5.76), the global patterns (5.80) take the form:

uβ(x, t) = t−
N+|β|

2m φβ
( x

t1/2m

)
(1 + o(1)) as t → +∞. (5.81)

5.2 Centre manifold patterns

Unlike the simpler case m = 1 in [20, § 5.2], for the present m ≥ 2, such patterns do exist. Performing
a model 1D analysis of the equation (5.77), as in [20, § 5], we conclude that such patterns may occur
if

λβ + c1 = 0 =⇒ l = |β| = 2mc1 > 0, or p = pl. (5.82)

Studying the centre manifold behaviour of the simplest 1D type

v(τ) = al(τ)ψl + w⊥ as τ→ +∞, (5.83)

we obtain from (5.77) the following equation for the expansion coefficient:

ȧl = κl |al|p(1 + o(1)), where κl = ⟨|ψl|p, ψ∗l ⟩ (, 0), (5.84)

which admits global bounded orbits. For instance, noting that κ0 > 0, one obtains the behaviour

a0(τ) = −[κ0(p − 1)]−
1

p−1 τ−
1

p−1 (1 + o(1)) as τ→ +∞ (p = p0). (5.85)
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Similarly, the same estimate is derived for any l ≥ 0 provided that κl , 0. Finally, this means that, at
such critical values p = pl, we expect the following logarithmically perturbed patterns:

ul(x, t) ∼ −sign κl
[ 2m|κl |

N+l
]− N+l

2m
(
t ln t
)− N+l

2m ψl
( x

t1/2m

)
as t → +∞. (5.86)

For the M-dimensional eigenspace for l ≥ 1, we obtain the decomposition

v(y, τ) =
∑
|β|=l

aβ(τ)ψβ(y) + w⊥(y, τ), (5.87)

that leads to a system of ordinary differential equations for the expansion coefficients {aβ(τ)}|β|=l:

ȧγ =
⟨∣∣∣ ∑|β|=l aβ(τ)ψβ

∣∣∣p, ψ∗γ⟩ + ... , |γ| = l. (5.88)

Assuming the natural “homogenuity” of this centre subspace behaviour:

aβ(τ) = âβ τ−
N+l
2m (1 + o(1)) as τ→ +∞, |β| = l, (5.89)

where {âβ} are constants, (5.88) reduces to an algebraic system (cf. the bifurcation one (2.35)) of the
usual form:

âγ = − 2m
N+l
⟨∣∣∣ ∑|β|=l âβψβ

∣∣∣p, ψ∗γ⟩, |γ| = l. (5.90)

General solvability properties of (5.90), except some obvious elementary solutions, and sharp mul-
tiplicity results are unknown. Of course, as above, (5.90) is not variational.

Again, as for m = 1, we arrive at two countable families of global patterns: the nonlinear (2.7)
and the linearized (5.81) ones. Since the rescaled equation (5.77) is not a gradient system in any
weighted space, their evolution completeness remains entirely open, though may be expected.
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