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Abstract: An analytic study of complete cylindrical focusing of pulses in 
two dimensions is presented, and compared with the analogous three-
dimensional case of focusing over a complete sphere. Such behavior is 
relevant for understanding the limiting performance of ultrafast, planar 
photonic and plasmonic devices. A particular spectral distribution is 
assumed that contains finite energy. Separate ingoing and outgoing pulsed 
waves are considered, along with the combination that would be generated 
in free space by an ingoing wave. It is shown that for the two dimensional 
case, in order to produce a temporally symmetrical pulse at the focus, an 
asymmetric pulse must be launched. A symmetrical outgoing pulse is 
generated from a source with asymmetric time behavior, or an anti-
symmetric input pulse. These results are very different from the 
corresponding three-dimensional case, and imply fundamental limitations 
on the performance of ultrafast, tightly focused, two-dimensional devices. 
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1. Introduction 

There is currently considerable interest in development of compact, ultrafast devices, based 
on planar waveguide and plasmonic technology. Recently Tyc discussed how pulses in two 
dimensions (2D) behave very differently from those in 3D [1], and this effect is critically 
important in determining the fundamental limitations in performance of such devices. In the 
frequency domain, 2D behaves in a qualitatively similar fashion to 3D. Different forms of 
waves in 3D have their analog in 2D, so that, for example, the analog of the Bessel beam is 
the cosine beam [2]. But in the time domain, 2D and 3D are different. This has actually been 
known for many years. For example, Morse and Feshbach describe how, in 2D, propagation 
of a pulse is accompanied by a wake [3]. This behavior of 2D pulses imposes a limit on the 
combination of high bandwidth and tight focusing. 

As the duration of ultra-short laser pulses continues to decrease, it has become necessary 
to re-examine models for pulsed light beams. These models are also of relevance in terahertz 
technology. Tyc’s model is computational and appreciation of the consequences difficult, and 
so to explore the behavior further we investigate analytically simple complete spherical or 
cylindrical scalar pulses in 3D or 2D, respectively. The extension to the electromagnetic case 
can be performed using the principles of the Hertz potentials. We consider pulsed sources, 
pulsed sinks, and focused pulses corresponding to sink/source combinations [4–8]. 

Such pulsed beams can be regarded as a coherent superposition of monochromatic beams 
with a spectrum of different frequencies. This fact follows directly from the linearity of the 
Helmholtz equation or Maxwell’s equations. We assume a spectral distribution that has finite 
energy. Note that it is only comparatively recently that the ultrafast community has 
appreciated the diffraction effects known as space-time couplings, which become important in 
tight focusing of ultrashort pulses [9–27]. We assume a Gamma spectral distribution [11, 13] 
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where 2 / /k cπ λ ω= =  and 1k  is a positive parameter that determines the bandwidth. This 
spectral distribution is a good model for single-cycle pulses, avoiding the infinite energy of a 
constant spectrum, and also avoiding the negative frequencies, and possible resulting artifacts, 
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of a shifted Gaussian distribution when used to describe the transform of an analytic signal 
[17]. The distribution can be extended to the Pearson Type III distribution, which incorporates 
a power factor sk  and a shift along the frequency axis. As the power s  increases, the 
distribution then tends towards a shifted Gaussian. These modifications can be incorporated 
retrospectively in the time domain by making use of the differentiation and shift theorems of 
Fourier transforms. 

2. The 3D case 

We start by reviewing pulses in 3D, so that we can compare 2D pulses with them. In spherical 
polar co-ordinates for the 3D case, we can sum over monochromatic outgoing spherical waves 
to give 
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where A is a constant that has the dimensions of distance. This simple expression represents 
an outgoing spherical pulse, from a physical radiating point source. Note that the field 
therefore diverges when 0r → . 

If a pulse converges on a point, as for example might be the case in laser fusion 
experiments, it subsequently diverges so that it can be modeled as a combination of a source 
and a sink [15], here normalized to unity at 0, 0r t= = , to give 
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This model is also relevant for pulsed 4Pi focusing in microscopy [28, 29]. There is no 
physical source at the focus and no singularity. This wave does not satisfy Sommerfeld’s 
radiation condition, and does not need to as there must be additional sources present outside 
of the focal region that generate the ingoing field. At the focus the amplitude is then 
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and at time 0t = , the amplitude variation in space is 
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and so we see that the spatial and temporal behaviors differ. There is no singularity, and there 
is a compact pulse in space and time. As the pulse collapses to the origin, the ingoing and 
outgoing components of the pulse interfere constructively, giving a concentration of energy 
for t = 0. The pulse then diverges in a reverse time sequence. The behavior of the 
instantaneous amplitude, given by the real part of the complex field, is shown in Fig. 1(a) as a 
contour plot as function of spherical radius and time. We could instead plot the instantaneous 
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intensity, given by the square of the real part of the complex field. Note that the squared 
magnitude of the complex field, on the other hand, gives the pulse envelope, equivalent to the 
time-averaged intensity. We see that although the pulse is compact in space and time around 

0, 0r t= = , the source that is needed to generate the pulse, i.e. for large negative time, has an 
anti-symmetric structure, so that the instantaneous intensity exhibits a double peak. This is a 
consequence of the Gouy phase shift through focus [20, 24, 30]. The outgoing pulse also has 
this anti-symmetric structure. If, on the other hand, we propagate a single-peaked pulse (from 
large negative time), an anti-symmetric peak is then produced at the focus. This latter solution 
can be modeled by minus the imaginary part of the complex field, i.e. the real part of the 
product of the complex field and exp( )iδ− , with / 2δ π= − . We can calculate a valid 
physical field from the complex field by assuming any fixed argument. The amplitude 
behavior of the 3D source/sink pulse in the near field and far field, for different values of δ , 
is summarized in Fig. 2. 

 

Fig. 1. (a) The real part of the amplitude of a source/sink 3D pulse, given by the instantaneous 
amplitude for δ = 0 , (b) an outgoing 3D pulse, δ = −π / 2 . The light cone is shown in red, 
with the direction of propagation indicated with arrows. 

 

Fig. 2. 3D source/sink pulses for different values of the parameter δ . (a) Amplitude at the 

focus, normalized to unity at t = 0 . (b) Output pulse amplitude (×k1r)  at k1r = 50 . A 

symmetrical pulse at the focus produces an antisymmetric output pulse in the far field. 

Figures 1(a) and 2 show the behavior if the radiation is not absorbed in the focal region. 
Absorbing the radiation completely is equivalent to having a sink with no source present. A 
sink or a source behave similarly to each other, but time-reversed. For the case of a pulsed 
source in 3D, as given by the source term in Eq. (3), the corresponding plots appear in Fig. 
1(b). In order to obtain these results we take / 2δ π= − . A pulsed source can be generated 
from a sub-wavelength distribution of currents and charges, as would be the case with an 
optical antenna. Now at any fixed radius a single-peaked pulse of symmetrical and constant 
shape in time is detected. At any fixed time, the source term diverges at 0r = . The fact that 

#225555 - $15.00 USD Received 28 Oct 2014; revised 30 Nov 2014; accepted 30 Nov 2014; published 18 Dec 2014 
(C) 2014 OSA 29 Dec 2014 | Vol. 22, No. 26 | DOI:10.1364/OE.22.032016 | OPTICS EXPRESS 32019 



the pulsed source does not exhibit the Gouy phase effect that the source/sink combination 
does, suggests that the Gouy phase arises from interference between the source and sink 
fields, which is consistent with an explanation based on a resonance phenomenon where the 
sink field gives rise to the source field, as in Huygens’ principle. A pulsed sink would behave 
in a similar fashion to the source, but in reversed time. The effect on the amplitude in the near 
field and far field of varying δ  is shown in Fig. 3, based on the source term in Eq. (3). 
Taking / 2δ π= − gives a symmetrical, compact pulse both at the source and in the far field. 
Note that at 1 50k r = the amplitude of the output pulse from the pulsed source is very similar 
to that of the source/sink. This is because the input pulse in the latter case has decayed to a 
small value by 1 50k ct = . 

 

Fig. 3. 3D pulsed source for different values of the parameter δ . (a) Amplitude at the source, 

normalized to unity at t = 0 . (b) Output pulse amplitude (×k1r) . 

3. The 2D Case 

Now that we have reviewed the behavior for 3D pulses, we consider pulses in 2D. For an 
outgoing wave we have [31, Eq. 6.611,6] 
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where ρ  is the cylindrical radius, (1)
0H is a Hankel function, and A is a constant; and similarly 

for an ingoing wave 
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Adding these together ensures that the singularities cancel, and normalizing to unity at the 
origin for zero time, we obtain for the combined source/sink solution 
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We can see from Eq. (8) that, unlike the expression for the 3D case in Eq. (3), this expression 
cannot be split into ingoing and outgoing components using partial fractions. Again we show 
a contour plot in Fig. 4(a), calculated directly from Eq. (8). In the contour plot of Fig. 4(a), the 
intensity is greatest outside the light ‘cone’ defined by ct ρ= ± , i.e. for ctρ > ± . We note 
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that for a causal pulse we would expect the intensity to be zero for ctρ > ± , but our assumed 
pulse shape is not causal in time. Using the analytic signal representation, ultra-short pulses 
are modeled as non-causal, and observed experimental pulses are likewise non-causal. 

 

Fig. 4. The amplitude of different 2D source/sink pulses generated by different launched input 
pulse shapes: (a) launched by an input pulse with a wake, δ = 0 , (b) an input pulse with a 

slow rise, δ = −π / 2 , (c) symmetric input pulse, anti-symmetric output pulse, δ = π / 4 . 
The light ‘cone’ is shown in red, with the direction of propagation indicated with arrows. 

Although the pulse is compact around 0, 0tρ = = as for the 3D case (as seen from the 0.5 
contour in Fig. 4(a)), the ingoing and outgoing pulses are broad and overlap in time, as seen 
by comparing Fig. 4(a) (where the amplitude at 0t =  falls off slowly with r ) with Fig. 1(a). 
On the other hand, the anti-symmetric pulse structure we saw with 3D does not exist here. 
This is because the Gouy phase through focus from far field to far field for 2D is / 2π , rather 
than the π  we have for 3D (as was pointed out by Gouy himself [30]). As a function of time 
or radius, the pulse exhibits an asymmetric shape, as seen from the 0.1 contours in Fig. 4(a) as 
compared with Fig. 1(a) for the 3D case. 

#225555 - $15.00 USD Received 28 Oct 2014; revised 30 Nov 2014; accepted 30 Nov 2014; published 18 Dec 2014 
(C) 2014 OSA 29 Dec 2014 | Vol. 22, No. 26 | DOI:10.1364/OE.22.032016 | OPTICS EXPRESS 32021 



As before, the instantaneous intensity, an observable time-resolved quantity, is given by 
the square of the real part of the complex field. For the source/sink wave the instantaneous 
intensity is given by 

 

2 2 2 2
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In order to investigate the asymptotic behavior, we now introduce the retarded time 

 /t t cρ′ = −  (10) 

into Eq. (9). Then assuming ρ is large, we obtain far from the focus 
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Equation (11) is a reversed version of the function 
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as shown in Fig. 5(a). The two terms in Eq. (12) are symmetric and antisymmetric, 
respectively, and tend to cancel for negative x  (positive t′ ). For positive x  (negative t′ ) 
they reinforce to produce a wake. As compared with the symmetric 3D case, in which the 
instantaneous intensity has a full width at half maximum (FWHM) of 1 2k ct = , for the 2D 
case the FWHM is 3.15. This is actually smaller than the FWHM of the square root term 

alone, which is 2 3 3.46= . But the wake decays only as 12 / k ct , so that the full width at one 
tenth of the maximum is 16.63 (compared with 6.00 for the 3D case). 

 

Fig. 5. (a) The function f (x) . (b) The instantaneous amplitude in the far field for different 

values of δ , as given by Eq. (14). 

As before, we can calculate a valid physical field from the complex field in Eq. (8) by 
assuming any fixed argument. For example, assuming that the observed field is given by 
minus the imaginary part of Eq. (8), i.e. the real part of the product of the complex field and 
exp( )iδ− , with / 2δ π= − , gives rise to an amplitude of the form shown in Fig. 4(b). As 
compared with Fig. 4(a) we see that, as a result of the antisymmetric behavior near the origin, 
the intensity is greatest for ctρ < ± . Figure 4(c) shows the behavior for a phase of / 4δ π= , 
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which is seen to correspond to the case when a symmetrical pulse is launched from the far 
field, giving a distorted pulse near the origin, and an anti-symmetric pulse in the outgoing far 
field. Then for 0ρ = , we see that 

 1
2
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1
(0, ) .

1 ( )

k ct
U t

k ct

−
=

+
 (13) 

Far from the focus, we can write for the time resolved amplitude of the outgoing pulse in the 
general case 
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The time resolved amplitude is illustrated for different values of δ  in Fig. 5(b). The 
antisymmetric pulse ( / 4δ π= ) has a time-resolved intensity with a FWHM of 1 13.51k ct = , 

and a full width at tenth maximum of 1 77.92k ct = . The symmetric pulse ( / 4δ π= − ) has a 

time-resolved intensity with a FWHM of 1 2.54k ct = , and a full width at tenth maximum of 

1 11.54k ct = . Figure 6 shows the time resolved amplitude for the input pulse, in the focal 
region, and the output pulse, all calculated directly from Eq. (8). The output pulses in Fig. 6(c) 
agree well with those in Fig. 5(b). A symmetric pulse in the near field gives a far field with a 
slow rise and sharp fall ( 0)δ = . This is generated by an input pulse with sharp rise and slow 
fall, i.e. the closest to a causal pulse. The most symmetrical output pulse is achieved for 

/ 4δ π= − , and the most symmetrical input pulse is for / 4δ π= . The best compromise 
between near field and far field (output) pulse lengths is around / 8δ π≈ − . Then the intensity 
FWHM of the output pulse is 1 2.68k ct = and the full width at tenth maximum is 1 12.72k ct = . 

The effect of changing δ  on the pulse shapes is summarized in Fig. 6 (Media 1), which is a 

movie showing how the spatial amplitude variation ( 1k r×  to make the peak amplitude 

approximately constant) changes with time: an input pulse is launched from the far field 
(negative time), travels towards 0r = at time 0t = , and then gives rise to an output pulse. In 
particular, a symmetrical input pulse ( / 4δ π= , green curve in Fig. 6 (Media 1)) gives rise to 
an anti-symmetric output pulse, and vice-versa for the red curve ( / 4δ π= − ). 

For large 1k ct′ , the wake gives an amplitude that falls off with a relationship 1/2( ) /h x x , 

where ( )h x  is a Heaviside step function. This has been shown to be equivalent to a fractional 

order derivative (half order) of a step function, (1/ 2) ( )h xπ  [32]. 
For a 2D outgoing pulse, as given in Eq. (6), as could be launched from an optical 

antenna, we find that a symmetric pulse shape in the near field is given by the imaginary part 
/ 2δ π= − , whereas the real part, or the / 4δ π= −  case, give rise to asymmetric pulses in the 

near field. The resulting behavior for the symmetric case, / 2δ π= − , is illustrated in Fig. 7. 
At a fixed distant position the instantaneous amplitude rises suddenly and then drops slowly. 
There is a logarithmic singularity at 0, 0tρ = = . As 0ρ → , the instantaneous amplitude for 
the source tends to become symmetrical in time. In the far field the pulse shape becomes 
identical to the source/sink solution, as plotted in Fig. 5(b). 
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Fig. 6. 2D source/sink pulses for different values of the parameter δ . (a) Time variation of the 

input pulse amplitude at k1r = 50 , multiplied by k1r = 50 . (b) Time variation of the 

amplitude at the source/sink, normalized to unity at t = 0 . (c) Time variation of the output 

pulse amplitude at 1 50k r = , multiplied by k1r = 50 . See Media 1: a movie showing 

how the amplitude variation (× k1r ) in space changes with time. 

 

Fig. 7. A 2D outgoing pulse generated by a time-symmetric source, δ = −π / 2 . The light 
‘cone’ is shown in red, with the direction of propagation indicated with an arrow. The output 
pulse decays slowly above the light ‘cone’. 

The effect of varying δ on a 2D source is summarized in Fig. 8. The far field is almost the 
same as the output pulse in Fig. 6. For / 2δ π= ±  the near-field pulse is symmetric, but the 
far-field pulse has a wake (sharp rise and slow fall). For / 4δ π= − the output pulse is 
symmetric, but the near-field pulse has a slow rise, a sign change and then a slow fall. A 
compromise between near field and far field pulse lengths occurs when 3 / 8δ π≈ − , when the 
far field pulse shape is the time reversal of that for / 8δ π≈ − (described above for the 
source/sink case). Figure 8 (Media 2) is a movie showing how the spatial amplitude variation 

( 1k r× to make the peak amplitude approximately constant) changes with time: a time-

symmetric source ( / 2δ π= ± , black and turquoise curves, respectively) gives rise to an 
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output pulse with a wake, whereas in order to produce a symmetric output pulse ( / 4δ π= − , 
red curve) requires an asymmetric excitation, more easily seen in Fig. 8(a). 

 

Fig. 8. The amplitude of a 2D pulsed source for different values of the parameter δ . (a) Time 
variation of the amplitude at the source, normalized to unity at t = 0 . (b) Time variation of the 

output pulse amplitude at k1r = 50 , multiplied by k1r = 50 . See Media 2: a movie 

showing how the amplitude variation (× k1r )  in space changes with time. 

4. Discussion 

Pulsed beams can be generated by summing over monochromatic beams, with the assumption 
of a particular spectral distribution. Observable time resolved quantities are the instantaneous 
field or the instantaneous intensity. The squared magnitude of the complex amplitude, on the 
other hand, gives the envelope, or time-averaged intensity. 

Monochromatic 2D and 3D focusing systems behave in similar ways, but pulsed systems 
exhibit considerable fundamental differences. As a simple analytic model, we considered 
complete circular or spherical focusing, in 2D and 3D, respectively. We considered the case 
of an ingoing wave, which subsequently expands to give an outgoing wave. In 3D, an ingoing, 
single symmetrical pulse gives rise to an anti-symmetric, double pulse in the focus. In order to 
achieve a symmetric focal pulse, an anti-symmetric pulse must be launched from the far field. 
This effect results from the Gouy phase. In 2D, as the total Gouy phase is / 2π  rather than 
π , the behavior is different. An asymmetric pulse, with a slow rise, must be launched in order 
to give a symmetrical pulse at the focus. If a symmetric pulse is launched, the focal pulse is 
asymmetric, and the outgoing pulse is anti-symmetric. 

We also considered a pulsed outgoing wave from a source, equivalent to a pulsed, spatial 
Green function. In 3D the outgoing pulse propagates without change to its temporal shape. In 
2D, a symmetrical pulsed source gives rise to an asymmetric pulse in the far field, and vice-
versa. 

These observations have bearing on the limiting performance of photonic planar devices 
based on tightly focused ultrashort pulses. 
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