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Abstract:  This paper deals with a novel technique to determine the far field 
of an aperture starting from the knowledge of two near-field intensity data 
sets collected over the same measurement plane. The diversity between the 
two intensity data sets is achieved by ensuring different conditions of the 
near field propagation between the aperture and the measurement plane. In 
particular, one measurement is performed under free-space propagation 
condition while the second one is performed by exploiting a dielectric slab, 
with known properties, filling partly the space between the aperture and the  
measurement plane. A phase retrieval technique, that faces a non linear 
inverse problem, is solved by assuming as unknown the plane wave 
spectrum of the aperture field. The feasibility of the novel approach is 
presented also in comparison with the usual near field phase retrieval 
technique exploiting measurements of the near field intensity over two 
scanning planes.  
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1. Introduction  

Phase retrieval problem is of significant interest in many areas of the theoretical and applied 
science such as: x-crystallography [1], electronic microscopy [2], astronomy [3], near field 
antenna diagnostics and inverse scattering [4, 5, 6] only to quote few examples. 

The phase retrieval technique faces the nonlinear inverse problem of determining a 
complex function from the only amplitude information, and the solution is found as the global 
minimum of a functional whose unknowns best fit the phase-less data. Since the functional is 
non-quadratic with respect to the unknowns, it can exhibit local minima where the 
minimization algorithms can be trapped [7-9]. In this unfortunate case, the retrieved solution 
corresponds to a false solution that can be completely different to the true solution, so 
affecting the full reliability of the phase retrieval approach. 

Two main classes of phase retrieval algorithms are available in literature and differ 
mainly in the choice of the objective functional to be minimized. A first class of phase 
retrieval algorithms is based on the minimization of the distance between the amplitude of the 
measured and the reconstructed near-field [2, 8, 10-11]. 

At variance, here, we adopt a cost function accounting the square amplitude of field as 
data of the problem. In this way, the phase retrieval problem is formulated as the inversion of 
a quadratic operator [7, 9, 12]. To deal with this simple nonlinearity allows to achieve good 
performances with respect to the local minima problem [9] and also to perform a thorough 
analysis of the effect of some parameters on the local minima problem [7, 9 12]. To this end, 
it has been already pointed out how the increase in the ratio between the number of 
independent data and the number of unknowns allows us to achieve a favorable effect on the 
local minima problem. This increases the amount of independent data that can be achieved by 
assuming “different” square amplitude sets. Diversity in data can be pursued in different way 
such as by: adopting the square amplitude of the aperture field and of the far field [12]; 
exploiting a priori information on the support of the unknown function [7, 9]; collecting 
square amplitude information on two scanning planes in near field [13, 14]; employing  
different receiving probes scanning the same measurement plane [4]. 

The aim of this paper is to present a new phase retrieval technique using only near-field 
intensities collected over a single scanning plane. The diversity between the two intensity data 
sets is achieved by ensuring different conditions of the near field propagation between the 
aperture and the measurement plane. In particular, a measurement is performed under free-
space propagation and the other one by exploiting a dielectric slab with known properties 
(dielectric permittivity and thickness) that fills partly the space between the aperture and the 
measurement plane.  

This technique is of particular applicative interest in antenna diagnostics at millimeter and 
THz frequencies [15]  and /or when various factors make near-field phase measurements more 
and more difficult with increasing frequency: probe-positioning errors, temperature changes 
and undesired mechanical movement of the cables connecting the probes to the receiver, 
stability and accuracy of the transmitter and receiver [13, 15].  

The paper is organized as follows. In Section 2, the far-field estimation problem from 
near-field intensity data is formulated for both the two scanning planes and the single plane/ 
dielectric slab implementations. In Section 3, the two planes implementation is discussed and 
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numerical results are presented. In Section 4, the properties of the single plane /dielectric slab 
implementation are discussed and numerical results are presented with the aim to point out the 
feasibility of the proposed technique. Finally, conclusions follow. 

2. The Formulation  

This Section is concerned with the problem of determining the far-field radiated by a planar 
aperture starting from the only square amplitude of the radiated field in the near-zone, for the 
two formulations mentioned in the Introduction.  

First we consider the case of the approach based on the measurement of the near field 
over two scanning planes [13, 14]. To this end, let us consider a planar aperture located within 
the xy plane and of extent 2a and 2b along the x- and y-axis respectively. The aperture field is 
assumed to have only the y-directed transverse component.  

The y-component of the radiated field over the plane at 1zz =  can be expressed as  

)ˆ()exp()](exp[),(ˆ),,( 111 ETdudvjwzvyuxjvuEzyxE =−+−= ∫∫
∞

∞−

∞

∞−

       (1) 

where λπββϕθβϕθβ /2,,sinsin,cossin 222 =−−=== vuwvu and λ is the 

wavelength. ),(ˆ vuE  is the plane wave spectrum (PWS) of the aperture field and the time 

dependence )exp( tjω  has been assumed and omitted.  

According to eq. (1), the problem of determining the phase of ),,( 1zyxE  from the 
knowledge of its square amplitude is equivalent to the one of reconstructing the PWS 

),(ˆ vuE  from the knowledge of the square amplitude of the field ),,( 1zyxE . Differently 
from the conventional technique based on the phase and amplitude measurement of the near 
field over a single plane, for phaseless near field techniques a second set of data is required. 
The two-planes implementation in [13, 14] assumes as data the square amplitude distribution 

of the near-field over a second scanning surface located at distance 2zz =  (in this paper we 

assume 21 zz > ). The near-field over the second scanning surface is related to the near field 
over the first surface through the following linear integral relation: 
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As it has been already shown in [13, 14], when the spacing between the two planes 
increases, the role of the term ))(exp( 12 zzjw −−  becomes more and more relevant to ensure  
diversity between the two data sets so that the information content increases.  

The same effect can be also achieved by a second approach that exploits measurements 

on the single measurement plane in the near-zone at 1zz = . In particular, it exploits as a first 
measurement the same of eq. (1). Differently, the second measurement is achieved by 
partially filling the space between the aperture plane and the measurement plane located at  

1zz =  with a dielectric slab of relative dielectric permittivity rε  and thickness d. By 
neglecting depolarization effects, the second near field measurement is given as  
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where )/()],(),([),( 2222 vuvuTvvuTuvu po ++=τ  accounts for the transmission of  

the PWS through the slab (apart from the )exp( djwd−  term), ),(),,( 0 vuTvuTp  are the 

transmission coefficients in the perpendicular and horizontal polarization with respect to the 
incidence plane of each plane wave, respectively. It can be verified easily that in many 
circumstances the phase function of ),( vuτ  is slowly varying so that in (3) it can be now 

appreciated how the term ])(exp[( dwwj d −− , where 222 vuw rd −−= εβ , has the same 

role as the defocusing exponential factor )](exp[ 12 zzjw −−  in (2).  
For both implementations, the problem can be formulated in an unified way as the 

reconstruction of the PWS from knowledge of the square amplitudes 

)|ˆ|,|ˆ(|),( 2
2

2
1

2
2

2
1 ELELMM =                                          (4) 

being the linear operators 11 TL =  and 22 TL = , 22 T̂L =  for the two-planes and the single 
plane/dielectric slab case, respectively. Thus the phase-retrieval problem at hand can be cast 
as the solution of the equation (4), which is searched for as the global minimum of the 
functional 

22
2

2
2

22
1

2
1 ||

~
|ˆ|||||

~
|ˆ|||)ˆ( MELMELE −+−=Φ                           (5) 

In (5), 2|||| ⋅ is the usual quadratic norm in the data space, 2
1

~
M  and 2

2

~
M  are the 

measurement errors and noise affected versions of the actual square amplitudes 2
1M  and  

2
2M , respectively. 
Here, we make the further hypothesis that the aperture radiates all its power within a 

limited angular region of the visible domain. In this way, 0),(ˆ ≈vuE outside a circular 

domain Ω  of radius ρ  comprising all the directions 222 ρ≤+ vu  contained within the 

visible domain, namely βρ < .  Due to the Fourier transform relationship between the PWS 

),(ˆ vuE  and the aperture field, that is in turn is defined on the rectangular domain of extent 

ba 22 × , the ),(ˆ vuE  PWS function is amenable of a representation through a Shannon 
sampling series [4, 13, 14] 

∑∑
−=−=

−−=
M

Mm
nn

N

Nn

)mbv(csin)nau(csinÊ)v,u(Ê ππ                     (6) 

where )/,/(ˆˆ bmanEEnm ππ= and x/)xsin()x(csin = . 

The indices N and M in (6) are chosen in order to satisfy the relation  
222 )/()/( ρππ ≤+ bMaN ; this relation means that the spectrum samples searched for as 

actual unknowns are the ones belonging to the a priori known circular domain Ω  of radius ρ  
where the spectrum is assumed to be significantly different from zero. The square amplitude 
of the near field are represented through their samples at the uniform step of a quarter of a 
wavelength [4, 13, 14], because of the band-limited properties of the near field functions over 
a plane.  

As far as the minimization of the functional in (5) is concerned, an iterative procedure 
based on the Pollak-Ribiere method [16] is applied. The evaluation of the updating direction 
requires the computation of the gradient of the cost function with respect to the real and 

imaginary parts of the PWS samples nnÊ . This operation, as well as the other ones of the 

iterative procedure, are performed in an efficient way thanks to the FFT technique [4, 13]. 
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The convergence properties of the minimization scheme are improved by the accurate and 
fast evaluation of the optimal step, ensuring the maximum decrease of the cost function along 
the updating direction, by solving in an exact way a third-degree algebraic equation [7, 9, 12].  

3. The two planes implementation 

As shown in the above Section, the solution approach for both the implementations is cast as 
the global minimization of the functional (5). 

For both the implementations, the cost function in eq. (5) arises as a non quadratic 

function with respect to the unknown parameters nnÊ  and thus the local minima problem 

arises. In fact, the large number of unknown parameters to be searched for such a problem 
makes it feasible only the adoption of deterministic minimization schemes in order to achieve 
the global minimum of the functional in (5). However, these schemes are able only to achieve 
a minimum closer to the starting point of the procedure and can be trapped into a local 
minimum that can be completely different from the global one.  

As shown in [7, 9, 12], the local minima problem for a quadratic operator has been 
thoroughly investigated; in particular, it has been pointed out how the increase in the ratio 
between the number of independent data and the dimension of the unknowns space has a 
favourable effect on the local minima problem. 

It is to be pointed out that, within operators (1) and (2), diversity between the sets of 
intensity data on the two scanning planes is ensured by the )](exp[ 21 zzjw −  term that  
accounts for the back-propagation from the plane at z1 to the plane at z2. Since this term has 
unit modulus in the visible domain, the possibility to achieve the diversity in near field data is 
related to the variability of the phase function in )](exp[ 21 zzjw − . In particular, as long as 
the phase term is increasingly varying in the (u,v) plane, the more and more different the two 
sets of the near–field intensity data are. This allows to establish the positive role of the 
increase in the distance z1- z2 since this arises a more pronounced variation of the phase of  the 

))(exp( 21 zzjw −  term. Figure 1 depicts the behaviour of the phase term of 

( ) ( )[ ]))(0,0,(exp 21 zzwvuwj −−  at v=0: as expected  the phase is increasingly varying as the 

distance )( 21 zz −  increases. 
Note that such an investigation performed along the cut-line v=0 has a more general 

validity, since, in virtue of the dependence of w from the variable u2+v2 , this behaviour is 
similar to the one along all the cut-lines passing through the origin of the (u,v) plane. 
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Fig. 1. Phase variation of ( ) ( )[ ]))(0,0,(exp 21 zzwvuwj −−  for distances )( 21 zz −  

ranging from 1λ to 9λ  with a step of 1 λ .  

 
Let us turn now to consider a first numerical result for the two-planes implementation. 

We refer also in the following to the same source with the aperture field exhibiting a beam 
squint, given by  

 
( )( ) ( )( ) )j0.03y-/180)sin(5exp(-j2ycos2xcos),( 2πβππ xbayxEa =    (7) 

 
where 2a=2b=14λ. The square amplitude of the near field is measured over two planes at  

λ101 =z  and λ62 =z  at 128x128 measurement points equally spaced by λ/4.  
A completely random set of the PWS samples, the same for all the numerical test cases 

shown in this paper, is considered as starting point of the minimization procedure. For every 
presented case, we adopt the same solution strategy in the minimization. In particular, in the 

early stages of the minimization procedure, only the significant samples of the PWS ),(ˆ vuE  
are considered [4, 7]. This makes it possible to deal with with an enlarged ratio between the 
amount of independent data and the number of unknowns so that a favourable effect on the 

local minima is achieved [4, 7]. Once the significant samples of ),(ˆ vuE  are reliably 
estimated, the solution is improved by gradually increasing the number of unknowns until all 
the samples falling within the domain Ω  with radius βρ 8.0=  are considered. Finally, the 
result is improved by adopting the weighted formulation [7, 9, 12],  
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where 2
1

2
1

~
,|ˆ| ijij MEL , 2

2
2

2

~
,|ˆ| ijij MEL  are the samples of the theoretical and measured  

intensity data over the first and second scanning planes, respectively. 
The adoption of this solution strategy allows us to achieve the global minimum starting 

from the previously mentioned random starting point. This can be inferred by the comparison 
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between the modulus and the phase of the measured and retrieved near field over the cut lines 
x=0 and y=0  of the plane at λ62 =z  (see Fig. 2 ). 
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Fig. 2. Comparison between the ideal near field (blue line) and the retrieved near field (dashed 

red line) at the cut lines y=0 and x=0 of the plane at λ62 =z . 

 
4. The single plane/dielectric slab  implementation 

Let us turn now to present the second formulation based on the exploitation of the dielectric 
slab, of relative dielectric permittivity rε  and thickness d,  when the two measurements of the 

intensity of the near field are performed over the same scanning plane at 1zz = . 
Now, the propagation through the dielectric slab in the second measurement (see eq. (3)) 

provides a velocity of the plane waves of the spectrum smaller that in free-space. This effect 
roughly corresponds to consider the second intensity data set obtained as the near-field 
propagation occurred in free space when the second measurement is performed at a scanning 
plane at quota z<z1. This can be also understood by the considerations below, when we first 
neglect the effect of the transmission coefficient ),( vuτ .   

By observing the operator in eq. (3), the presence of the dielectric slab involves the 
propagation term ])(exp[ dwwj d −−  playing the same role as the above )](exp[ 21 zzjw −  

term for the two-planes implementation. This consideration drives the choice of the relative 
dielectric permittivity and the thickness of the so that the phase of the )](exp[ 21 zzjw −  and 

])(exp[ dwwj d −−  terms behave in a very similar way. Once the value of the thickness of 

the slab λ6=d  is assumed, the similarity between the two phase terms is achieved by 

choosing the relative dielectric permittivity rε =6  (see Fig. 3). 
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Fig. 3 Comparison between the phase of ( ) ( )[ ]{ })zz(,wv,uwjexp 2100 −−  

for λλ 610 21 == z,z  (blue line) and ( ) ( ) ( ) ( )[ ]{ }d,w.wv,uwv,uwjexp dd 0000 +−−  for 
λε 66 == d,r  (red line). 

 
By performing the minimization from the same starting point as the above Section, with  

)ˆ])((exp[)ˆ( 12 EdwwjTEL d −−= , rε =6 and d=6λ the global minimum is achieved. For 

sake of brevity, we do not report any figure of reconstruction relative to this test case. 

When, we now take into account the transmission coefficient ),( vuτ  in the operator 2̂T  
and, for the minimization, we follow the same two-step minimization strategy as the above 
Section with a progressive increase in the number of the searched unknowns followed by the  
exploitation of the weighted formulation in (8). This strategy allows us to achieve the actual 
solution as depicted by Figs. 4 and 5, where an excellent comparison is shown between the 
actual and the retrieved PWS along the cut lines at u and v constant passing through the point 
of maximum PWS modulus. 

Finally, we have verified the good stability of the solution approach by considering noisy 
data by superposing an additional 10% uniformly distributed noise on the intensity data. The 
reconstruction results are shown in Figs. 6 and 7 that are analogous of  Figs. 4, 5 of the noise-
free case. 
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Fig. 4. Comparison between the ideal PWS (blue line) and the retrieved PWS (red line) at the 
cut line at constant v and passing through the point where the modulus of the PWS attains its 
maximum. Noise-free data. 
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Fig. 5.  Comparison between the ideal PWS (blue line) and the retrieved PWS (red line) at the 
cut line at constant u  and passing through the point where the modulus of  the PWS attains its 
maximum.  Noise-free data. 
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Fig. 6.  Comparison between the ideal PWS (blue line) and the retrieved PWS (red line) at the 
cut line at constant v and passing through the point where the modulus of  the PWS attains its 
maximum.  Noisy  data. 
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Fig. 7.  Comparison between the ideal PWS (blue line) and the retrieved PWS (red line) at the 
cut line at constant u and passing through the point where the  modulus of  the PWS attains its 
maximum.  Noisy data. 
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5. Conclusions 

In this paper we have presented first results concerning with a novel technique for antenna 
diagnostics from near field phaseless measurement. The technique exploits measurement on a 
single plane and the diversity between the two data sets (necessary to avoid the local minima 
problem) is ensured by different conditions under which the propagation of the near field from 
the aperture plane and the measurement plane occurs. In particular, one condition is concerned 
with the free-space propagation, while the other one is concerned with a propagation where 
the space between the aperture and measurement planes is partly filled with a dielectric slab of 
known properties.  
       Further topics deserving investigation concern with: the study of the effects of the 
inaccuracy in the knowledge of the dielectric slab properties on the reconstruction results; the 
combined effect of the two probes approach [4] with the present technique; the experimental 
validation of the technique; the possibility to exploit intensity measurements in Fresnel zone 
[17]. 
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