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Abstract: The theory of the trapping of nonspherical particles in the
focal region of a high-numerical-aperture optical system is formulated
in the framework of the transition matrix approach. Both the case of an
unaberrated lens and the case of an aberrated one are considered. The
theory is applied to single latex spheres of various sizes and, when the
results are compared with the available experimental data, a fair agreement
is attained. The theory is also applied to binary clusters of spheres of latex
with a diameter of 220 nm in various orientations. Although, in this case
we have no experimental data to which our results can be compared, we get
useful indications for the trapping of nonspherical particles. In particular,
we find substantial agreement with recent results on the trapping of prolate
spheroids in aberrated gaussian fields [S. H. Simpson and S. Hanna, J. Opt.
Soc. Am. A 24, 430 (2007)].
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1. Introduction

Optical trapping of particles is a consequence of the radiation force that stems from the con-
servation of electromagnetic momentum [1]. Indeed, when a laser beam is focalized by a lens
of high numerical aperture, the configuration of the field may be such that the radiation force
exerted on particles traps the latter within the focal region. This possibility led Ashkin et al.
[2, 3] to the practical realization of trapping of small particles.

The configuration of the field in the focal region, in the absence of any particle, can be cal-
culated, as done by Richards and Wolf [4] for the case of an aplanatic lens, by superposition of
plane waves representing the rays that actually traverse the exit pupil. Once the field is known
the radiation force exerted on any particle can be calculated by resorting to the theorem of con-
servation of the linear momentum for the combined system of field and particles. Although the
resulting expression of the radiation force requires considering the Maxwell stress tensor [1],
the literature reports several procedures to avoid using it when dealing with the optical trapping
[5, 6]. For instance, one could calculate the Lorenz force density exerted on a particle by the fo-
cal field. This approach when applied to the problem at hand has to face some difficulty such as
a reliable consideration of the charges induced in the particles [7]. Sometimes, the Lorenz force
is calculated by assuming that the dielectric properties of the particles are adequately given by
the polarizability [8]. Strictly speaking, this assumption applies to small dielectric spheres and
prevents dealing with nonspherical particles or with particles whose refractive index relative to
that of the surrounding medium is far from unity.

In this paper we reformulate the theory of optical trapping of nonspherical particles making
full use of the Maxwell stress tensor. To this end we establish a complete formalism exploiting
the multipole expansion of the fields in the framework of the transition matrix approach [9],
that, in principle, does not require that the particles be spherical or small with respect to the
wavelength, and implies the only approximation of truncating the multipole expansions after
a number of terms suitable to get the convergence of the calculations. The formalism that we
are going to establish is easily applicable to trapping of clusters of spherical scatterers. We
already used the transition matrix approach just to calculate the radiation force on nonspherical
particles [10]. Nevertheless, since in Ref. [10] the incident field was restricted to single plane
waves, for the present purposes it is convenient to rewrite the main formulas of the theory in a
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form suitable to be extended to the superposition of plane waves that describes an optical beam
focalized by a lens. Anyway, the formalisms based on the T-matrix seem to become more and
more appreciated: e.g., in a recent paper the trapping force on dielectric ellipsoids has been
calculated through the transition matrix approach [11].

2. Radiation force exerted by plane waves

In this section we review the theory of the radiation force exerted by a plane wave on a non-
spherical particle of arbitrary size. Since our purpose is to extend the theory to the case of a laser
beam focalized by a suitable lens, it is convenient to choose a frame of reference that makes
this extension as simple as possible. To this end we define a frame of reference Σ whose origin
O coincides with the focus of the lens and whose z axis is parallel to the optical axis. Let us
attach to the particle a frame of reference Σ ′ whose origin O′ lies inside the particle and whose
axes are parallel to the axes of Σ. The vector position of O ′ with respect to Σ is RO′ (see Fig.
1). We assume that all the fields depend on time through the factor exp(−iωt) that is omitted
throughout. Then, the force that the radiation exerts on the particle is given by the integral [1]

FRad = r′2
∫

Ω′
r̂′ · 〈TM〉dΩ′ , (1)

where the integration is over the full solid angle, r ′ is the radius of a large sphere with center at
RO′ surrounding the particle, and

〈TM〉 =
1

8π
Re

[
n2E′ ⊗E′∗+B′ ⊗B′∗ − 1

2
(n2|E′|2 + |B′|2)I] (2)

is the time averaged Maxwell stress tensor. In Eq. (2), the fields E ′ and B′ are considered in
the frame Σ′, ⊗ denotes dyadic product, the asterisk indicates complex conjugation, and I is the
unit dyadic. Of course, the fields that enter the definition of 〈TM〉 are the superposition of the
incident and of the scattered field.

We now assume that the field incident on the particle is the polarized plane wave

EI = E0ûeik·r = E0ûeik·(r′+RO′ ) = E ′
0ûeik·r′ = E′

I (3)

of wavevector k = k̂nkv, where k̂ is the unit vector in the direction of incidence, n is the re-
fractive index of the surrounding medium, k v = ω/c and û is the (unit) polarization vector.

RO'

r'

O

O'

x

y

z

x'

z'

y'

r

Fig. 1. Coordinate system we adopt to describe the radiation force on a particle at O′. The
focus of the optical system coincides with O and the optical axis coincides with the z axis.
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Obviously, |E ′
0|2 = |E0|2 in Eq. (3). In view of our choice of the incident field, the integral in

Eq. (1) can be calculated by resorting to the asymptotic expansion of a plane wave [12]

E′
I = E ′

0û
2π i
r′k

[
δ (k̂ + r̂′)exp(−ikr′)− δ (k̂− r̂′)exp(ikr′)

]
.

Then, a straightforward calculation leads to the conclusion that the first two terms, i.e. the
dyadic products, in the expression of 〈TM〉 give a vanishing contribution to the radiation force
[13]. In Appendix A we will prove this result through a different approach that applies even to
the case in which the incident field is not a single plane wave. Anyway, the component of the
radiation force along the direction characterized by the unit vector v̂ ζ turns out to be

FRadζ = − r′2

16π
Re

∫
Ω′

(r̂′ · v̂ζ )
[
n2(|E′

S|2 +2E′∗
I ·E′

S)+ (|B′
S|2 +2B′∗

I ·B′
S)

]
dΩ′ , (4)

where E′
S and B′

S are the fields scattered by the particle. Obviously, since the incident field is
a plane wave, the integral (4) gets no contribution from the terms E ′

I ·E′∗
I , and B′

I ·B′∗
I that,

accordingly, have been omitted. However, it is less obvious that the integral (4) gets no contri-
bution from the same terms even when the incident field is a superposition of plane waves with
different directions of propagation. This statement will be proved in Appendix A.

At this stage let us recall that the multipole expansion of the electric field of a plane wave
and of the corresponding scattered wave is [14]

EI = E0 ∑
plm

J(p)
lm W (p)

I lm , (5)

ES = E0 ∑
plm

H(p)
lm A(p)

lm , (6)

whence the multipole expansion of the magnetic field can be inferred through the equation

B = − i
kv

∇×E .

In Eqs. (5) and (6) we define the multipole fields

J(1)
lm = jl(kr)Xlm(r̂) , J(2)

lm =
1
k

∇×J(1)
lm ,

where the Xlm are vector spherical harmonics [1], and the multipole fields H (p)
lm that are identical

to the J(p)
lm except for the substitution of the Hankel function of the first kind h l(kr) in place of

the spherical Bessel functions jl(kr). The J fields are everywhere regular whereas the H fields
satisfy the radiation condition at infinity. The superscript p = 1, 2 distinguish the magnetic

multipole fields from the electric ones, respectively. The amplitudes W (p)
I lm take into account

both the direction of propagation and the polarization of the incident field and are defined as

W (p)
I lm = W (p)

lm (û, k̂) = 4π ip+l−1û ·Z(p)
lm (k̂) ,

where
Z(1)

lm = Xlm(k̂), Z(2)
lm = Xlm(k̂)× k̂

are transverse harmonics [15]. The amplitudes of the scattered field can be calculated by im-
posing the customary boundary conditions across the surface of the particle and are related to
those of the incident field by

A(p)
lm = ∑

p′l′m′
S

(pp′)
lml′m′W

(p′)
I l′m′ (7)
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which defines the elements of the transition matrix of the particle [9]. Now, the particles we are
going to deal with either actually are, or can be modeled as aggregates of spheres. We calculate

S
(pp′)
lml′m′ for such aggregates always starting with the inversion of the matrix of the linear system

that is obtained by imposing to the fields the boundary conditions across each of the spherical
surfaces [16, 17]. The order of the matrix to be inverted is 2Nl M(lM +2), where N is the number
of the spheres of the aggregate and lM is the maximum value of l to be retained in the multipole
expansions of the fields (5) and (6) in order to get convergence for the quantities of interest. The
convergence of such kind of calculations is studied in Ref. [16]. A comprehensive treatment of
all the abovementioned topics related to the calculation of the transition matrix can be found in
Ref. [14, 18].

The transition matrix depends on the orientation of the particle but, once its elements are
calculated in a given frame of reference, they turn out to be independent both on the direction
of propagation and on the polarization of the incident field.

In our previous paper on radiation force [10] we started from the result obtained by
Mishchenko [19] through the use of the optical theorem. Here, we found more convenient to
perform the integration in Eq. (4) using the asymptotic expansion of the multipole fields [14]
up to terms which give a contribution of order 1/r. Actually, these expansions for the incident
and the scattered field give

E′
I → E ′

0 ∑
plm

Z(p)
lm (r̂′)W (p)

Ilm
(−)p−1

kr′
sin[kr′ − (l +1− p)π/2] , (8a)

E′
S → E ′

0 ∑
plm

Z(p)
lm (r̂′)A(p)

lm
exp(ikr′)

kr′
i−l−p (8b)

which, when substituted into Eq. (4), yield the result

FRadζ =− |E0|2
16πk2

v
Re

[
∑
plm

∑
p′l′m′

(
A(p)∗

lm A(p′)
l′m′ +A(p′′)∗

lm A(p′′′)
l′m′

)
il−l′ I(pp′)

ζ lml′m′

]

− 2|E0|2
16πk2

v
Re

[
∑
plm

∑
p′l′m′

(
W (p)∗

I lm A(p′)
l′m′ +W (p′′)∗

I lm A(p′′′)
l′m′

)

× sin[kr− (l−1+ p)π/2]eikr(−i)l+pil−l′ I(pp′)
ζ lml′m′

]

= −F(Sca)
Radζ +F(Ext)

Radζ , (9)

with p′′ �= p and p′′′ �= p′. In Eq. (9)

I(pp′)
ζ lml′m′ =

∫
Ω′

(r̂′ · v̂ζ )ip−p′Z(p)∗
lm (r̂′) ·Z(p′)

l′m′(r̂′)dΩ′ =
4π
3 ∑

μ
Y ∗

1μ(v̂ζ )K(pp′)
μ;lml′m′ . (10)

In turn Y1μ(v̂ζ ) in Eq. (10) denotes spherical harmonics whose arguments are the polar angles
of v̂ζ , and

K(pp′)
μ;lml′m′ =

∫
Ω′

r̂′ip−p′Z(p)∗
lm (r̂′) ·Z(p′)

l′m′(r̂′)dΩ′ . (11)

The integrals (11) can be performed in closed form [10, 14] with the result

K(pp′)
μ;lml′m′ = 16π2

√
3

4π
C(1, l′, l; μ ,m′,m)il−l′O(pp′)

ll′ , (12)
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where C(1, l ′, l; μ ,m′,m) denotes Clebsch-Gordan coefficients [20] and

O(pp′)
ll = − 1√

l(l +1)
(1− δpp′) ,

O(pp′)
l,l−1 =

√
(l−1)(l +1)

l(2l +1)
δpp′ ,

O(pp′)
l,l+1 = −

√
l(l +2)

(l +1)(2l +1)
δpp′ .

We stress that Eq. (12) is correct, unlike the formula reported in [14] which contains a misprint
[18]. The K-integrals have the symmetry properties

K(11)
ζ lml′m′ = K(22)

ζ lml′m′ , K(12)
ζ lml′m′ = K(21)

ζ lml′m′ ,

which help us to get a more compact expression for F (Sca)
Radζ and F (Ext)

Radζ . In fact, from Eq. (9) we
get

F (Sca)
Radζ =

2|E0|2
16πk2

v
Re ∑

plm
∑

p′l′m′
A(p)∗

lm A(p′)
l′m′ i

l−l′ I(pp′)
ζ lml′m′ , (13a)

F (Ext)
Radζ = −2|E0|2

16πk2
v
Re ∑

plm
∑

p′l′m′
W (p)∗

I lm A(p′)
l′m′ i

l−l′ I(pp′)
ζ lml′m′ , (13b)

where the amplitudes of the scattered field A(p)
lm are given by Eq. (7) in terms of the elements of

the transition matrix.
We notice that even though the radiation force has been separated into two contributions,

there is no similarity with the customary separation into a field gradient contribution and a
scattering contribution. The separation effected in Eqs. (13a) and (13b) can be tracked back to
Eq. (4) which, due to the structure of the Maxwell stress tensor, includes |E ′

S|2 and E′∗
I ·E′

S as
well as the corresponding terms from the magnetic field. When these terms are expanded as

a series of multipole fields we just get F (Sca)
Radζ , that depends on the amplitudes of the scattered

multipole fields, and F (Ext)
Radζ that depends on the amplitudes both of the incident and of the

scattered multipole fields. As a result, F (Sca)
Radζ and F (Ext)

Radζ can be somehow related to the scattering
and to the extinction cross section of the particle, respectively. Thus, according to the last line of
Eq. (9), the radiation force can be related to the absorption cross section, i.e. to the absorptivity
of the particle. Note that similar considerations hold true also for the radiation torque [21], and
in particular for a spherical scatterer the torque exerted by an elliptically polarized plane wave
can be explicitly written in terms of the difference of the extinction and of the scattering cross
section [22].

3. Radiation force from a focalized laser beam

Let us now show how the teory of Sect. 2 can be extended to the case of a laser beam focalized
by an aplanatic lens. However, let us first recall that in Sect. 2 we stressed the vanishing of the
contribution to the radiation force from the terms E I ·E∗

I and BI ·B∗
I . In fact, in Appendix A

we show that the contribution from these terms vanishes even when the incident field is not a
single plane wave but a superposition of plane waves of the kind described below.
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Let us consider a lens of focal length f , whose exit pupil has the radius f sinϑ Max; of course,
ϑMax is the angle under which the radius of the exit pupil is seen from the focus and is thus
related to the numerical aperture of the lens by

NA = nsinϑMax ,

where n is the refractive index of the medium that fills the image space. We consider the focal-
ization of a gaussian TEM00 beam. Then, according to Novotny and Hecht [23], the field at any
point within the focal region can be written in the paraxial approximation and using the angular
spectrum representation as

E(r) =
∫

k2
x+k2

y≤k2
⊥

EPW(k̂)ûk̂eik·r dk̂xdk̂y , (14)

where k⊥ = k sinϑMax, k has polar angles ϑk and ϕk, ûk̂ = û(ϑk,ϕk); the limits of integration
ensure that only the rays that actually traverse the exit pupil of the optical system are considered.
In Eq. (14)

EPW(k̂) = E0 i f
eik f

2πk

√
nI

n
(cosϑk)−1/2 fw ,

where nI is the refractive index of the object space and f w is the apodization function

fw = exp

[
− 1

f 2
0

sin2 ϑk

sin2 ϑMax

]
. (15)

In the preceding equation f0 is the filling factor which for a beam with waist radius w0 is

f0 =
w0

f sinϑMax
.

The apodization function (15) is common also to the higher gaussian modes TEM 10 and TEM01,
and when fw = 1, i.e., for w0 → ∞, one recovers the description of the field of Richards and
Wolf [4].

Often, the image space is not filled by a single homogeneous medium but rather by two
homogeneous media, of refractive indexes n and n F, separated by a plane interface orthogonal
to the optical axis. We assume the interface to be located at z0 = −d between the exit pupil and
the nominal focus. Hereafter, the quantities considered in the region z > z 0 will be characterized
by the index F, even when, strictly speaking, this notation would not be necessary. For instance,
since kx and ky are unaffected by the refraction, we have kx = kFx and ky = kFy, and thus also
k⊥ = kF⊥. On the contrary, kz is affected by the refraction according to

kFz =
(
k2

F − k2
x − k2

y

)1/2 =
[(

nF

n

)2

k2 − k2
x − k2

y

]1/2

.

The refraction of the rays through the interface introduces a spherical aberration and a
polarization-dependent transmission that can be taken into account by the Fresnel coefficients
Tη [1]; η = 1 stands for polarization parallel and η = 2 for polarization perpendicular to the
plane of incidence that, for each ray, is defined by the k or by the k F vector, and the z axis
(optical axis). The decomposition of the polarization vectors of each of the plane waves in Eq.
(14) into their components parallel and perpendicular to the plane of incidence can be effected
by introducing for each plane of incidence a pair of unit vectors û ηk̂. Thus, we have

ûk̂ = ∑
η

(ûk̂ · ûηk)ûηk = ∑
η

cη ûηk̂ (16)
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and, the refraction through the interface yields

E(r) =
∫

k2
Fx+k2

Fy≤k2
F⊥

EFPW(k̂F)∑
η

cη Tη(ϑk)ûηk̂FeikF·r dk̂Fxdk̂Fy , (17)

where
EFPW(k̂F) = exp[−id(kz − kFz)]EPW(k̂) .

We stress that, although ϑk appears in place of ϑkF in Eq. (17), Snell’s law grants an immediate
relation between these angles. Moreover, the same law makes the apodization function (15)
insensitive to the use of ϑk or of ϑkF.

To complete the expression of the field we need to specify the coefficients c η in Eq. (16)
for a given choice of the state of polarization. We assume that the TEM00 mode we deal with,
before being refracted and focalized, is polarized along the x axis, i.e., its polarization vector
has vanishing y component. This choice coincides with that of Rohrbach [8]. According to the
considerations of Novotny and Hecht [23] and in agreement with the definitions of Mansuripur
[24] for the polarization of refracted beams, it is an easy matter to see that [23]

c1 = cosϕk, and c2 = −sinϕk .

We are now able to calculate the radiation force that the field exerts on a particle at O ′. To
this end we rewrite Eq. (17) as

E′(r′) =
∫

k2
Fx+k2

Fy≤k2
F⊥

EFPW(k̂F)eikF·RO′ ∑
η

cηTη (ϑk)ûηk̂FeikF·r′ dk̂Fxdk̂Fy , (18)

and perform the multipole expansion

ûηk̂FeikF·r′ = ∑
plm

J(p)
lm (r′,kF)W

(p)
lm (ûηk̂F, k̂F) .

Since the J multipole fields depend on the magnitude of k F only, they can be carried outside
the integral with the result

E′ = ∑
plm

J(p)
lm (r′,kF)W

(p)
lm (RO′) , (19)

where

W
(p)

lm (RO′) = ∑
η

cη

∫
k2
Fx+k2

Fy≤k2
F⊥

EFPW(k̂F)eikF ·RO′ Tη(ϑk)W (p)
lm (ûηk̂F, k̂F)dk̂Fxdk̂Fy . (20)

Of course, Eq. (19) refers to the case in which there is a plane of separation between two media
of different refractive index, so that the consequent refraction must be taken into account. It is
an easy matter to show that, when nF → n, Eq. (19) simplifies into

E′ = ∑
plm

J(p)
lm (r′,k)W (p)

lm (RO′) , (21)

where
W

(p)
lm (RO′) =

∫
k2
x+k2

y≤k2
⊥

EPW(k̂)eik·RO′W (p)
lm (ûk̂, k̂)dk̂xdk̂y . (22)

According to the case we deal with, Eqs. (19) and (21) show that the multipole expansion of the

field in the focal region resembles the expansion of a plane wave, whose amplitudes W
(p)

lm (RO′),
according to Eqs. (20) or (22) depend on the position of the particle. Thus, when calculating the
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radiation force exerted on a particle, we only have to substitute the newly defined amplitudes

W
(p)

lm into Eq. (7) to get the amplitudes of the scattered field A
(p)

lm , and into Eq. (13b) to get

F (Ext)
Radζ . In practice, the required result is still given by Eqs. (13a) and (13b) provided that

E ′
0W

(p)
Ilm → W

(p)
lm (RO′) , E ′

0A(p)
lm → A

(p)
lm .

The preceding considerations highlight the importance of the quantities W
(p)

lm (RO′) that de-
scribe the lens, as they depend on the characteristics of the latter. Then, the integrals (20) and
(22) can be calculated numerically once for all at the nodes of a suitably chosen grid for a given
lens and stored for further use. However, the indispensible ingredient for describing the trap-
ping of particles by means of Eqs. (13) is the knowledge of the field scattered by the particles

themselves, i.e., the knowledge of the multipole amplitudes A
(p)

lm . In this paper we preferred

to resort to the transition matrix, Eq. (7), but let us stress that the A
(p)

lm amplitudes can be
calculated also by other methods such as those devised by Chew [25] and by Xu [26]

Finally, we recall that, for computational reasons, the multipole expansion of the fields must
be truncated. Therefore, wherever in Eqs. (5) through (21) sums over the multipole order l
and/or l ′ appear, it must be understood that the sums were actually performed up to l, l ′ = lM
where lM is large enough to ensure fair convergence of all the quantities of interest.

4. Applications

The theory expounded so far has been applied to the calculation of the trapping position of
homogeneous spheres of latex (np = 1.57) of various sizes as well as of aggregates of two mu-
tually conntacting spheres of latex with a diameter d = 220nm. In order to be able to compare
our results with the experimental data existing in the literature we assumed an aplanatic optical
system with numerical aperture NA = 1.2 both in case the image space is filled of water with
refractive index n = 1.33 and in case the exit pupil is immersed in oil with refractive index
n = 1.52 whereas the trapping particle is immersed in water. These media are separated by a
cover slip orthogonal to the optical axis located at D = −20 μm with respect to the origin at the
nominal focus of the lens. Since NA < 1.33 no plane wave is totally reflected at the separation
interface. As the presence of two media of different refractive indexes introduces a spherical
aberration, the maximum field intensity occurs at a point at ≈ ΔF = −4.0 μm with respect to
the nominal focus. The incident field is assumed to be a TEM00 Gaussian beam, linearly po-
larized along the x axis, with filling factor f0 = 2 and wavelength λ0 = 1060nm in vacuo, i.e.,
λ = 800nm in water. In Fig. 2 we report the contur plot of the field intensity in the xz and in the
yz plane both in the case of the unaberrated gaussian beam and of the aberrated beam. Note that
in the latter case the origin of the z axis is shifted by ΔF =−4.0 μm. A look to Fig. 2 shows the
aberration actually manifests as a large shift of the field maximum and a more accentuated lack
of cylindrical symmetry around the optical axis due to the linear polarization of the incident
beam. These results are in substantial agreement with those reported by Rohrbach and Stelzer
[27]

4.1. Spherical particles

We now go to consider the trapping of single spheres both in an unaberrated and in an aberrated
field. In order to comply with the common usage of the experimentalists we define the so-called
trapping efficiency as

Q(r) = FRad(r)
c

Pn
,

where P is the power of the trapping beam and n is the refractive index of the medium sur-
rounding the particle. Thus, n = 1.33 in all the cases we deal with. The argument r denotes

#85594 - $15.00 USD Received 23 Jul 2007; revised 27 Aug 2007; accepted 1 Sep 2007; published 5 Sep 2007

(C) 2007 OSA 17 September 2007 / Vol. 15,  No. 19 / OPTICS EXPRESS  11992



x (μm)

z 
(μ

m
) 

 

 

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

y (μm)

z 
(μ

m
)

 

 

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

 x (μm)

z 
(μ

m
)

 

 

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

y (μm)

z 
(μ

m
)

 

 

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 2. Contour plot (log scale) of the intensity |E(r)|2 of the unaberrated gaussian (top
panels) and aberrated gaussian field (lower panels) in the xz (left panels) and in the yz plane
(right panels). The origin of the z axis in the lower panels is shifted by ΔF = −4.0 μm.

the position of the particles, i.e., the position of the center for single spheres, or the position
of the point of mutual contact of the spheres of the binary aggregates. Of course, the trapping
occurs at the point r0 ≡ (x0,y0,z0) in an unaberrated field (r0a ≡ (x0a,y0a,z0a) in an aberrated
field) where Q vanish with negative derivatives. Now, a look to Fig. 2 shows that, for evident
symmetry reasons, the trapping point, if any, may occur on the optical axis only. Accordingly,
in Fig. 3 we report the components Qx(x,0,z0), Qy(0,y,z0), and Qz(0,0,z) in the unaberrated
field (left panels), as well as the corresponding functions for the aberrated field (right panels),
for single spheres with diameter d = 850, 1030 and 1660nm. Spheres with so large a diameter
were chosen as representative examples of particles to which, according to our experience, the
Rayleigh or the Born approximations do not apply. Note that in the right panels of Fig. 3 the
origin of the z axis has been shifted by ΔF = −4.0 μm. Even a cursory look shows that all
the spheres we considered undergo trapping on the optical axis. In fact, both Q x(x,0,z0) and
Qy(0,y,z0) vanish on the optical axis. Moreover, Qz(0,0,z) satisfies the trapping condition at
least at one value of z. Nevertheless, by examining the contour plot of the aberrated field we
realized that that there exist a spot at z ≈−2 μm in which the field reaches a second maximum
(this spot is outside the lower boundary of Fig. 2). For this reason we calculated the trapping
efficiency in the vicinity of this point in order to see whether or not trapping may occur. We
found a negative answer, i.e. no trapping occurs either for a d = 850nm sphere or for spheres
of larger diameter. Nevertheless, a weak trapping, i.e. the vanishing of Q z with a small negative
derivative, may occur for spheres of smaller diameter. As a result, we are led to conclude that
the only stable trapping point is the one that appears in the right panels of Fig. 3. The values of
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Fig. 3. Qx(x,0,z0) (blue solid line), Qy(0,y,z0) (red dashed line), and Qz(0,0,z) (green
dotted line) for single spheres with diameter d = 850, 1030 and 1660nm as a function of
the position of their centers. Trapping both in unaberrated (left panels) and in aberrated
beam (right panels) is considered. Note that the origin of the z axis in the right panels is
shifted by ΔF = −4.0 μm.
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Table 1. Calculated and experimental values of sl = 1− κx/κy as well as the trapping
position for the spheres we deal with in this paper

d (nm) z0 (nm) sl calc. z0a (nm) sla calc. sl exp. sla exp.
220 120 0.38 800 0.19 0.38
530 200 0.27 1280 0.16 0.31
690 240 0.11 1520 0.09 0.08
850 120 −0.07 1200 0.05 0.03
1030 80 −0.13 1040 −0.01 −0.12
1280 0 −0.02 480 −0.30 −0.33
1500 40 0.20 560 −0.20 −0.18
1660 40 0.02 400 −0.10 −0.10
1900 160 0.06 480 0.12 0.08
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Fig. 4. Comparison of calculated asymmetry factors sl (dashed blue line) and sla (solid red
line) with experimental data of Rohrbach [8] (blue circles) and of Zakharian et al. [7] (red
dots).

z at which the trapping occurs are reported both for unaberrated (z 0) and for the aberrated field
(z0a) in Table 1.

Since the behaviour of the components of the trapping efficiency is almost linear in the
vicinity of the trapping point, one is able to define the stiffness of the optical trap by introducing
the constants κx, κy, and κz such that the components of the radiation force can be written as

Fx = −κxx, Fy = −κyy, Fz = −κzz

in the neighbourhood of the point where they vanish. A good parameter to be compared with
the experimental data is the so-called stiffness asymmetry factor s l = 1−κx/κy that we report
in Table 1 both for the gaussian field (sl) and for the aberrated field (sla). The experimental
values of the asymmetry factor were taken from the paper of Rohrbach [8] for the unaberrated
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field and from the paper of Zakharian et al. [7] for the aberrated field. We note that the size
parameter x = πnd/λ0 for the spheres considered in Table 1 goes from 0.6 to 5.61 in vacuo,
i.e., from 0.80 to 7.46 in water, so that we had to use up to l M = 12 to get full convergence
of all the calculated values [16]. Table 1 seems to show a fair agreement between theory and
experiment. This agreement seems confirmed by Fig. 4, where we report the curves of the
asymmetry factor calculated both for unaberrated and for the aberrated field, together with
the experimental values for the spheres used by Rohrbach (circles) and by Zakharian et al.
(dots). Nevertheless, we call the attention on the values of the asymmetry parameters for the
spheres with d = 850 and 1660nm. Actually these values are favourably located on at least one
of the two theoretical curves we draw in Fig. 4. We stress, however, that Rohrbach declares
the experimental values at d = 850 and 1660nm as obtained in the absence of aberration [8],
whereas in Fig. 4 they appear to be on the curve for the aberrated field. On the other hand,
the experimental values for the spheres considered by Zakharian et al. appear very close to the
curve for the aberrated field, according to what is declared in Ref. [7]. In this respect, it may
be interesting to notice that the experimental values mentioned above are not located on the
calculated curve that Zakharian et al. report in Fig. 12 of their paper [7]. This discrepancy, in
our opinion, may be due to an inadequate consideration of the effect of aberration, and/or to the
fact that with so large a diameter any approximation used to calculate the Lorenz force density
does not apply. Moreover, the diameter of these spheres is larger than the size of the trap,
that, according to Fig. 2, spans ≈ λ = 800nm according to Fig. 2, so that great care must be
exercized both in computations and in the interpretation of the experimental data when dealing
with such large objects.

4.2. Binary clusters

We now present our results for the trapping of binary clusters as an example of application of
our formalism to nonspherical particles. The clusters are composed of two identical, mutually
contacting spheres of latex with refractive index np = 1.57 and diameter d = 220nm. The frame
Σ′ attached to the cluster has its origin at the center of mass of the aggregate. In Fig. 5 we report
our results for the trapping efficiency both in an unaberrated gaussian field (left panels) and in
an aberrated one (right panels), for orientation of the axis of the cluster along the x, y, and z
axis.

Table 2. Calculated values of sl = 1− κx/κy for the unaberrated field and of sla for the
aberrated field as well as the trapping position for the binary cluster we deal with in this
paper

Cluster axis z0 (nm) sl z0a (nm) sla

parallel to
x axis 240 0.46 1280 0.27
y axis 160 0.21 1200 0.09
z axis 40 0.42 160 0.26

The size we chose for the component spheres ensures that the whole cluster is contained
within the trap, even when the axis of the aggregate is orthogonal to the optical axis. The
trapping position both in unaberrated (z0) and in aberrated field (z0a) and the corresponding
calculated values of sl and of sla are reported in Table 2. We immediately notice that the trapping
position depends on the orientation of the cluster. The largest value of z 0 and of z0a are achieved
when the axis of the aggregate is parallel to the direction of polarization of the incident field,
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Fig. 5. Qx(x,0,z0) (blue solid line), Qy(0,y,z0) (red dashed line), and Qz(0,0,z) (green
dotted line) for binary aggregates of latex with diameter d = 220nm, as a function of the
position of the contacting point. Trapping both in an unaberrated field (left panels) and in
an aberrated field (right panels) is considered. In the right panels the origin of the z axis is
shifted by ΔF = −4.0 μm.
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which, we recall, is polarized along the x axis. In turn, the minimum value both of z 0 and of z0a

is achieved when the axis is parallel to the optical axis. This result is in substantial agreement
with the results of Simpson and Hanna [11] for prolate sferoids.

Appendix A

As anticipated in Sect. 2, with the help of the asymptotic multipole expansions it is easily
proved that the dyadic terms

r̂′ · [n2(E′ ⊗E′∗)+ (B′ ⊗B′∗)
]
= n2(r̂′ ·E′)E′ +

(
r̂′ ·B′)B′

give a vanishing contribution to the radiation force. In fact, a look to Eqs. (8a) and (8b) shows

that the asymptotic multipole expansions of E ′
I and E′

S contain the transverse harmonics Z(p)
lm (r̂′)

which, according to their definition are orthogonal, in the ordinary vector sense, to r̂′. This
decrees the vanishing of the contribution of the dyadic terms for whatever form of the incident

amplitudes W (p)
Ilm , even when the latter are substituted by the W

(p)
lm (RO′).

Now, we show how it happens that the terms E ′
I ·E′∗

I and B′
I ·B′∗

I give a vanishing contribution
to the radiation force even when the incident field is not a single plane wave but rather a super-
position of plane waves with the same magnitude of k but different direction of propagation,
i.e., different k̂.

Let us thus assume that the incident electric field is a superposition of plane waves of the
kind of Eq. (14). Thus a typical term that would enter Eq. (1) is

IE = Re

[
r′2n2

∫
Ω′

E′
I(k̂) ·E′∗

I (k̂′)r̂′ dΩ′
]

,

where, according to Eq. (3), E ′
I(k̂) = E ′

PW(k̂)ûk̂ exp(ik ·r′) = E′
PW(k̂)exp(ik ·r′). An analogous

term IB comes from BI. Since r′ is large, we can use the asymptotic form of a plane wave
[13, 12] so that IE becomes

IE = Re
{4πn2

k2

∫
Ω′

E′
PW(k̂) ·E′∗

PW(k̂′)
[
δ (k̂+ r̂′)exp(−ikr′)− δ (k̂− r̂′)exp(ikr′)

]

× [
δ (k̂′ + r̂′)exp(ikr′)− δ (k̂′ − r̂′)exp(−ikr′)

]
r̂′ dΩ′

}
.

Due to the properties of the δ -function, the result of the integration is

IE = Re
{4πn2

k2 E′
PW(k̂) ·E′∗

PW(k̂′)
[−k̂δ (k̂− k̂′)+ k̂′δ (k̂− k̂′)

+ k̂′δ (k̂+ k̂′)exp(2ikr′)− k̂′δ (k̂+ k̂′)exp(−2ikr′)
]}

.

A quite similar expression, except for the absence of n, is obtained for I B, so that collecting all
the terms we get

I =IE + IB

=Re
{4π

k2

[
n2E′

PW(k̂) ·E′∗
PW(k̂′)+B′

PW(k̂) ·B′∗
PW(k̂′)

]

× k̂′δ (k̂+ k̂′)
[
exp(2ikr′)− exp(−2ikr′)

]}

which is easily seen to vanish, even when k̂′ = −k̂, on account that

B′
PW(k̂) = −in k̂×E′

PW(k̂) .

Similar conclusions can be easily reached when the lens is aberrated by a plane interface
orthogonal to the optical axis separating two media of different refractive indexes.
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