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The identification of wildlife-vehicle
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spatial and temporal patterns
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Abstract

Linear infrastructures (e.g., roads, railways, pipelines, and powerlines) pose a serious threat to wildlife, due to the risk
of wildlife-vehicle collisions (roadkills). The placement of mitigation measures, such as crossing structures, should
consider species’ life cycles and ecological requirements. Such an assessment would require data collection over
large areas, which may be possible by employing citizen science. In this study, we aimed to identify spatio-
temporal trends of roadkill occurrence using citizen science data from one of the most urbanized and biodiversity-
rich regions of Italy. Temporal trends were analyzed using generalized additive models, while landscape patterns
were assessed by identifying significant thresholds over land cover gradients, related to increases in relative roadkill
abundance, by employing threshold indicator taxa analysis. Our approach recorded a total of 529 roadkills,
including 33 different species, comprising 13 mammal, 10 bird, 6 reptile, and 2 amphibian species. Statistical
analysis indicated significant temporal trends for the red fox, the European hedgehog, the stone marten and the
European badger, with peaks in roadkill occurrence between the winter and spring months. Relative roadkill
abundance increased mostly in landscapes with anthropogenic land cover classes, such as complex cultivations,
orchards, or urban surfaces. Our results allowed us to develop a map of potential roadkill risk that could assist in
planning the placement of mitigation measures. Citizen science contributions from highly populated areas allowed
data collection over a large area and a dense road network, and also directly led to the evaluation of management
decisional options.
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Background
The rapid growth of human population is fostering the de-
velopment of linear infrastructures worldwide, heighten-
ing concerns about the anthropogenic pressure on the
Earth’s environment and habitats (Haddad 2015; Laurance
et al. 2015; van der Ree et al. 2015). Road infrastructure
threatens biodiversity both directly, by physically bisecting

landscapes, thus reducing and fragmenting habitats on
their way, and indirectly, by degrading landscape quality
(Saunders et al. 2002; Coffin 2007; Bennett 2017). Such
consequences may also have a strong adverse effect on
wildlife by hampering population viability, thus leading to
possible local extinctions (Benítez-López et al. 2010; van
der Ree et al. 2011). Globally, one of the most important
direct and detrimental impacts on wildlife is the collision
with vehicles while crossing roads (Forman and Alexander
1998; Bennett 2017), which may result in millions of colli-
sions per year globally (Nyhus 2016). This in turn sparks
human-wildlife conflicts driven by compromised road
safety: for example, deer-vehicle collisions are estimated at
~ 2 million/year in Europe and the USA, with more than
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200 human deaths/year and another 30,000 injuries, while
other estimates indicate that 194 million birds and 29 mil-
lion mammals are killed on European roads every year
(Bissonette et al. 2008; Langbein et al. 2011; Grilo et al.
2020). In this sense, road mitigation measures are a crucial
tool to limit wildlife-vehicle collisions (roadkills) and to
guarantee safety for wildlife and humans (van der Grift
and van der Ree 2015). When taking into account the
alarming expansion of the road network expected in the
near future, the management of road infrastructures to
halt roadkills is likely to become a topical issue in conser-
vation and landscape planning (Meijer et al. 2018).
A paramount aspect when aiming to reduce risks for

wildlife from road infrastructure lies in the efficient
identification of crossing sites, whose location may in
turn vary depending on habitat types and landscape
characteristics surrounding the road segments (Červinka
et al. 2015; Russo et al. 2020). This is mainly because
landscape elements may be key drivers of roadkills
(Mimet et al. 2016; Tanner et al. 2017; Valerio et al.
2019). Hence, particularly for landscapes incorporating
several habitat types, the habitat composition of a given
landscape should be considered when addressing the
drivers of roadkill occurrence; this is a fundamental aspect
for practitioners aiming at spatially prioritizing the place-
ment of road-crossing structures, in order to facilitate
wildlife movements and mitigate animal road mortality
(Grilo et al. 2011; Mimet et al. 2016; Valerio et al. 2019).
Efficient mitigation measures usually take into account

species ecological requirements, such as home range
sizes and habitat preferences (Grilo et al. 2016). Another
important aspect for guiding mitigation measures con-
cerns the identification of temporal trends in roadkills,
which often occur during particular periods depending
on the specific life histories of individual species (Grilo
et al. 2009). However, despite the relatively easy accessi-
bility of road casualties, the cost of monitoring roads
usually faces steep increases due to the intensive survey
effort required, including daily surveys to avoid uncer-
tainty (Santos et al., 2011).
To overcome the cost of roadkill surveys over large

areas, one possible solution is to implement citizen sci-
ence strategies to collect data. Such an approach has
been successfully applied to the case of single, rare spe-
cies, whenever survey costs faced increases due to the
infrequency of collisions (Dwyer et al. 2016). Smart-
phone applications, systems for data storage, and web
applications for data visualization have further facilitated
citizens’ involvement (Olson et al. 2014). Citizen science
contributions can allow researchers to monitor and
model roadkill occurrence across tertiary, often remote
roads, and even cycling paths (Heigl et al. 2017). While
the use of data collected by citizens has intrinsic cost-
benefit advantages, these, however, might be disguised

by the disadvantages. Species misdetection and/or mis-
identification, for example, are a potential source of bias
(Santos et al. 2011), especially when dealing with taxa
less known to the general public (Vantieghem et al.
2017). Temporal clustering should also be addressed,
considering that citizen science data might have an ap-
preciable degree of temporal correlation (Bird et al.
2014). On the other hand, strategies to cope with data
quality have been developed and included a plethora of
solutions, ranging from early actions that take place
prior data collection (e.g., training), to field actions (e.g.,
technological aids) as well as office actions (e.g., valid-
ation of observations) (Freitag et al. 2016). The valid-
ation step is particularly important in the case of
opportunistically collected data as it may reduce data
autocorrelation via data filtering procedures (Vercayie
and Herremans 2015).
By employing a citizen science approach and carefully

considering its possible shortcomings, we collected a
large data set on roadkills in Campania, one of Italy’s
most densely populated regions. The main objectives of
the study were to identify (1) species more likely to be
subject to vehicle collisions, thus assessing the occur-
rence of roadkills over the study area, (2) whether spe-
cies mortality trends were limited over specific times of
the year, and (3) whether roadkill relative abundance in-
creases with particular habitat types. We developed a
series of data collection tools and strategies to facilitate
citizens’ involvement and to allow us to cover a large
area, ranging from densely urbanized cities, including
Italy’s third-largest city, to remote mountains. Our ap-
proach did not limit data collection to focal species, but
rather identified them based on abundance of collisions.
Ultimately, we aimed to show that a spatio-temporal as-
sessment of roadkill risk for multiple species across road
networks can make use of citizen science in densely
populated areas and identify road sections of greater cu-
mulated risk, i.e., best locations for mitigation measures.

Methods
Study area
The study was limited to the road network of the Cam-
pania Region, one of the 20 administrative regions of
Italy (Fig. 1). The region covers ~ 13,600 km2 and is lo-
cated in the Mediterranean biome. The elevation spans
from sea level to almost 2000 m a.s.l. and is characterized
by several rainfall regimes (annual precipitation 700–
800 mm on the coastline, while up to 1800mm on
mountain ranges; Ducci and Tranfaglia 2008), as well as
mean temperatures spanning from ~ 10 °C on the
mountains to ~ 18 °C on the coast; Ducci and Tranfaglia
2008). The mountainous Apennine carbonate chain con-
stitutes the majority of the region’s landlocked area,
transitioning to hills and lowlands when it approaches to
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the (partly) volcanic coastline. Due to its geography, the
gradient in altitude from the coast to the interior is mir-
rored by the gradient in urbanization and road network
development (Fig. 1b). In the hilly lowland part, farm-
land is a frequent land cover class (55% of covered area),
followed by natural and non-natural forests (~ 37% of
covered area), which are mostly located at higher alti-
tudes. Human activities, however, have proven to be a
major driver of land-use change in the last decades, pri-
marily associated with urban expansion (Migliozzi et al.
2010). Indeed, Campania is one of the most populated
regions of Italy (~ 5,800,000 inhabitants; source:
demo.istat.it), characterized by artificial surfaces repre-
senting ~ 8% of the territory, a remarkable road network
~ 11000 km long, with an average road density of ~ 0.8
km/km2. The gradient in urban development resulted in
Napoli Metropolitan City along the coast having a road
network double in length than the landlocked province
of Benevento, though the area covered by the latter is

approximately two times larger (1.171 km2 vs. 2.080 km2,
respectively). Conversely, Campania also includes a
number of protected areas, including two national and
ten regional parks, representing ~ 27% of the territory.

Citizen data collection
Data collection was designed to be carried out by citi-
zens coming across wildlife-vehicle impacts via a super-
vised data collection system, which allowed us to cover
the entire region, both in the proximity of densely popu-
lated areas as well as in less populated ones such as pro-
tected or mountainous areas (Fig. 1b). It included the
participation of expert surveyors, web aid, open-access
software such as Google Earth, and smartphone applica-
tions, followed a data validation procedure (Fig. 2).
Skilled surveyors facilitated the involvement of less expe-
rienced citizens and constituted the first batch of sur-
veyors. Some of them participated in training sessions,
where either identification skills or the data collection

Fig. 1 Location of study area. (a) Campania Region in south Italy and (b) roadkill locations with protected areas, provincial capitals, and type
of roads
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systems were the main subject. This early phase was
continuously advised by scientists. Thereafter, in the
data collection phase, a plethora of options for data
transfer were made available to the surveyors, who were
free to choose the method. The most common was the
use of direct message apps, such as WhatsApp, which
has the advantage of being extremely fast, while also
making it possible to attach photographic documenta-
tion of the roadkill and a GPS location. Other methods
included the possibility to send data via web app, such
as Google Maps, or GPS positions collected with stand-
ard GPS devices. The choice of the data transfer option
was designed to impact as little as possible the safety of
the surveyors. Citizens’ data spanned from 01 August
2014 to 31 October 2016. In addition, observations of
animals crossing the road were also accepted. Further
records dating back up to 2004 were retrieved from ex-
pert surveyor notes.

Scientist data validation and correction
The data were included in the database after a validation
procedure conducted by scientists. Firstly, photographic

records from participants, attached with the relevant
data, which was compulsory for less skilled surveyors,
were inspected to validate the species. Thereby, a tem-
poral rarefaction procedure was carried out to account
for potential double counts. Carcasses were rarely col-
lected during road cleaning efforts and were usually left
on the road for a considerable amount of time. Species
occurrences at road segments were filtered by consider-
ing as double counts any records reported over a time
span shorter than the carcass persistence time of that
particular species, calculated on the basis of each species’
body weight (Santos et al. 2016). This procedure-leveled
unbalances in data reporting across volunteers, since
those driving more frequently had fewer chances to re-
tain temporally close data in the final dataset. Spatial un-
certainty of roadkill locations was accounted for by
assuming a potential error of less than 500 m (corre-
sponding to the minimum unit of road segment size; see
below for further details) in both road directions from
the recorded carcass position. This accounted for GPS
imprecision and for the “walking dead” phenomenon
that may happen when carcasses are dragged by cars or

Fig. 2 Framework showing the different stages of the study from citizen science data collection data to the management outputs. After
encountering a roadkill, citizens have the possibility to send in their record via several data collection tools. The record is then validated and
included in the final database. Species with more than 30 records have been included in the analysis, after a bias correction procedure
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scavengers (Santos et al. 2011). Finally, species with a
sample size n ≥ 30 were included in the statistical
analysis.

Predictor variables
The environment, and more specifically landscape com-
position, was described using land cover data, retrieved
from the CORINE Land Cover classification (CLC 2012;
https://land.copernicus.eu/pan-european/corine-land-
cover/clc-2012). The CLC is based on a nominal scale of
1:100,000, an array of classes divided into three hierar-
chal levels of organization and a resolution of 100 m.
Third-level classes underwent an expert-based reclassifi-
cation, aimed at decreasing the number of classes from
44 to 16 (Table S1), in order to avoid model over-
parameterization. The road network (OpenStreetMap
2019), was divided in road segments of 500 m and 1000
m, over which we applied on both sides a buffer of 500
m and 1000 m, respectively, with a flat end option in the
QGIS software v3.0. Then, the share of land covered by
each land cover class was quantified in the buffer area
surrounding road segments, in order to obtain a gradient
for each land cover class and road segment length. Buf-
fer extents were chosen to account for uncertainty
around crossing sites (Červinka et al. 2015; Valerio et al.
2019), and the trade-off between identifying hotspots
and covering a large area, which is shown to be most ef-
fective at a scale between 200 and 2000m (Spanowicz
et al. 2020).

Predicting wildlife-vehicle collisions over time and space
Temporal analysis
Temporal trends in roadkill occurrence were analyzed with
Generalized Additive Models, i.e., GAM (Hastie and Tib-
shirani 1990). Specifically, a flexible GAM variant, PROC
GAM (Xiang 2001) was employed, given its capacity for
dealing with data fluctuation and for highlighting general
trends, as well as for relaxing the assumption of linearity be-
tween dependent and explanatory variables (Xiang 2001).
Roadkill monthly number was the response variable and
months were expressed as a smoothing component. Since
the response variable consisted of counts, a Poisson regres-
sion with a log link was applied. The PROC GAM algorithm
was computed in the SAS software (Khattre and Naik 2018).
PROC GAM ran with default parameters and underwent a
generalized cross-validation (Hutchinson and de Hoog
1985). Advantages of this method lie in the associated good
performance (Thompson et al. 1991) and efficient computa-
tional time, as well as an automatic selection of the smooth-
ing parameter (Ramsay and Silverman 2005) which in turn
helps the model minimize the prediction error as well as
overfitting (Wahba 1990). PROC GAM incorporates the
chi-square statistic, which was used to test the hypothesis of
no seasonal trend on each selected species.

Landscape thresholds
The influence of landscape composition on roadkill oc-
currence was investigated by employing a Threshold In-
dicator Taxa Analysis (TITAN). This approach, which
aims to identify the thresholds along landscape gradients
where a species’ relative abundance increases (i.e., road-
kill abundance), uses change-point analysis and indicator
species analysis (Baker and King 2010). Change-points
are non-linear responses in abundance of a species along
an environmental gradient. The indicator species ana-
lysis, on the other hand, is an unbiased measure of abun-
dance which employs IndVal scores (Dufrêne and
Legendre 1997). Hence, this approach allows to identify
species that increase or decrease their abundance with
increasing landscape gradient. We carried out TITAN
analysis using the R package TITAN2 and default set-
tings (Baker and King 2010). The analysis was performed
for every land cover class gradient and for the target spe-
cies, whose home range sizes approach the scale at
which the landscape has been described (Travaini et al.
1993; Rosalino et al. 2004; Carvalho and Mira 2011).
The analysis was performed for both road segment
lengths considered in this study. Two diagnostic indices
provided by TITAN were used to assess the credibility
of the change-points, purity, and reliability, both set at
the level of 0.9. Since we performed a TITAN analysis
on roadkills, the “positive” response in abundance refers
to increase in roadkills. The response of each species
along each land cover class gradient was translated into
a binary response, where all the road segments showing
a gradient above the lower confidence interval threshold
were assigned a value of 1. Then, the binary responses of
each species were summed up to produce the final map
of collision risk. The procedure was repeated for both
considered road segment length.

Results
Citizen science data
Our citizen science data collection returned a total of
529 records, including 33 different species (Fig. 2), com-
prising 13 mammal, 10 bird, 6 reptile, and 2 amphibian
species. The most common species in the data-
base (Table 1), following data validation and correction,
were the red fox (Vulpes vulpes; 186 records), the Euro-
pean hedgehog (Erinacaeus europaeus; 152 records), the
stone marten (Martes foina; 44), and the European
badger (Meles meles; 33), all of which were then in-
cluded in the statistical analysis. On average, we re-
ported 14.5 roadkills/month (± 20 SD). The greatest
share of roadkills was reported on secondary roads, ac-
counting for 60% of the total. Roadkills were more fre-
quently reported during March–July, where they
accounted for 60% of the total roadkill. The participation
of citizens reached its peak at 36 surveyors involved over
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3 years. Each citizen transferred on average 8.6 records
(± 13.9 SD), with one citizen sending up to 120 records.

Temporal analysis
The monthly effect on wildlife roadkill abundance was
found to be significant and noticeable for the red fox,
the European hedgehog, and the stone marten (p <
0.0001), while the evidence for seasonality in the
records of the European badger was less pronounced
(p = 0.0291) (Table 2; see Table S2 for further details
regarding PROC GAM results). Temporal trends were
smoother for the red fox, the European hedgehog, and
the stone marten, while the European badger trends
showed greater uncertainty (Fig. 3). Estimated trends
were similar across species, with roadkills increasing
at the end of winter, in particular reaching a peak
around early spring for red fox, stone marten, and
European hedgehog. Trends steeply decreased during
late spring-summer (May/June–August/September) for
all species.

Landscape thresholds
The TITAN analysis revealed threshold responses for 9
out of 14 land cover classes. Positive responses emerged
for 5 land cover classes at both road segment lengths
(Fig. 4). The most common land cover classes with

significant change points were complex cultivation, or-
chard, and urban habitats. Along the gradients of these
classes, the European badger, the red fox, and the Euro-
pean hedgehog showed significant change points. The
analyses that employed the smaller road segment length,
however, returned wider confidence intervals and less
precise estimates. The European badger showed similar
responses for the two road segment lengths, but the con-
fidence interval was narrower for the longest length.
Negative responses also emerged for four land cover
classes. In particular, complex cultivation, cultivation,
and olive groves returned significant change points for
stone marten, red fox, and European hedgehog at the
road segment length of 1000m (Fig. 5), while at the
smaller length, only red fox and European hedgehog had
significant change points across cultivations, olive
groves, and forests.
Lastly, a risk assessment map was produced for the en-

tire Campania Region from the results relative to the
road segment length of 1000m, given the higher preci-
sion of the estimates (Fig. 6). The geographical output
showed that overall, across the region, there is a medium
level of collision risk for wildlife, with higher risk areas
close to mountain ranges and protected areas, in the
proximity of large cities, and across large agricultural
areas.

Table 1 Rarefied monthly count of roadkills for the total number of species recorded and the four most abundant species

Month Total Red fox Eurasian hedgehog Stone marten European badger

January 48 29 8 2 2

February 29 20 3 2 3

March 71 28 25 2 0

April 92 28 31 19 3

May 71 19 24 5 4

June 43 14 14 4 2

July 54 18 17 2 4

August 15 0 5 0 0

September 16 5 1 2 0

October 22 3 3 1 3

November 20 7 3 3 2

December 48 15 18 2 10

Table 2 Model parameters from the GAM. The regression and the smoothing model analysis are performed for the variable
“month.” The full outcome of the GAMs is reported in Table S2

Species Regression Smoothing

Month t value p Month Chi-square p

Red fox −0.13 (0.02) −5.94 < 0.01 0.72 23.81 < 0.01

European hedgehog −0.07 (0.03) −2.67 0.03 0.7 70.89 < 0.01

Stone marten −0.1 (0.05) −2.03 0.13 0.16 33.56 < 0.01

European badger 0.11 (0.05) 2.35 0.09 0.19 11.69 0.03
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Discussion
Temporal trends
Roadkill occurrence for the selected species showed a
distinct seasonality, confirming that roadkill seasonal
patterns may be detectable from citizen science data
(Vercayie and Herremans 2015). The results for the red
fox showed a protracted increase in mortality through
the beginning of the spring. Such trends have been re-
ported for urbanized areas, in particular with increases
observed during summer months (Baker et al. 2007).
During spring months, instead, non-reproductive female
foxes tend to show large home range sizes in less suit-
able territories, which can likely result in an increased
collision probability over this period (Henry et al. 2005).
Similar mortality trends were observed for the stone
marten (Grilo et al. 2013), which also shows a different
daily activity pattern during spring months, when it in-
creases diurnal activity (Posillico et al. 1995), hence
when road traffic is expected to be more intense. In
Italy, this period comes in early spring, but, across a spe-
cies’ geographic range, it may shift (Grilo et al. 2009).
For instance, more stone marten roadkills were found in
summer rather than in spring in Bulgaria (Raichev
2014). It is therefore of pivotal importance to consider
geographic variation in species life cycles, an aspect

poorly addressed that deserves further research work
across species’ geographical ranges. Regarding the Euro-
pean hedgehog’s movements, another mechanism that
might drive mortality may be spring movements related
to the breeding period (Haigh et al. 2014). This is also
observed for closely related species, where the search for
a mate results in seasonal higher density of individuals
(Abu Baker et al. 2017). The European badger tends to
move more during summer months, especially in more
patchy territories and in primeval forests (Kowalczyk
et al. 2006). Indeed, in heterogeneous landscapes, a dif-
ference in movement patterns has been observed over
the seasons, which is likely linked with the climatic con-
ditions and the use of dens and latrines (Rogers et al.
1998; Noonan et al. 2014). It should be remarked that
the European badger was represented by the smallest
dataset in our analysis, which might have affected the
confidence of our results.

Landscape effect on roadkills
The most common land cover class for increasing abun-
dance of roadkills was orchards, followed by complex
cultivation. It is worth noting that uncertainty about en-
vironmental thresholds along land cover gradients de-
creased at the scale of 1000, given the narrower

Fig. 3 Predicted roadkill temporal trends with 95% confidence intervals of the smoothing model component (month) using Generalized Additive
Models (PROC GAM) for red fox (a), European hedgehog (b), stone marten (c), and European badger (d)
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confidence intervals, corroborating such spatial scale ex-
tent as adequate for meso-carnivores (Červinka et al.
2015). We found that the stone marten was mostly influ-
enced by agricultural and natural land cover classes,
similar to what is known from other regions (Červinka
et al. 2015; Santos and Santos-Reis 2010), while the
other species were mostly influenced by anthropogenic
land cover classes. Previous studies found that the pro-
portion of urban areas in the landscape can actually

decrease wildlife-vehicle collisions for the red fox and
European badger (Gunson et al. 2011). We found in-
creased abundance of roadkills for low proportion of
urban gradient for the red fox and the European hedge-
hog. The red fox may generally avoid urban areas (Grilo
et al. 2009), but as a generalist it may be attracted by
sparsely aggregated human settlements for foraging
(McCleery et al. 2014). The European hedgehog, occur-
ring in higher densities in urban landscapes (Hubert

Fig. 5 Change points with 95% confidence interval for red fox, European hedgehog, stone marten, and European badger along the
corresponding land cover class gradient, resulted from the analysis including a road segment length of 1000m. Light-dark red shades indicate
increasing risk

Fig. 4 Change-points, with 95% confidence interval, for each species along the respective land cover gradient. Positive (a, c) and negative (b, d)
change points are shown for road segment lengths of 500 m and 1000m (a, b and c, d, respectively)
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et al. 2011), also shows an increase in roadkills at mod-
erate levels of urban cover, possibly linked with its use
of roads as dispersing corridors (Patrick Doncaster et al.
2001), although roads seem to be avoided during for-
aging (Dowding et al. 2010). It is also known that this
species may occur at higher density in food-rich land-
scapes such as rural landscapes (Hubert et al. 2011).
Here, the European hedgehog tends to avoid areas suit-
able for the European badger, particularly in urban-
related habitats (Dowding et al., 2010). The European
badger is also known to occur in rural areas character-
ized by woody and shrubby vegetation, river valleys, and
close to urban settlements, where it is more susceptible
to vehicle collisions as the density of regional and local
roads increases (Fabrizio et al. 2019). This is supported
by our results showing an increase in roadkills along the
gradients of complex cultivations and orchards. It also
should be mentioned that across the geographical range

of species, the use of landscapes bisected by roads can
be subject to differences, depending on local characteris-
tics, resulting in diverging roadkill drivers for different
areas (Pagany 2020). On a more general level, human-
related landscape characteristics have been found as one
of the major drivers of roadkill occurrence in the Medi-
terranean landscapes (Grilo et al. 2009).

Implication for road planning
The results provided evidence that key spatial and tem-
poral patterns are associated with roadkills for multiple
species. Relevant implications for optimizing mitigation
measures need to jointly integrate multiple species
within cost-efficient conservation plans, a challenging
issue poorly explored in the literature (Polak et al. 2019).
Our results allowed us to develop a map of areas at po-
tential risk of wildlife-vehicle collisions, taking into ac-
count the responses of the four main species. We

Fig. 6 Cumulative risk assessment map for wildlife-vehicle collision risk for mammal species, considering road segment length of 1000m
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demonstrated that citizen science can help monitor ex-
tensive areas and identify hotspots for roadkills. Accord-
ing to the map, major hotspots of wildlife-vehicle
collisions are predicted in the surroundings of the main
cities, where urban cover gradually decreases in favor of
agricultural cover in the lowlands or forest in the moun-
tain ranges. Other hotspots are along major roads in ex-
tensive agricultural landscapes, while, as previously
suggested, protected areas appear to be the safest. For
instance, one regional park on the outskirts of Salerno,
in the Sorrento peninsula, is completely surrounded by a
major road that seems to effectively isolate the protected
area and decrease connectivity with the rest of the main-
land. Here, we observed a high risk both inside and out-
side the protected area, probably due to an
overcrowding effect that leads animals to seek new terri-
tories over the mainland (Matthysen 2005).
Combined with the temporal results, we are able to sug-

gest where and when mitigation measures should be im-
plemented. The hotspots should be subject to long-term
measures such as partial fencing paired with crossing
structures (Ascensão et al. 2013; Grilo et al. 2015). Fencing
might be a valid mitigation measure for small mammals as
well (D’Amico et al. 2015). However, maintenance of the
mitigation structure such as underpasses (e.g., culverts)
should also be implemented with regular cleaning activ-
ities, especially during detected highest peak of species
mortality, in order to enhance their use by wildlife (Grilo
et al. 2013; Villalva et al. 2013). Lower risk areas, instead,
could be subject to temporary mitigation measures, such
as temporary signs and seasonal speed reduction (Sullivan
et al. 2004; Grilo et al. 2009; D’Amico et al. 2015). The
measures should be prioritized in the surroundings of cit-
ies and protected areas, in order to favor survival and dis-
persal of wildlife and landscape permeability.

Conclusions
The support provided to road ecology research by citizen
science is increasingly being recognized (Schwartz et al.
2020). Here, we describe the contribution of citizen sci-
ence in terms of enhanced man-power and human-
wildlife conflict awareness. Firstly, citizen science may act
as a driving force for collecting large amounts of data in
densely populated areas. However, one of the shortcoming
was that many routes were oversampled by surveyors
compared to other routes. This led many surveyors to
send a disproportionately larger amount of data compared
to others (Table S3), a common bias in the citizen science
approach (Dickinson et al. 2010; Périquet et al. 2018). On
the other side, studies comparing models built with citizen
science data to models built with standardized data proved
the reliability of a posteriori data filtering from citizen sci-
ence (Robinson et al. 2018; Petrovan et al. 2020). Indeed,
our results were mostly in agreement with the literature

on the spatial and temporal responses of the studied spe-
cies. The second limitation we found is that roadkills
mostly pertained to common species, though this is a
known characteristic of citizen science projects (Vercayie
and Herremans 2015; Périquet et al. 2018; Petrovan et al.
2020). It is obvious that “Citizen Science” should not be
considered a panacea whenever standardized protocols
are needed (Schwartz et al. 2020). Some topics of road
ecology, such as the study of road avoidance by wildlife
(Grilo et al. 2012) or research on genetic isolation
(Balkenhol and Waits 2009) can only be comprehensively
carried out via long-term, standardized studies involving
the support of technologically advanced instruments/pro-
tocols and qualified technicians. On the other hand, citi-
zen science programs can increase people’s interest and
awareness about nature-related topics (Vercayie and Her-
remans 2015). Although citizens’ involvement in science is
increasing, the array of initiatives taken by each country
may substantially differ, reflecting perhaps scientists’ atti-
tudes toward citizen science (Schwartz et al. 2020). In
Italy, for instance, citizen science initiatives on road ecol-
ogy are still limited (Schwartz et al. 2020), although some
frameworks, such as the one detailed here, allow citizens
to join the data collection with very little hindrance to
their everyday activities. In addition, timely press releases
and social media helped create a sense of community, a
side effect that is typical of successful citizen science pro-
jects (Dickinson et al. 2012; Vercayie and Herremans
2015). The importance of such projects increases when
baseline data, at the national or regional level, are lacking,
as they have the potential to quickly collect data, raise citi-
zens’ awareness toward conservation problems and pro-
vide assessments for environment stewardship (Couvet
et al. 2008; Dickinson et al. 2012).
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