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A single, merged pharmacophore hypothesis is derived combining 2000 pharmacophore models obtained during a 20 ns molecular dynamics simulation of a
protein-ligand complex with one pharmacophore model derived from the initial PDB structure. This merged pharmacophore model contains all features that
are present during the simulation and statistical information about the dynamics of the pharmacophore features. Based on the dynamics of the pharmacophore
features we derive two distinctive feature patterns resulting in two different pharmacophore models for the analyzed system — the first model consists of
features that are obtained from the PDB structure and the second uses two features that can only be derived from the molecular dynamics simulation. Both
models can distinguish between active and decoy molecules in virtual screening. Our approach represents an objective way to add/remove features in
pharmacophore models and can be of interest for the investigation of any naturally occurring system that relies on ligand-receptor interactions for its biological

activity.
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Pharmacophore models are defined as the ensemble of steric and
electronic features that are necessary to ensure the optimal
supramolecular interactions with a specific biological target
structure and to trigger (or block) its biological response [1]. These
features include H-bond acceptors (HBA), H-bond donors (HBD),
positive and negative ionizable groups (PI/NI), as well as
hydrophobic regions (H) and aromatic rings (AR). Structure-based
pharmacophore models use the 3D structure of a protein-ligand
complex to extract a set of essential pharmacophore features that
describe the binding mode of the ligand. Such pharmacophore
models can then be used to identify novel active compounds using
virtual screening protocols [2-4].

Structure-based pharmacophore models face two difficulties: on one
hand, they are sensitive to the atomic coordinates of the protein-
ligand complex from which they are derived and on the other hand
it is challenging to assess the derived pharmacophore features in a
conscious and objective way. The first issue is inherently linked to
concerns related to crystallography [5] since more than 80% of
protein-ligand complexes in the Protein Data Bank (PDB) are
determined using X-ray crystallography [6]. These concerns include
notably the fidelity of ligand coordinates in protein-ligand
complexes [7,8] and the influence of crystal contacts and solvent on
protein structures [9,10]. Proteins and small organic molecules,
such as natural products, or from pure synthetic origins are
inherently dynamic and display a wide range of motions, which
range from the vibrations of individual bonds to collective, large
structural movements. The crystal structure of the protein-ligand
complex represents only a single snapshot of a dynamic system and
thus provides neither information about the conformational
flexibility of the ligand, nor about motions of the residues in and
near the binding pocket [11-13]. As a result, pharmacophore models
derived from such structures might include features that are
artifacts, caused either by the crystal environment or the single set
of coordinates of the structure [14].

One very general way to avoid dependence on a single set of
coordinates is the use of molecular dynamics (MD) simulations to
generate multiple sets of coordinates and use these as the basis for
pharmacophore model generation. MD simulations have proven to
be invaluable for understanding dynamics of biomolecules [15,16],
solvent effects [17] etc., and form the basis for advanced
techniques, such as the calculation of free energies of protein-ligand
binding [18].

In a recent article [19] we investigated the possibility of improving
pharmacophore models using molecular dynamic simulations. In
this case study we present preliminary results that extend the
analysis conducted [19] for one protein-ligand system. We analyze
the variability of the interaction partners of the pharmacophore
model and analyze the occurrence of features as a function of time.
From this analysis two pharmacophore models are derived based on
the frequency of interactions and the time resolved dynamics of the
pharmacophore features.

The used protein-ligand complex has the PDB code 20J9 and
represents the crystal structure of the IGF-1R (insulin-like growth
factor-1 receptor) kinase domain in complex with a benzimidazole
inhibitor. Overexpression of IGF-1R has been demonstrated in a
variety of tumors, including glioma, lung, ovary, breast,
carcinomas, sarcomas, and melanoma [20]. This protein-ligand
complex was chosen from the analyzed complexes in [19] because
the pharmacophore model contains a balanced number of the most
common features (3 hydrophobic features, 3 hydrogen bond donor
features, 2 hydrogen bond acceptor features, 3 aromatic features).

Typically, most ligands of protein kinases bind in the hinge region
at the folding cleft of the N- and C-lobes. Common scaffolds that
bind this region contain two hydrogen bond features, usually a
donor-acceptor pair that interact with the hinge backbone [21]. The
PDB pharmacophore model displays the typical hydrogen bond
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interaction pattern with MET103 and GLU101 (shown in Figure 2),
as described in the literature [20].

A 20 ns MD simulation of the solvated protein-ligand structure was
computed, for every 10 ps the coordinates were saved resulting in
2000 coordinate sets. In addition, we also considered the
coordinates of the starting structure. A pharmacophore model was
derived from each structure that was obtained during the MD
simulation. For further analysis a consensus pharmacophore model
(a merged pharmacophore model) was generated which consists of
all features that are present either in the experimental structure or in
any snapshot generated during the multiple MD simulations, thus it
incorporates information about the dynamics of the protein-ligand
complex. The frequency with which individual features are present
permits the ranking/prioritization of the features if needed and to
detect outliers, i.e., features seen only rarely. Additionally, the
interaction partners for each pharmacophore feature were analyzed
and an interaction map (interaction matrix) was constructed. An
interaction map allows quantitative analysis of the interaction
partners of the pharmacophore features. As a final step, the
frequency of the pharmacophore features was analyzed as a
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function of time. Combining these different analysis methods for
the dynamics of the pharmacophore features allows the conscious
derivation of pharmacophore models that are different from the
corresponding model obtained with the PDB structure.

The trajectory of the protein-ligand complex was visually inspected
to ensure that no large scale movements took place and that the
ligand remained within the binding site at all times. The root mean
square deviation (RMSD) values of the Ca-atoms of the protein
were in an acceptable range (the RMSD plot for the ligand and
protein backbone is shown in Figure 2). In contrast, the RMSD
values of the ligand are rather high (ranging to a maximum of 9
Angstrom). In Figure 2, representative structures for the first
(Figure 3.1) to the fourth quarter (Figure 3.4) of the MD simulation
are shown. As can be seen, the pyridine moieties of the ligand rotate
freely during the MD simulation, but also the translation of the
imidazole contributes to the elevated RMSD values. Nevertheless,
the protein-ligand complex was stable during the simulation.

The frequency of the specific pharmacophore features and the
interaction map for 20J9 are shown in Figure 1.
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Figure 1: Analysis of the dynamics of the pharmacophore features of 20J9. (A) Shows

a 2D representation of the ligand with the pharmacophore features mapped on the structure.

Yellow spheres represent hydrophobic (H) interactions, small green circles indicate hydrogen bond donor (HBD) features and small red circles hydrogen bond acceptor (HBA)
features. Black and white chess-fields represent aromatic features (AR). For every feature a box is shown, providing the feature name that is used in part (B) and (C) of the figure and
information about the statistical frequency (given in percent and rounded to integers) of the specific feature. Dashed outlined boxes indicate features that are not present in the PDB
pharmacophore; continuous lined boxes indicate features that are present in the PDB pharmacophore. The color of the boxes are consistent with the colored row labels in part (B) and
the colored lines in part (C) of the figure. (B) Shows the interaction matrix as a heat-map. The row names indicate the pharmacophore features and the column names the interaction
partners of the pharmacophore features. The column names consist of three parts, separated by underscores: the first part indicates the feature type, the second part the 3-letter amino
acid code and the third part the residue number of the amino acid. The entries in the interaction map are color coded, ranging from dark blue to dark red (as shown in the legend of
Figure 1B.). The absolute values of the cells in the interaction map are written as numbers for all feature types other than hydrophobic features, if the number of interaction is below
400. (C) Shows the statistical frequency of the features as a function of time. Thick enclosing lines indicate pharmacophore features that were present in the pharmacophore model
obtained with the PDB structure, whereas thin, dashed lines indicate features that are not present in the PDB structure. The Y-axis corresponds to the number of occurrences of the
specific feature per binned time-step and the X-axis corresponds to the binned time-steps. For a detailed description of this plot see the Methods Section, e.g. 'Frequency Plot'.
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Figure 2: The root mean square deviation (RMSD) in Angstrom (A) of the protein backbone (in blue) and the ligand (in red) as a function of time for the analyzed protein-ligand.

Figure 3: The ligand inside the binding pocket is shown at 4 different timesteps. The length of the MD simulation is divided into 4 equally long parts and clustering is performed
based on the RMSD of the ligand. A representative ligand structure is extracted from the most populated cluster and shown from Figure 3.1 (representative structure of most
populated cluster from 0 to 5 ns) to 3.4 (representative structure of most populated cluster from 15 to 20 ns). The amino acids that are most common in hydrogen bond interactions
are explicitly labeled.
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Figure 4: The receiver operating characteristic (ROC) curves and the two
pharmacophore models are shown. In the ROC curve the true positive rate on the Y
axis is plotted against the false positive rate on the X axis. The number of total hits and
the enrichment factor (EF) are shown at 1%, 5%, 10% and 100%, respectively. In (A)
the pharmacophore model obtained with the PDB structure and the virtual screening
results are shown. In (B) the pharmacophore models with two MD derived hydrogen
bond donor features and the virtual screening results are shown. For the description of
the graphical 2D representation of the pharmacophore features see legend of Figure 1.

The initial pharmacophore hypothesis (shown in Figure 1A)
includes 5 pharmacophore features (which will be called PDB
features) and during the MD simulation 6 additional pharmacophore
features (3 aromatic features, 1 hydrogen bond acceptor and 2
hydrogen bond donor features) are revealed (which will be called
MD derived features).

As can be seen in Figure 1A, most of the MD derived
pharmacophore features have a lower statistical frequency than the
PDB features — only the MD derived feature HBD1 occurs more
often than either HBD3 or HBA2 (both are PDB features). A further
observation that can be drawn from Figure 1A is that hydrophobic
features are far more stable during the MD simulation than
hydrogen bond features and that aromatic features are the most
unstable feature type. This is in accordance with our previous
findings [19].

A closer look at Figure 1B reveals why most hydrophobic features
have such stable and high frequencies — they interact with multiple
interaction partners at the same time, thus preserving the interaction
even in the case when one interaction partner leaves the range of
influence of the ligand. It should be noted that the presented
hydrogen bond features also have multiple interaction partners, but,
indicated by the numbers for the different interaction partners for
the hydrogen bond features, this feature type changes rarely
between them, and if so, the change is slow and infrequent.

Figure 1C shows additional time resolved information about the
frequencies of the pharmacophore features. As can be seen, the
three hydrophobic features occur steadily above 95% for all binned
time-steps — with the exception of H1 between the binned time-step
5 and 8. Around the same binned-time steps the frequency of HBA2
and HBD3 (both PDB features) drops and HBD1 (MD derived
feature) appears with a subsequent frequency of around 70%. The
high frequency of HBD1 is only partly represented in the total
frequency (as seen in Figure 1A), since the feature was not present
for the first quarter of the simulation. Our analysis provides an
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explanation for what happens at these binned time-steps. The
RMSD value of the ligand starts to rise (shown in Figure 2) and the
movement of the ligand results in a change of the presented
interaction partner, and, therefore, we observe the drop in the
frequencies for HBD3 and HBA2.

The data presented in Figure 1, especially in Figure 1C, suggest that
the pharmacophore model which is appropriate for the first quarter
of the simulation (based on the frequencies of the features) does not
represent the second half of the simulation. Considering the
different frequencies of the pharmacophore features, two
pharmacophore models are proposed: The first model contains the
three hydrophobic features and HBD3 and HBA2 — this is the
pharmacophore model derived from the PDB structure (and will be
called subsequently PDB pharmacophore model). The second
pharmacophore model contains the three hydrophobic features, but
HBA2 and HBD3 are exchanged in favor of HBD1 and HBD2 (and
this model will be called MD derived pharmacophore model). These
two pharmacophore models represent the pharmacophore features
with different frequencies in the beginning and at the end of the MD
simulation. Especially in the light of the work in [20], the reported
findings are interesting. Although in the presented study a different
tautomer was used than in [20], the typical hydrogen pattern with
MET103 and GLU101 is present. However, it appears as if the
interaction with LEU26 and ASP107 (as shown in Figure 1B) can
also play an important role. In the following section the virtual
screening results with these two pharmacophore models against a
library of known active and calculated decoys will be shown and
discussed in detail.

The screening results (the receiver operator curve, enrichment
factor and number of total hits) for the different pharmacophore
models are shown in Figure 4. Both pharmacophore models are able
to discriminate between actives and decoys, and thus both provide
good early enrichment.

The PDB pharmacophore model gives rise to 81 hits and the
enrichment factor at 1.5% is 24.7. The pharmacophore hypothesis is
able to retrieve 45 of the 226 active compounds.

The MD derived pharmacophore model leads to 530 hits, whereas
the early enrichment factor at 1.5% is 6.2. The pharmacophore
model retrieves 66 of the 226 active compounds in the library.

A closer look at the hit-list obtained with both pharmacophore
models reveals that the PDB pharmacophore model retrieves 33
active molecules that are not present in the hit-list obtained with the
MD derived pharmacophore model. The MD derived model
retrieves 54 unique hits — the hit-list of both pharmacophore models
share only 12 active molecules. This is not surprising since the
pharmacophore models are different and represent two distinct
interaction modes.

These two pharmacophore models can be used together — the PDB
pharmacophore model is more likely able to distinguish between
active and decoy models, but the MD derived pharmacophore
model correctly identifies a higher number of active molecules.
Since both models share only 12 active molecules in the resulting
hit list, combining the results of these models results in a higher
number of active candidates than only using the PDB
pharmacophore.

In conclusion, MD simulations can reveal otherwise hidden
pharmacophore features that are not present in the pharmacophore
model derived from the experimental crystal structure. Using
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additional information obtained from MD simulation, i.e. time
resolved frequency information and interaction plots, it is possible
to construct pharmacophore models that integrate the dynamic of
the ligand inside of the binding pocket. Furthermore, this approach
provides an objective way to add MD derived pharmacophore
features to PDB derived pharmacophore models or, on the other
side, remove PDB features that are less important based on the
observed frequencies.

Experimental

PDB structure preparation: The quality and correctness of the
PDB structure was audited using the WHAT IF web interface to
WHAT CHECK [22,23]. The structure was analyzed with the
software PropKa 3.1, and the protonation state of the protein and
the ligand was assigned under the assumption of a solution pH of 7
[24,25]. Furthermore, in any calculations the ligand-tautomer
suggested by the PDB was used.

Retrieving representative structures: Chimera was used to cluster
the MD simulation based on the RMSD deviation of the ligand [26].
The MD simulation was divided in 4 parts (from 1-5 ns, 5-10 ns,
10-15 ns and 15-20 ns) and the parts were individually analyzed.
Representative structures for the most populated cluster in the 4
quarters were retrieved.

MD simulation: We used the CHARMM-GUI web interface [27] to
solvate the protein and set up the simulations. All MD simulations
were carried out with CHARMM [28], utilizing the
CHARMM/OpenMM coupling [29]. Parameters and molecular
topologies for the ligand was generated based on the CGenFF force
field [30]. The protein-ligand complex was solvated in cubic boxes
of TIP3P water. The water box for 20J9 consists of 20344 water
molecules and a total of 66062 atoms. Electrostatic interactions
were computed using the particle-mesh-Ewald method [31].
SHAKE was used to keep all bonds involving hydrogen atoms
rigid. After initial equilibration for 500 ps with a 1 fs time step, the
system was simulated at 303.15 K for 20 ns using Langevin
dynamics; the pressure was kept around 1 atm by a Monte Carlo
barostat. The time step during the production calculation was 2 fs;
coordinates were saved every 10 ps, resulting in 2000 coordinate
sets for one simulation.

RMSD analysis: The stability of the simulations was monitored by
computing the root mean square deviations for the protein and
ligand, using the MDAnalysis package [32]. The RMSDs were
calculated as follows: all coordinates saved during the MD were
fitted against the starting structure based on the coordinates of the
Co-atoms of the protein. Using the starting structure as reference,
we computed for these reoriented coordinates the RMSD of the Ca-
atoms for the protein and the RMSD of the heavy atoms of the
ligand.

Pharmacophore model analysis: For analysis of the
pharmacophore models all water molecules were discarded.
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LigandScout 4.09.1 was used to generate a structure based
pharmacophore model for each frame saved during the MD
simulation (2000 pharmacophore models in total) and for the PDB
structure [33].

The default feature constraints for the generation of the
pharmacophore models were used as described in the manual [34].
The resulting 2001 pharmacophore models were analyzed as
follows. Each pharmacophore feature has 2 properties: the ligand
atoms that are part of the feature, and the feature type. If both
properties of a pharmacophore feature were present in two models,
then this feature was considered identical and the frequency count
of this specific feature was incremented. In this manner we obtained
statistics for how often a certain feature was present during the
course of the MD simulation. Separate statistics were made for
features not present in the PDB pharmacophore model, i.e., features
only seen during the MD simulation. Using this frequency
information, the merged pharmacophore model encompassing all
features seen during the simulations was constructed by mapping
the features on a representative 2D structure of the ligand.

Virtual screening was performed using known active and calculated
decoy molecules obtained from the DUD-E database [35]. The
database provided 226 active and 9395 decoys. All molecules were
prepared as libraries for the screening using the command line tool
idbgen provided by LigandScout. Conformers were generated using
the icon best option in idbgen; this option produces a maximum
number of 200 conformations for each molecule processed.

Interaction matrix: The columns of the interaction matrix indicate
all amino acid residues that are involved in a pharmacophore feature
at some point during the MD simulations; the rows designate all
pharmacophore features and the values in the matrix indicate how
often a specific amino acid was involved in a specific
pharmacophore feature. In this way it is possible to analyze the
number of interaction partners and also their statistical frequency.
The numeric values were coded as a heat map — the colors range
from blue (zero interaction) to dark red (interaction at every time
step). The numeric values for hydrogen bond and aromatic
interactions are given explicitly in the heat map for values below
400. The interaction map was generated using the python package
matplotlib [36].

Frequency plot: For the MD simulations a frequency plot was
calculated. This plot shows the occurrence of the features as a
function of time. This is calculated as follows: The pharmacophore
models are chronologically sorted and for every pharmacophore
feature an occurrence list is calculated. Every time a pharmacophore
model at a specific time step displays a specific feature 1 is inserted
at the time step defined position in the list, otherwise 0 gets
inserted. This results in a list with 2001 entries for every
pharmacophore feature, which contains zeros and ones. In the end
these lists are reduced by summing over chunks of 100 entries —
resulting in a new list with 20 entries containing numbers between
100 and 0. To obtain a graphical representation, these lists are
subsequently plotted using the python package matplotlib.
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