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Study on the nonlinear vibration of
embedded carbon nanotube via the
Hamiltonian-based method
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Abstract
This article mainly studies the vibration of the carbon nanotubes embedded in elastic medium. A new novel method called
the Hamiltonian-based method is applied to determine the frequency property of the nonlinear vibration. Finally, the
effectiveness and reliability of the proposed method is verified through the numerical results. The obtained results in this
work are expected to be helpful for the study of the nonlinear vibration.
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Introduction

The carbon nanotube (CNT) has attracted wide attention since it is first discovered by Japanese scientist Iijima1 in 1991. The
vibration of the CNT is usually used to directly or indirectly measure the elastic modulus or other mechanical behaviors of
the CNTs.2–5 Therefore, the study of the vibration characteristics of the CNT is important. In this study, we will investigate
the vibration of CNT embedded in the elastic medium, which can be governed as6,7

d2μ
dt2

þ
�
π4EI

l4ρA
þ k

ρA

�
μþ π4E

4l4ρ
μ3 ¼ 0 (1.1)

where l is the length of the CNT, ρ represents the density, E indicates Young’s modulus, and A and I mean the cross-
sectional area and cross-sectional inertia moment, respectively. There are many methods available for obtaining the
frequency property of equation (1.1) such as the incremental harmonic balanced method,6 variational iteration method,8

Fourier series and Stokes’ transformation,9 homotopy perturbation method,10,11 and He’s frequency formulation.12 In this
study, we will use a new method called the Hamiltonian-based method to determine the frequency property. The overall
structure of this study is arranged as follows. The variational principle of the problem is constructed and its Hamiltonian is
obtained in The variational principle and the Hamiltonian. In Hamiltonian-based method, the Hamiltonian-based method
is adopted to solve the problem. In Results and discussion, the correctness of the Hamiltonian-based method is verified via a
comparison with He’s frequency formulation through the numerical results. And the conclusion is presented in Conclusion
and future recommendation.

The variational principle and the Hamiltonian

The variational principle of equation (1.1) can be easily established via the semi-inverse method,13–22 which reads as
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Where He–Weierstrass function can be obtained as23
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where the variable ζ that defined as

ζ ¼ dμ
dt

(2.3)

From equation (2.2), it can be proved that

Eðt, μ, μ0, ζ Þ ¼ 0 and
∂2E

∂ζ 2
> 0 (2.4)

which shows that equation (2.1) is a minimal variational principle.
In equation (2.1), K ¼ 1=2ð∂μ=∂tÞ2 is the kinetic energy, and P ¼ 1=2ðπ4EI=l4ρAþ k=ρAÞμ2 þ π4E=16l4ρμ4 repre-

sents the potential energy. It is well known that the total energy is conserved in the whole process of the vibration. So the
Hamiltonian can be obtained as24

Η ¼ K þ P ¼ 1
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μ4 ¼ constant ¼ Η0 (2.5)

Equation (2.5) can be simplified as

1

2

�
dμ
dt

�2

þ αμ2 þ βμ4 ¼ Η0 (2.6)

where α ¼ 1=2ðπ4EI=l4ρAþ k=ρAÞ, β ¼ π4E=16l4ρ.

Hamiltonian-based method

In this section, we will apply the Hamiltonian-based method to obtain the solution of equation (1.1). As is known to all, the
kinetic energy and the potential energy are changed during the oscillation process, but the total energy will keep unchanged
for a conservative oscillator. The Hamiltonian-based method is based on this and the variational theory, so it can present a
more accurate solution compared with the VIM or HPM. Here the solution of equation (1.1) is assumed with the following
form

μðtÞ ¼ M cosðϖtÞ (3.1)

With the initial conditions of equation (3.1), we can determine the Hamiltonian constant as

Η0 ¼ αM 2 þ βM 4 (3.2)

Substituting equation (3.2) into equation (2.6), there is

1

2

�
dμ
dt

�2

þ αμ2 þ βμ4 � αM 2 � βM 4 ¼ 0 (3.3)
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Taking equation (3.1) into equation (3.3) leads to the residual equation,24 which is

R ¼ 1

2
ϖ2M 2 sin2ðϖtÞ þ αM 2 cos2ðϖtÞ þ βM 4 cos4ðϖtÞ � αM 2 � βM 4 (3.4)

Now we define two average residuals

~R1 ¼ 4
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0

R1 cosðϖ1tÞdt (3.5)

~R2 ¼ 4

T2

Z T2=4

0

R2 cosðϖ2tÞdt (3.6)

So the frequency–amplitude formulation can be obtained as follows24

ϖ2 ¼ ϖ2
2
~R1 �ϖ2

1
~R2
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(3.7)

Here we select two arbitrary frequencies as ϖ1 ¼ 1 and ϖ2 ¼ 2, and then we get the two residual equations as follows
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2
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R2 ¼ 2M 2 sin2ð2tÞ þ αM 2 cos2ð2tÞ þ βM 4 cos4ð2tÞ � αM 2 � βM 4 (3.9)

So the two average residuals are obtained as
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According to equation (3.7), there is
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With this, we get the solution of equation (1.1) as

μðtÞ ¼ M cos
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!
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That is
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0
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Results and discussion

Recently, He’s frequency formulation, which is first proposed by Chinese mathematician Ji-Huan He, has been widely used
to solve the nonlinear vibrations arising in three-dimensional printing technology,25 micro-electromechanical,26 N/MEMS,27

and so on .28,29 By using He’s frequency formulation, we can get the frequency–amplitude formulation of equation (1.1) as

ϖ2 ¼ π4EI

l4ρA
þ k

ρA
þ 3M 2π4E

16l4ρ
(4.1)
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Then the solution of equation (1.1) can be obtained as

μðtÞ ¼ M cos

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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s
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which has a good agreement with equation (3.14).
For E ¼ 1, ρ ¼ 1, l ¼ π,M ¼ 1, I ¼ 1, A ¼ 1, and k ¼ 1, we plot a comparison between the Hamiltonian-based method

and He’s frequency formulation in Figure 1, which shows a good match between the two methods.
When we select E ¼ 1, ρ ¼ 1, l ¼ π,M ¼ 1

2, I ¼ 1, A ¼ 1, and k ¼ 1, the comparison of the two methods is plotted in
Figure 2, which also has a good agreement.

Figure 1. Comparison between the Hamiltonian-based method and He’s frequency formulation.

Figure 2. Comparison between the Hamiltonian-based method and He’s frequency formulation.
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Conclusion and future recommendation

In this study, a novel and effective method called the Hamiltonian-based method is used to study the nonlinear vibration of
the CNT embedded in elastic medium. The comparison between our proposed method and He’s frequency formulation
shows a good agreement, which strongly proves the correctness of the Hamiltonian-based method. The finding in this study
is expected to open up new horizons for the study of the nonlinear vibration.

Recently, the fractal and fractional calculus have been widely used to model many complex problems arising in
circuit,30,31 physics,32–35 filter,36–38 biomedical science,39 and so on.40–46 The proposed method in this work is also
extended to the fractal cases.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work
is supported by Program of Henan Polytechnic University (No.B2018-40), the Fundamental Research Funds for the Universities of
Henan Province (NSFRF210324), Innovative Scientists and Technicians Team of Henan Provincial High Education (21IRTSTHN016),
and Key Project of Scientific and Technology Research of Henan Province (212102210224).

ORCID iDs

Kang-Jia Wang  https://orcid.org/0000-0002-3905-0844
Guo-Dong Wang  https://orcid.org/0000-0001-6574-1668

References

1. Iijima S. Helical microtubules of graphitic carbon. Nature 1991; 354: 56–58.
2. Qian D, Wagner GJ, LIU WK, et al. Mechanics of carbon nanotubes. Appl Mech Rev 2002; 55(6): 495–533.
3. Wong EW, Sheehan PE, and Lieber CM. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes.

Science 1997; 277: 1971–1975.
4. Baughman RH, zakhidov AA, and de heer WA. Carbon nanotubes–the route toward applications. Science 2002; 297: 787–792.
5. Choi WB, bae E, kang D, et al. Aligned carbon nanotubes for nanoelectronics. Nanotechnology 2004; 15: 512–516.
6. Fu YM, Hong JW, and Wang XQ. Analysis of nonlinear vibration for embedded carbon nanotubes. J Sound Vibration 2006; 296(4–

5): 746–756.
7. Besseghier A, Heireche H, Bousahla AA, et al. Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded

in a polymer matrix. Adv nano Res 2015; 3(1): 029.
8. Hemmatnezhad M and Aminikhah H. Application of VIM to the nonlinear vibrations of multiwalled carbon nanotubes. Open Appl

Maths J 2010; 4(1): 18–23.
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