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ABSTRACT

This paper presents an adaptive scan strategy concept for phased array weather radars (PAWR) with

the objective of increasing the scan speed and capturing features of the storm system while maintaining the

measurement accuracy. The adaptive scan strategy is developed based on the space–time variability of the

storm under observation. Quickly evolving regions are scanned more often and the spatial sampling reso-

lution is matched to the spatial scale. Amodel that includes the interaction between space and time is used to

extract spatial and temporal scales of the medium and to define scanning regions. The temporal scale con-

strains the radar revisit time, while the measurement accuracy controls the radar’s dwell time. These con-

ditions are employed in a task scheduler that works on a ray-by-ray basis and is designed to balance task

priority and radar resources. The scheduler algorithm also includes an optimization procedure for minimizing

radar scan time. The model and the scan strategy are demonstrated using simulation data. The results show

that the proposed scan strategy can reduce the scan time significantly without compromising data quality.

1. Introduction

Following the success of the WSR-88D network,

considerable effort has been directed toward exploring

options for the next generation of weather radar tech-

nology. With its superior capability for rapidly scanning

the atmosphere, the electronically scanned phased array

radar (PAR) is a potential candidate (Zrnić et al. 2007).

The advantage of PAR compared to conventional

weather radar systems is its capability of electronically

steering the beam. Conventional weather radars scan

the 3D volume by rotating the antenna at some pre-

defined elevation angles known as volume coverage

patterns (VCP) and need an update time of 4–6min for a

scan to provide estimated parameters within the re-

quired accuracy (ROC 2007). However, fast updates are

not always possible with such radar systems due to the

inertia of their mechanically rotated antennas. In con-

trast, PAR can instantly steer the beam to a region of

interest. This property of PAR provides faster update

times without compromising data quality. First, only

precipitation regions are scanned; regions with no echo

or insignificant data are skipped (Heinselman et al.

2008). Second, the electronic beam steering capability of

PAR allows for scanning and revisiting many regions

in a sequence (Yu et al. 2007). This increases the number

of independent samples within an integration cycle and

requires fewer samples to maintain good data quality.

Short update times are critical for better understanding

storm structures as well as forecasting them, especially

for quickly evolving systems. Rasmussen et al. (2000)

suggested that update times of 20–30 s are necessary to

resolve the evolutionary processes in tornado genesis. In

addition, with PAR, the regions that evolve faster can be

scanned more often, a feature that is limited on me-

chanically scanning radar. Thus, PAR is an excellent

platform for precisely capturing the features of storm

systems when compared to conventional weather radars.

The benefit of PAR for weather observation is clear.

Its capability opens a new era in scanning strategies for

weather radars while bringing more challenges to the

design. For any phased array radar, the scan strategy is

integral, since it is designed to command the radar to
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scan, track, and perform surveillance. It ensures that the

system is working optimally. A scan strategy of a phased

array radar is designed based on the features and

properties of the radar target and the goal of the sensing.

The target of phased array weather radars (PAWR) is

weather, a volume target, which is very different from a

point target in many respects. Fundamentally, weather

consists of a large number of precipitation particles

distributed over a large volume evolving in both spatial

and temporal dimensions.Moreover, weather radars not

only detect but also measure volume targets accurately.

Such capabilities mandate specific requirements and

algorithms. Recently, Reinoso-Rondinel et al. (2010)

introduced a PAWR scheduling algorithm that can ar-

range scanning and surveillance tasks without significant

delays. In that work, targets are treated as individual

storm cells and task times are defined as the times to

complete scanning the cells. Dynamic evolution pa-

rameters of a storm are not automatically extracted and

integrated into the scan strategy algorithm, and update

times are chosen based on the user’s experience; there-

fore, in general, update times are not optimized for

efficiency.

For observing precipitation, three governing factors

must be considered: spatial sampling, temporal updat-

ing, and measurement accuracy. It is well known that

storms exhibit a wide range of variability in both their

spatial distribution of intensity and temporal evolution.

For example, a tornado can touch down in a highly

localized swath of few hundred meter width over a few

minutes, while a hurricane can span many hundred

kilometers in spatial extent and evolve over days or

weeks. To characterize the space–time variability fea-

tures of a storm system, an integrated space–time model

is studied that explicitly includes the interaction be-

tween space and time. The model assumes that a storm

system is a combination of advection and evolution

processes. A procedure is developed to separate these

two processes and to estimate the spatial scales present

in the storm. By applying the model to a sequence of

radar observations, a storm can be segmented into dif-

ferent scanning regions corresponding to each estimated

spatial scale. Next, evolution times (or temporal scales)

of these regions can be derived from their 2D correla-

tion function. The storm’s spatial scales will determine the

spatial sampling resolution of the radar, while the evolu-

tion time of each region will specify the radar temporal

update. Additionally, the accuracy of precipitation mea-

surements at each spatial location is a function of signal

parameters at that position (Bringi and Chandrasekar

2001). For a given level of accuracy, that relationship

provides a constraint on the dwell time of PAWR at each

beam location.

The paper is organized as follows. The space–time

model and the estimation of spatial scales present in the

storm along with their evolution times are described in

section 2. Section 3 proposes a scheme of radar scanning

regions for PAWR. A measurement error model for a

block pulsing scheme is introduced in section 4. In sec-

tion 5, requirements and considerations for an adaptive

scan strategy are addressed and discussed. This section

also contains an optimized scheduling algorithm for the

PAWR, and an example of its implementation with a

comparison of results to mechanically steered beam

weather radar is introduced. Section 6 summarizes the

main results of this work.

2. Space–time characterization model for
precipitation

a. Spatial scales in precipitation systems

Figure 1 presents a relative scale map for different

high-impact weather phenomena, exhibiting the con-

nection between space scales and time scales. The figure

shows that for precipitation, the temporal scale of a

specific region generally increases with its spatial scale.

This suggests that knowing the spatial scales present in

the storm system will provide some bounds to its

temporal scales.

1) AN ALGORITHM FOR SPATIAL-SCALE

ESTIMATION

In general, a radar observation includes features

over a wide range of spatial scales and to detect and

FIG. 1. Time and space scales associated with ‘‘high impact’’ weather

phenomena. (Courtesy: National Research Council 2009).
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estimate them is a challenging task. One way of tackling

this problem is to consider all possible scales. According

to the Nyquist theorem, the smallest resolvable scale in

the observation is equal to twice the grid spacing, while

the largest scale can be as large as the size of the storm.

However, this approach requires considerable process-

ing time and makes the algorithm complex. For the

purpose of designing a radar scan strategy, we focus on

identifying a small set of significant scales present in

the storm.

When applying an averaging filter to a radar obser-

vation, the filter’s sliding window size (filter size) affects

the scales present in the output field. A filter with a

larger sliding window removes smaller spatial-scale

features, while a filter with a smaller sliding window

retains smaller scales. Thus, information about the

scales can be extracted from filtered fields using differ-

ent filter sizes. One way to determine the scales to be

retained is to compare the original observation to the

output of the filter. The comparison can be quantified

using similarity measures, such as Euclidean distance,

Mahalanobis distance, and normalized cross correlation.

Results from our study show that since the correlation

measurement yielded the best results in terms of accu-

racy and robustness for radar reflectivity observations,

that measure was employed in this work. The correla-

tion similarity measure of two radar fields Zi and Zj (of

sizes N1 3N2) is defined as
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The normalized cross correlation [Eq. (1)] is in-

versely proportional to the size of the filter because

increasing the filter size removes more scales. To detect

and estimate significant scales, we calculated the cor-

relation similarity measure between the original field

and filtered fields as a function of filter sizes. It was

noticed that the absolute value of the derivative of the

similarity measure function attained its local maximum

when a characteristic scale was removed from the

original field provided the characteristic scale was be-

tween the sizes of the two filters. Thus, if the spacing

between two filter sizes is sufficiently small, then the

characteristic scale can be approximated. Hence, the

absolute value of the derivative of the similarity mea-

sure function (calculated by finite differences) is a local

maximum at the location of a characteristic scale. This

idea can be expanded to find all the characteristic

spatial scales within a radar observation. In summary,

an algorithm to find characteristic special scales present

in a radar observation is described by the following

steps:

1) A vector of spatial scale candidates is Preset for each

radar observation. The minimum scale in the vector

is chosen to be equal to twice the data grid spacing,

while the maximum scale is set to be equal to the size

of the major axis of the storm. In addition, the scale’s

step is equal to half of the radar grid spacing.

2) An averaging filter with filter size equal to the first

scale in the vector (step 1) is applied to the original

observation and yields the first filtered field. This

process is repeatedwith the other scales in the vector.

3) Compute a sequence of the normalized cross-

correlation values between the original field and

the filtered fields (cross correlation as a function

of scale).

4) Compute the absolute value of the finite difference

of the correlation function (from step 3).

5) Find the first local maximum and its corresponding

spatial scale. This scale is considered as an estimated

characteristic spatial scale of the radar observation.

6) Filter the original observation by an averaging filter

with the filter size equal to the scale found in step 5

and replace the original observation with this

filtered field.

Steps 2–6 are repeated until no other characteristic

scales are found.

2) PERFORMANCE EVALUATION

The performance of the scale estimation algorithm

developed in the previous section is illustrated using

simulation. Figure 2 shows a test image consisting of a

tiled checkerboard. This image shows two major scales,

the size of the smaller checkerboard squares at 25 pixels

and the size of the larger checkerboard squares at 50 pixels.
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The initial scale vector is chosen as [2:1:50] pixels for

this particular image. In this study, 2D Gaussian filter

kernels are used. A 2D Gaussian filter at location (x, y)

has the form

G
(x,y)

(u, y; s)5
1

2ps2
e2[(u2x)21(y2y)2/2s2] , (2)

where (u, y) are spatial variables. The size of this

Gaussian filter is determined by its standard deviation

parameter s; for that reason, s is also considered as the

‘‘scale’’ of the filter.

Figure 3a shows the discrete approximation of the

derivative of the cross-correlation function with respect

to the scale for the first iteration of the algorithm. A

local maximum is found at scale 10 pixels. Correspond-

ingly, it is the first estimated significant scale. The al-

gorithm is continuously processed and one more scale is

detected at 21 pixels (Fig. 3b) in the second iteration.

After this step, no further scale is found. In this type of

application, the goal is not to find absolutely accurate

estimates but to specify the scales that well represent

important structures of the image. Figures 3c and 3d

depict the size of the Gaussian averaging filters corre-

sponding to the estimated scales. Visually, they match

well to the checkerboard titles in Fig. 2.

b. Data model

Storms generally consist of many features at different

spatial scales, moving and evolving over time. Dis-

tinguishing between quickly and slowly evolving regions

within a storm and estimating temporal scales of these

regions are keys in designing an efficient scan strategy.

To overcome the design challenges, a space–time char-

acterizationmodel that includes the interaction between

space and time for the precipitation system is proposed.

The weather radar observations Z(x1, y1, t1),

Z(x2, y2, t2),. . . are sampled from the underlying field

Z(x, y, t),

Z(x, y, t)5X(x, y, t)1 e(x, y, t), (3)

where (x, y) is the location, t is the sampling time,

X(x, y, t) is the reflectivity field, and e(x, y, t) is the

measurement uncertainty.

A storm system is a complex physical process. In

general, there are two mechanisms involved in a storm

process: 1) the storm is constantly moving in the spatial

domain and 2) the storm evolves (growth or dissipation)

over time. To obtain the temporal scales associated with

different spatial scales, it is desired to decompose the

storm motion and the storm evolution processes. The

motivation behind this is to establish a technique to

characterize the storm evolution with the storm motion

pattern removed. Over a short period of time (in order

FIG. 3. Results of the spatial-scale estimation algorithm when applying to the simulated data in Fig. 2. The

derivatives of the cross-correlation function at the (a) first and (b) second iterations show local maxima at a scale of

10 and 21 pixels. (c),(d) The 2D isotropic Gaussian filters with the standard deviation parameter of 10 and 21 pixels,

respectively.

FIG. 2. A synthesized checkerboard image. The size of the smaller

checkerboard squares is 25 pixels and the size of the larger check-

erboard squares is 50 pixels. Pixel values range from 0 to 1.5.
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of minutes), we assume that the two processes are in-

dependent. The motion process can be presented by a

general flow system equation,

›

›t
X(x, y, t)52U(x, y)

›

›x
X(x, y, t)

2V(x, y)
›

›y
X(x, y, t)1S(x, y, t), (4)

whereU(x, y) is the x-axis motion velocity andV(x, y) is

the y-axis motion velocity over the spatial domain. The

growth/decay term is represented by S(x, y, t).

The motion field (U, V) of the storm system can be

estimated by solving the system of Eq. (4) (Gang and

Chandrasekar 2005). Once the motion fields are ob-

tained, they can be removed from the radar observations

X(x, y, t) by using an advection algorithm (Rood 1987)

to yield the motion-aligned observations denoted by

Y(x, y, t). It is assumed that within a short time period,

the motion at each observation time is the same. Using

the estimated motion field, the image at time ‘‘t’’ is ex-

trapolated to time ‘‘t 1 1’’ and the result is spatially

aligned with the measurement at time ‘‘t 1 1.’’ In gen-

eral, we can align all the radar precipitation fields with

reference to a certain temporal point.

The motion-aligned fields then are used to charac-

terize the storm evolution. The evolution process can be

represented by a kernel dilation model (Wikle 2002),

Y(x, y; t)5 g

ð
D

k
(x,y)

(u, y)Y(u, y; t2 1)du dy1h(x, y; t),

(5)

where D denotes the spatial domain, k(x,y)(u, y) is the

kernel function at spatial location (x, y), g is the evo-

lution control factor, and h(x, y, t) is the spatially in-

dependent colored/white noise.

The dilation kernel function can be approximated by a

linear sum of radial basis functions (Park and Sandberg

1991). In this work, the Gaussian radial basis functions

[Eq. (2)] are used and the kernel function is expressed as

k
(x,y)

(u, y)5 �
i

b
i
(x, y)G

(x,y)
(u, y; s

i
), (6)

where bi(x, y)$ 0 is the weight corresponding to the

Gaussian kernel G(x,y)(u, y; si) at location (x, y). As-

suming there are M spatial scales present in the obser-

vations, the sum in Eq. (6) is truncated at M. Upon

substitution of Eq. (6) into Eq. (5), we get a linear

model,
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(7)

where N is the number of observations, n is the discrete

sampling time stamp, and ai 5 gbi. When the number of

observations is no smaller than the number of spatial

scales, that is, N$M, Eq. (7) forms an overdetermined

linear system and can be solved by standard methods,

such as the linear least squares estimator (Lawson and

Hanson 1987).

It is noticed that the term Yn,i(x, y) [Eq. (7)] is the

convolution between a Gaussian kernel of si with the

observation Yn(x, y); therefore, it contains only features

with spatial scales equal to or larger than si. From Eq. (7)

one can interpret theweightai as an evolution indicator of

the feature related to si (called the feature of scale si).

Term ai . 1 indicates that the si grows and ai , 1 in-

dicates that the feature of si decays. Thus, the distribution

of ai will tell us about the growth and decay regions of si.

In designing a scan strategy, regionswith smallerai (decay

quickly) will be neglected because it ismore important for

the radar to detect and trackdeveloping hazardous events;

hence, si can be segmented by simply thresholding the ai

field. Mapping this region to each radar observation

Yn(x, y) (n5 1, . . . ,N) a sequence of measurements for si
is obtained. The temporal scale associated with si is then

simply calculated as the time when the 2D correlation

function [Eq. (1)] of the sequence drops below a set

threshold. A high threshold value ensures that the regions

are approximately stationary within the dwell time. In this

work, we define the threshold to be 0.9. Smaller temporal

scales indicate quick evolution and vice versa.

To illustrate the space–time characterization model

described above, we apply it to radar data from a sim-

ulation (Tripoli and Büker 2012) demonstrating tornado
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development. Figure 4 shows four consecutive radar

reflectivity factor fields at height 1 km above the ground.

The spatial sampling resolution is 120m on both the x

and y axes, and the temporal spacing between each ob-

servation is 30 s. For these simulated fields, no storm

motion process is included; therefore, the fields are al-

ready motion aligned. The figures show that there is a

fast development of the small features around the vortex

of the tornado, while the structures of the nearby regions

seem to change more slowly.

The scale estimation algorithm (section 2a) is applied

to each reflectivity field. For each field, two significant

spatial scales are found. The estimated spatial scales for

the four simulated fields are (0.42, 1.15), (0.50, 1.26),

(0.61, 1.41), and (0.57, 1.37) km. To find common spatial

scales representing all four fields, the estimated scales

are averaged with results (0.525, 1.297) km. Substituting

these scales into Eq. (7) we obtain a system of four linear

equations and two unknowns that can be solved by the

linear least squares method (Lawson and Hanson 1987).

FIG. 4. Simulated consecutive reflectivity factor fields of a tornado development. The spatial sampling resolution is

120m on both the x and y axes, and the temporal spacing between each observation is 30 s.
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Regions corresponding to the two estimated spatial

scales are separated by contours (Fig. 5). It can be seen

that the region of the main updraft and forward flank

downdraft near the tornado vortex circulation and the

region of rear flank downdraft where the smaller scale

features are prominent are successfully localized

(Fig. 5b). The evolution times of the two regions are

shown in Fig. 6. It is shown that the region near the

tornado vortex (corresponding to the smaller scale,

0.48 km) evolves faster with a decorrelation time of

0.159min, while the other region develops more slowly

with a decorrelation time of 0.274min. This result is

consistent with our hypothesis of the space–time vari-

ability of weather systems, where small-scale features

evolve more quickly than large-scale features.

3. Radar scanning regions

The space–time characterization model provides a

framework for segmenting a storm into different regions

based on its space–time variability features. Each region

is represented by a unique spatial and temporal scale. At

this point, the model is developed only for 2D data. In

practice, PAWR is designed to scan the precipitation

volume in both azimuth and elevation dimensions. The

adaptive scan strategy could be optimized for both di-

rections. It requires the model be modified to work with

3D data, which is beyond the scope of the present work.

We therefore simplify the task by optimizing the scan

strategy for each elevation angle. The outputs of the

adaptive scheduler will be a sequence of azimuth angles

where the radar beam will be located to obtain optimal

measurements.

Without the loss of generality, only a single-aperture

PAWR is considered and we assume that the radar scan

domain is limited to a 1208 sector. The radar scanning

region scheme (Fig. 7) within a storm varies constantly

due to a storm’s evolution over time and can be also very

different between storms, but in general it can be

grouped into three categories: separated, partially

overlapped, and completely overlapped. In the first case,

where scanning regions are separated (Fig. 7a), no fur-

ther processing is required before information is fed to

the scheduler. A case of partial overlapping is shown in

Fig. 7b. The azimuthal boundaries of the overlapping

region are indicated by dashed lines. The spatial scale

FIG. 5. Segmentation of the tornado (Fig. 4) based on its spatial-scale features: (a) region 1 with amajor spatial scale

of 1.297 km and (b) region 2 with a major spatial scale of 0.525 km.

FIG. 6. Correlation functions of the two regions in the tornado

simulated data (Fig. 5).
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and temporal scale of the overlapping region are defined

as min(s1, s2) andmin(t1, t2), respectively, where (si, ti)

are denoted for spatial and temporal scales of region ith,

respectively. If the spatial and temporal scales of the

overlapping region are different from that of either

existing region, then it is treated as a new scanning re-

gion. A similar approach is used for the case of the

completely overlapping category (Fig. 7c). If the space–

time scales of the smaller region are equal to or larger

than that of the larger region (region 1), then we do not

FIG. 7. Radar scanning region scheme.
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care about the smaller region and it can be removed

from the scheme. Otherwise, it creates a new scanning

region and the larger region is split into two separate

regions (region 1a and region 1b) with the same space–

time parameters.

Once all the scanning regions are specified, their

space–time diagram can be generated. In general,

scanning regions may begin at different time stamps and

have different evolution times. Figure 8 depicts this idea.

Knowing the space–time diagram helps the radar

scheduler optimize the scan with the goal of accurately

capturing more features from the storm.

4. Measurement error model

In designing the PAWR scan strategy, the measure-

ment error model is an important element. Many factors

need to be considered, such as the accuracy of the signal

spectral moment estimates (mean power, meanDoppler

velocity, and signal spectrum width) and the perfor-

mance of ground clutter filtering for weather applica-

tion. In this work, for the sake of simplicity, we use a

measurement error model based on the accuracy of the

mean power estimates and the signal-to-noise ratio

(SNR) is sufficiently large so its inverse is negligible and

can be omitted from the standard deviation equation of

the mean power (Doviak and Zrnić 1993). This keeps

the work focused on the main objective, which is the use

of the space–time characterization model for PAWR

scan strategy.

a. Case of no clutter

Let us first consider the case without ground clutter

contamination. For this case, signal power is estimated

as the mean of instantaneous power samples (Bringi

and Chandrasekar 2001). The number of samples

determines the accuracy of measurement. In the ideal

case where the signal samples are independent, the

variance of the mean power estimate is computed as

(Bringi and Chandrasekar 2001)

var(bP)5 (P)2

m
. (8)

The received signal is often express in decibel (dB) scale,

and the standard deviation of the mean power estimate

(dB) is given by

std[bP(dB)]’ 10 log
10

2411 std(bP)
P

35510 log
10

�
11

1ffiffiffiffiffi
m

p
�
,

(9)

where m is the number of samples. For example, we

need only m5 15 independent samples to achieve

std(bP)5 0:99dB. However, if the precipitation signals

are correlated, then a larger number of samples are re-

quired to obtain the same statistical variance. It is known

that the standard deviation of the signal power estimates

is a function of the number of samples and the signal

spectrumwidth (sp). For a given number of samples, the

variance of power estimates increases with the de-

creasing spectrum width (Bringi and Chandrasekar

2001). This is because the signal decorrelation time is

larger at smaller spectrum widths; therefore, the equiv-

alent number of independent samples is smaller. In

this work, the decorrelation time Td of the medium is

defined as the time for the signal autocorrelation func-

tion to fall to 0.01 instead of e21 as in Bringi and

Chandrasekar (2001). Thus, it is derived in a similar way

and is expressed as

T
d
5

2:146l

2
ffiffiffi
2

p
ps

p

, (10)

where l is the radar wavelength and sp is the signal

spectrum width.

As mentioned above, PAWR can instantly steer the

beam to scan and revisit a region. This capability of

PAWR permits a new pulsing scheme in order to reduce

the scan time without compromising the accuracy of the

radar measurements. The pulsing scheme for PAWR is

shown in Fig. 9. In this scheme, PAWR transmits and

receives a block of a small number of pulses, denoted by

mi for regions ith, and revisits that region after time Ti.

The revisit time (or update time) Ti is sufficiently large

such that the signals from adjacent blocks are un-

correlated. During the revisit time, the radar beam of

PAWR is steered within the other regions of interest to

collect samples at many beam locations. A block size

FIG. 8. The space–time diagram of radar scanning regions.
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mi $ 2 is required for the estimation of mean Doppler

velocity and spectrum width [beam multiplexing

(BMX); Yu et al. 2007). It is favorable to choose a block

size (mi) as small as possible to reduce the scan time;

however, mi needs to be sufficiently large to allow for

implementing a clutter filtering algorithm (section 4b).

In addition, a large block size will increase the number

of pulse pairs for Doppler processing, thus improving

the standard deviation of Doppler velocity estimates

over the BMX method (Yu et al. 2007).

Next, we will examine the statistical errors of the

power estimates for the block pulsing scheme. The

variance of the mean power estimate from a block is

given as (Doviak and Zrnić 1993)

var(bP)5 (P)2

m
i

�
(mi21)

l52(mi21)

�
12

jlj
m

i

�
r
p
(l) , (11)

where rp(l) is the correlation coefficient of weather

signal at lag l. When Mi blocks are independent, the

variance of the mean power estimate is

var(bP)5 (P)2

M
i
m

i

�
(mi21)

l52(mi21)

�
12

jlj
m

i

�
r
p
(l) . (12)

Figure 10 shows the standard deviation in estimated

powers using the simulation for an S-band radar. In this

example, the block size varies from 4 to 32 and sp is

chosen between two values representing narrow (2ms21)

and wide signal spectra (4m s21). The parameters are

estimated using the autocovariance method. White lines

are theoretical curves derived from Eq. (12) for the

standard deviation of power estimates 1 and 2dB. The

analysis aids the design stage of selecting a combination

of block size and number of independent blocks to

achieve the desired measurement accuracy. For exam-

ple, at spectrumwidth of 4m s21 and a block size of 4, we

need 10 blocks (i.e., 40 samples) to achieve a standard

deviation of estimated mean power less than 1dB, while

for conventional weather radar at least 64 samples are

needed to obtain a similar performance.

b. Case of clutter contamination

Ground clutter filtering is critically important for im-

proving the radar data quality of any weather radar

system. If not removed, the clutter may produce strongly

biased estimates of the fundamental spectral moments,

such as mean power, mean Doppler velocity, and spec-

trum width. For PAWR, the ground clutter issue is even

more vital because the phased array antenna beamwidth

and sidelobe-level performance are generally not as

good as that of the parabolic antenna, and it becomes

even worse when the beam is directed off boresight.

Therefore, PAWR demands a filter with a better clutter

suppression ratio. Additionally, in the PAWR block

pulsing transmission scheme (Fig. 9), the received signal

is not continuously sampled. In fact, it consists of many

independent blocks with fewer samples, so classical

clutter filtering methods will not work on this type of

data. Nguyen and Chandrasekar (2013) introduced a

new ground clutter filtering method [Gaussian model

adaptive processing in the time domain (GMAP-TD)]

that provides excellent performance even in cases of

strong ground clutter contamination. In this section, we

will extend the GMAP-TD algorithm to PAWR

block data.

In designing the GMAP-TD algorithm, the size of the

covariance matrix is configurable. This is a very impor-

tant feature of the GMAP-TD filter because it opens up

the possibility to adapt this filter to work in PAWR

FIG. 9. Block pulsing scheme for PAWR.
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block pulsing mode. A signal covariance matrix is gen-

erated from each block of lengthmi and then is averaged

over all blocks. This helps to reduce the variance of the

average covariance matrix and therefore improves the

performance of the GMAP-TD filter. In fact, the four

factors determining the filter performance are SNR,

block size, number of independent blocks, and ground

clutter level. For example, for a given clutter-to-signal

ratio (CSR), the same performance can be achieved by

either using a larger block size or increasing the number

of blocks. These factors are trade-offs and need to be

considered when designing the waveform for PAWR.

Next, the performance of the GMAP-TD filter is eval-

uated with different combinations of block size, number

of blocks, and CSR using simulations. In all cases, the

SNR is set at 20 dB. Input parameters for the simulation

are given in Table 1. A standard deviation of power

estimates is used to gauge the filter performance. The

first analysis is done by fixing CSR and varying the other

factors. Low CSR (20dB) and moderate CSR (40dB)

are used and the results are shown in Figs. 11 and 12,

respectively. White contour lines are superimposed at

std(P)5 1 dB and std(P)5 2 dB. It can be seen that the

GMAP-TD filter works well even with a small block

size. In most situations, six blocks of eight samples

would provide std(P)# 1:5 dB. In an extreme case,

where CSR 5 40dB and the spectrum width is as small

as 2m s21, a block size of 10 is required to obtain

std(P)# 1 dB. In the second analysis, we study the per-

formance of the GMAP-TD filter at various CSR levels

(Fig. 13) while the block size is fixed at 8. Apparently,

to retain the same performance, more blocks are re-

quired when CSR is increasing. If the accuracy re-

quirement is 1.5 dB # std(P) # 2 dB, then the method

needs a relatively small number of blocks (e.g., eight

blocks when sp 5 2ms21 and only six blocks when sp 5
4ms21). If a highly accurate measurement [std(P)5 1dB]

is required at CSR 5 40dB and a small spectrum width

(sp5 2m s21), then using a block size larger than eight is

recommended (Fig. 13a).

5. Design of scan strategy for PAWR

a. Adaptive scanning strategy

In designing the scan strategy for PAWR, the space–

time characterization model plays a key role. It handles

the storm motion and provides position information for

radar scanning regions and their space–time variability

parameters. Quickly evolving regions need to be scan-

ned more often than slowly evolving regions and the

scan needs to be complete within the evolution time. In

addition, regions with larger spatial scale can be sampled

at coarse resolution, while regions with smaller scales

need to be scanned using a finer resolution. Moreover,

the measurement error model provides information

about the number of independent samples that must be

collected at each beam location to achieve good data.

As a result, data quality and acquisition time can be

TABLE 1. Radar simulation input parameters.

Parameters Values

f (GHz) 2.72

CSR (dB) 20, 40

SNR (dB) 20

sp (ms21) 2, 4

Block size (samples) 1, 8

PRT (ms) 1.0

FIG. 10. Standard deviations of power estimates as a function of block size and number of independent blocks with

two spectrum width values: (a) sp 5 2m s21 and (b) sp 5 4m s21.
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optimized. This is a fundamental framework of an

adaptive scan strategy as proposed in this paper. How-

ever, the scan strategy will not be complete without

addressing the following considerations.

1) REVISIT TIME CONSTRAINTS

The revisit time or update time illustrated in Fig. 9 is

specified for each scanning region during scheduling to

minimize scan time. The requirements of independent

samples and fast scan put constraints on the revisit time.

While it is desirable to have a large revisit time to obtain

independent samples, the scan has to be completed

within the evolution time of the event. The revisit time

may or may not satisfy both conditions. To examine this

issue, let us consider an extreme scenario where an

S-band PAWR is scanning a rapidly evolving region

such that the area around the tornado vortex (Fig. 4) has

an evolution time of 0.145min, or 8.7 s. Assuming the

signal spectrum width is as small as 1m s21 at that re-

gion, the revisit time should be equal to or larger than

24.2ms [Eq. (11)] to get independent samples. Thus, in

this case we are able to collect 270 independent blocks of

eight samples that provide an estimated power with a

standard deviation less than 1 dB (Fig. 10). For most

meteorological applications, this level of accuracy is

adequate (ROC 2007). Therefore, it is assured that

when we constrain the total scan time to be equal to the

estimated evolution time, the average revisit time will

be equal to or larger than the signal decorrelation time.

Thus, for each scanning region we define the lower

boundary of the revisit time as the signal decorrelation

time, and the following procedure provides the upper

FIG. 11. Standard deviations of power estimates as a function of data block size and number of blocks with

CSR 5 20 dB, and two spectrum width values: (a) sp 5 2m s21 and (b) sp 5 4m s21.

FIG. 12. As in Fig. 11, but for CSR 5 40 dB.
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boundary: 1) given the block size and level of data ac-

curacy, specify a number of independent blocks (Mi)

based on the measurement error model (section 4); and

2) divide the evolution time by Mi to obtain the upper

boundary of the revisit time. The revisit time will then

be selected within this interval to produce an optimal

scan.

2) IMPROVED ADAPTIVE SCANNING WITH

NOWCASTING

Adaptive scanning strategies imply that the radar is

able to adjust the beam location to regions of weather

phenomena as they are predicted to develop. Hence,

short-term prediction (nowcasting) needs to be in-

tegrated into the scan strategy to improve radar obser-

vations. The predicted reflectivity field provides

information on the future position of a moving storm

and then this information is used to adjust the scan

strategy to observe the entire storm. This is very

important, especially when tracking or scanning a fast-

moving storm. The capability of this strategy is demon-

strated in Fig. 14. Figure 14 depicts an image of a

Collaborative Adaptive Sensing of the Atmosphere

(CASA) radar display on 17 May 2009, comparing

coverage afforded by radar node steering using previous

observation versus steering using a 5-min prediction

(Ruzanski et al. 2011). In this case, the stormwasmoving

toward the northeast. It can be seen that the leading

edge is observed when prediction information is used in

scan strategy and is missed when it is not used. Although

Fig. 14 is from an X-band radar network, this strategy

can be extended to any other ground weather radar

systems at different frequency bands, including S-band

phased array weather radars.

3) WAVEFORM SELECTION

The waveform selection process addresses the selec-

tion of adequate waveforms from a waveform database

for each radar scanning region. Primarily, this ensures

selecting the correct waveform and signal processing to

match the requirements of maximum unambiguity

range, maximum unambiguity velocity, range resolu-

tion, and measurement sensitivity. For surveillance

tasks, the radar may use a set of two predefined wave-

forms: one for longer range measurement and one for

high Doppler velocity measurement. For the main tasks,

the choice of waveform depends on the storm’s param-

eters at beam position and the goal of the measurement.

Available waveforms are uniform pulse repetition time

(PRT), batch PRT, and staggered PRT.

In summary, the flow diagram of the adaptive scan

strategy for PAWR is shown in Fig. 15.

b. Scheduler requirements

In this work the scan strategy algorithm for PAWR is

designed to work on a ray-to-ray basis. Each ray is

considered as a task, and the dwell time of the task (or

task time) is equal to the length of the block of pulses at

that ray. All tasks are competing for radar resources

(time and hardware); therefore, effective resource

management is required for a successful operation. The

central part of resource management is a scheduler that

arranges the tasks in a sequence without significant de-

lays. The requirements for a real-time scheduler for

PAWR can be summarized as follows:

1) Determine in real time a sequence of beam position

in which the sampling time at each position is

conditioned by the accuracy of measurement.

FIG. 13. Standard deviations of power estimates as a function of CSR and number of blocks with a block size of 8,

and two spectrum width values: (a) sp 5 2m s21 and (b) sp 5 4m s21.
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2) Follow a priority structure for the revisit times

according to the evolution of different storm regions.

3) Minimize the scan time to obtain high-temporal-

resolution observation of the storm.

4) Allow implementation of adaptive waveform control

according to different types of storms.

5) Maintain the angular separation between two con-

secutive beam positions to suppress high-order (e.g.,

second) trip echo from the previous beam position.

6) Balance scanning time and surveillance time.

7) Fully use the antenna/radar resources.

c. An algorithm for task scheduling in PAWR

In this section we present an algorithm that arranges a

sequence of the tasks based on the tasks’ priority and an

approach to optimize the radar scan time. The algorithm

works similarly to the time balance scheme to control

FIG. 15. Flowchart of PAWR adaptive scan strategy algorithm.

FIG. 14. Example demonstrating the importance of incorporating nowcasting into the scan strategy. Images from

the CASA radar display on 17May 2009, comparing coverage obtained by radar nodes steering using (left) previous

observations vs (right) adaptive scanning using 5-min nowcasts (Ruzanski et al. 2011).
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the scheduling of tasks as in the work of Stafford (1990).

The time balance concept was first introduced for military

applications and recently was extended for use in the ap-

plication of phase array radar for tracking multiple storms

(Reinoso-Rondinel et al. 2010). A scheduling algorithm

using the time balance scheme is summarized as follows:

1) Each task is associated with a time balance variable.

2) A positive time balance means the task is late for

execution. The task with the highest time balance

value has the highest priority.

3) When a task is finished, the time balance of all the

tasks is increased by the task time. Then, the time

balance variable associated with this task will be

decreased by its revisit time.

4) Steps 1–3 are repeated.

In addition to the main tasks, a surveillance task is in-

cluded in the scan strategy. When a surveillance task is

triggered, the radar will scan the nonprecipitating regions

at a rate that depends on the requirement of data quality.

The number of such regions defines the number of sur-

veillance tasks. The surveillance task time is defined as the

time needed by the radar to scan the entire surveillance

area continuously. The update time of a surveillance task

is provided by the user. For example, the user can assign a

high surveillance update time to important and potentially

hazardous storms and a low update time to other storms.

Usually, the surveillance task time and the update time are

much longer than the task time of scanning a ray. A sur-

veillance task is executed when it is at the highest priority

level or when the time balance of all the main tasks is

negative. In other words, surveillance runs when it is

requested or when radar resources are available.

As can be seen from the scheduler algorithm, changing

the update times of tasks will produce different results.

The question is how to choose the revisit times to obtain

optimal results and to avoid an overloading problem for

PAWR. In section 5a(1), we have proposed a method for

finding the constraints for the revisit time at every scan-

ning region. Each visit time is constrained in a specific

interval. In general, there is no closed-form expression for

this optimization problem, since the conditions vary from

case to case. Any attempt to change the update times

while scheduling tasks will exacerbate the complexity of

the algorithm. We approach this problem in a traditional

way: by considering all possible input combinations. To

do this, each revisit time is scannedwithin its interval with

the increment of radar PRT (normally on the order of

milliseconds) and then the combination that provides the

smallest scan time result is chosen. Because the scheduler

algorithm is fairly simple, this solution works well as

demonstrated in the next section.

d. The scheduler performance evaluation using
simulation

To demonstrate the advantage of PAWR, a simple ex-

ample of scheduling scanning tasks for a storm consisting

of two separate radar scanning regions is presented. One

region represents the quickly evolving (e.g., convective)

part of the storm. The other represents the slower de-

veloping region (e.g., stratiform) part of the storm. The

regions’ locations are shown in Fig. 7a. We assume that

PAWR antenna beamwidth can be configured to match

with the region spatial resolutions. At the region where

smaller spatial scales are present the antenna pattern is

formed to have a narrow beamwidth, and at a region

with a large spatial scale the antenna pattern is synthesized

with a wider beamwidth (in this case, 18 or 28). It is noted
that when the PAWR beamwidth increases, the antenna

gain diminishes, since it is inversely proportional to the

product of azimuth and elevation beamswidths. Conse-

quently, the SNR will drop by 6dB in the large-scale re-

gion if the beamwidth increases from 18 to 28. As

mentioned before (section 4), in this work we assume that

the SNR is sufficiently large so the drop in SNR does not

affect the analysis of the measurement error model. In

practice, the SNR needs to be considered and the sched-

uler algorithm has to account for the change in SNRwhen

forming the antenna’s beam. Based on the SNR in-

formation of the scanning region (this can be obtained

from a surveillance scan or a previous scan), the scheduler

determines the beamwidth of PAWR to minimize the

dwell time in that region. Details on this topic are beyond

the scope of this paper.

The space–time parameters of the two regions

generated by the characterization model are given in

Table 2. Additionally, we assume that the requirement of

minimum angular separation between two consecutive

PAWRbeampositions is 68 to avoid the effect of the high-
order trip echo from the previous beamposition.One scan

will complete when it achieves std(P)5 1 dB or better at

all azimuth locations. We will compare the scan time of

PAWRwith that of a conventional weather radar (CWR)

with a 18 beamwidth antenna. Also, no surveillance task is

TABLE 2. Space–time parameters of the radar scanning regions.

Azimuthal range (8) Azimuthal resolution (8) Evolution time (min) Spectrum width (m s21)

Region 1 31–65 1 0.15 4

Region 2 70–100 2 0.30 2
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scheduled in this example. Two pulsing schemes are

studied as follows:

1) CASE 1: BLOCK SIZE OF ONE FOR BOTH

REGIONS

Clearly, this pulsing scheme will provide the fastest scan

speed but no Doppler velocity or spectrum width. Using

the method proposed in section 5a(1), we compute the

revisit time intervals for regions 1 and 2: (6, 600) and

(12, 1200)ms, respectively.We try all the combinations for

the two revisit times (in this case the time increment is

1ms); the revisit times T15 10ms and T25 12ms provide

the smallest scan time. With this setting, PAWR is able to

finish scanning the whole storm (Fig. 7a) in only 0.835 s.

The final scheduled tasks (beam positions) in the first

200ms of the scan are shown in Fig. 16a. In contrast, a

conventional radar with a 18 beamwidth antenna requires

105 samples [Eq. (12)] at each azimuth location to obtain

std(bP)# 1 and therefore takes 7.35 s (105ms3 70 rays) to

finish this sector (from azimuth 318 to 1008).

2) CASE 2: BLOCK SIZE OF EIGHT FOR BOTH

REGIONS

Increasing the block sizewill increase the scan time, but it

also provides Doppler velocity and spectrum width esti-

mates and more importantly, it allows the implementation

of a ground clutter filtering algorithm (section 4b) if re-

quired. Hence, this scheme is more practical for normal

radar operation. From the measurement error model

(Fig. 10), we need to collect at least six independent blocks

at eachbeamposition for region1 (spectrumwidth: 4ms21)

and 10 independent blocks at each beamposition for region

2 (spectrum width: 2ms21). In this case, the upper bound-

ary for revisit times (in order to meet the requirement of

evolution time) for the two regions are 1285 and 1800ms,

respectively. The revisit time intervals for regions 1 and 2

are (6, 1285)ms and (12, 1800)ms, respectively. Again, by

scanning all the possible combinations for the revisit times,

we calculate values of T1 5 20ms and T2 5 12ms that

provide aminimumscan timeof 2.96 s. The scheduledbeam

positions for the first 1000ms are depicted in Fig. 16b.

Figure 16 shows that by using this strategy, the scan

time can be optimized while all the tasks are executed

(no overloading problem). Besides the total scan time,

scheduling parameters, such as the number of schedule

tasks at each beam location and the total task time, are

summarized in Table 3.

6. Summary and discussion

Phased array weather radar has the potential to pro-

vide fast updates that can help increase warning lead

FIG. 16. Schedule beam positions for cases with a block size of (a) 1 and (b) 8.

TABLE 3. Scan strategy algorithms’ outputs. Results for the total scan time are set in bold.

Block size of 1 Block size of 8

CWR PAWR CWR PAWR

No. of block/block size (samples) for region 1 1/105 15/1 1/105 6/8

No. of block/block size (samples) for region 2 1/105 15/1 1/105 10/8

Total scan time (s) 7.35 0.765 7.35 2.96

std(P) for region 1 (dB) 0.99 0.99 0.99 1.00

std(P) for region 2 (dB) 0.73 0.99 0.73 0.95
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times and to better understand quickly evolving

weather phenomena. To make full use of radar resources

and to achieve optimal observations, a scanning strategy

must be addressed. In this paper, a new concept of adap-

tive scanning strategy for PAWR has been introduced for

this purpose. The adaptive sensing framework is based on

the space–time variability feature of the storm. It is sug-

gested that regions with smaller spatial scales tend to

evolve more quickly than regions with larger scales and

therefore need to be updated more often. To validate this

hypothesis and to estimate qualitative parameters, a new

space–time characterization model for precipitation sys-

tems is developed. The system includes 1) an algorithm for

scale detection and estimation, 2) a characterization

model, and 3) a scheme for mapping space–time param-

eters into radar scanning regions. The scale estimation

algorithm detects the significant changes in similarity

measurements of the observation and its filtered outputs.

Using a model simulation, it is demonstrated that the

algorithm performs well with radar reflectivity data. A

space–time characterization model that explicitly in-

cludes the interaction between space and time has also

been presented and evaluated. The storm evolution

process over time is characterized by a kernel dilation

model after the storm motion pattern is removed. To

preserve the signal spatial characteristic, each kernel is

approximated by summation of many isotropic Gaussian

kernels whose scales are extracted from all observations

in the sequence. The weight factors of the kernels are

then thresholded and mapped into regions termed radar

scanning regions. The model has been tested on simu-

lated radar data. The results are consistent with our

space–time variability hypothesis.

Next, a new pulsing scheme solely developed for

PAWR and an associated measurement error model are

introduced. In this scheme, a radar beam will be rapidly

steered within the scanning regions to collect blocks of a

small number of samples and revisited after certain in-

tervals. A block size from 2 to 8 is chosen depending on

the clutter level at beam position. The measurement

error model is used to determine whether the data

quality requirement is satisfied.

Last, the design of the adaptive scan strategy is pre-

sented. Within the strategy, many aspects have been con-

sidered and discussed, such as calculation of revisit time

constraints, incorporation with nowcasting to improve

observation, spatial sampling adaptation, and waveform

selection. All these considerations provide critical inputs

for the scheduler that is responsible for scheduling all radar

tasks. A scheduling algorithm based on the time balance

concept is used in this work. Additionally, a procedure to

optimize the selection of revisit times for scanning regions

is also presented. The scheduler algorithm is demonstrated

to be stable and the computation is very efficient. The

occupancy is very high owing to the small task time (equal

to block size). As a result, PAWR can significantly reduce

the scan time while maintaining the data quality required

by conventional weather radar. Moreover, the designed

scan strategy allows PAWR to accurately capture storm

features within their evolution times.

Acknowledgments. This work was inspired by the

National Science Foundation (NSF) CASAEngineering

Research Center (ERC) program. The research work is

supported by CSUResearch Foundation (EDA14-245).

The authors thank Professor Greg Tripoly for providing

high-resolution model results used in this paper.

REFERENCES

Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler

Weather Radar: Principles and Applications. Cambridge Uni-

versity Press, 636 pp.
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