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ABSTRACT

In Part I of this study, a model of the distribution of true error variances given an ensemble variance

is shown to be defined by six parameters that also determine the optimal weights for the static and flow-

dependent parts of hybrid error variance models. Two of the six parameters (the climatological mean

of forecast error variance and the climatological minimum of ensemble variance) are straightforward to

estimate. The other four parameters are (i) the variance of the climatological distribution of the true con-

ditional error variances, (ii) the climatological minimum of the true conditional error variance, (iii) the rel-

ative variance of the distribution of ensemble variances given a true conditional error variance, and (iv) the

parameter that defines the mean response of the ensemble variances to changes in the true error variance.

These parameters are hidden because they are defined in terms of condition-dependent forecast error vari-

ance, which is unobservable if the condition is not sufficiently repeatable. Here, a set of equations that enable

these hidden parameters to be accurately estimated from a long time series of (observation minus forecast,

ensemble variance) data pairs is presented. The accuracy of the equations is demonstrated in tests using data

from long data assimilation cycles with differing model error variance parameters as well as synthetically

generated data. This newfound ability to estimate these hidden parameters provides new tools for assessing the

quality of ensemble forecasts, tuning hybrid error variance models, and postprocessing ensemble forecasts.

1. Introduction

Much work has been done in the last decade on the

construction and use of probability forecasts (Hersbach

2000; Wilks 2001; Hamill 2001; Mason and Graham

2002; Roulston and Smith 2003; Wang and Bishop 2005;

Raftery et al. 2005; Fortin et al. 2006; Vrugt et al. 2006;

Wilks and Hamill 2007; Wilson et al. 2007; Gneiting

et al. 2007; Casati et al. 2008). In part, this work was

motivated by the introduction of routine ensemble

forecasts at major operational weather forecasting

centers in the 1990s (Toth and Kalnay 1993; Molteni

et al. 1996; Houtekamer et al. 1996) from which it

was relatively straightforward to generate forecasts of

the probability of weather events occurring. Many of

these studies began with the assumption/hope that

ensemble forecasts were sampling flow-dependent

error distributions or at least an approximation to

the true flow-dependent error distribution. As dis-

cussed in Bishop and Satterfield (2013, hereafter

Part I), aperiodic chaos makes it difficult to assess

the accuracy of forecasts of flow-dependent error

distributions.

How can one measure the accuracy with which imper-

fect ensemble variances predict the true error variance?

Existing measures used to evaluate the performance of

an ensemble such as the Brier score (Brier 1950), igno-

rance (Roulston and Smith 2002), entropy, relative en-

tropy and mutual information (Kleeman 2002; DelSole
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2004) convolve distinct aspects of ensemble performance,

such as the accuracy of the ensemble mean and the

ability of the ensemble to distinguish fluctuations in

error variance from the climatological mean of the

error variance. The sensitivity of these diagnostics to

flow-dependent error variance prediction accuracy is

generally obfuscated. Atger (1999) found that flow-

dependent ensemble variances added no more value

to the Brier skill score of an ensemble forecast than

did static empirically derived variances. Is this result

indicative of an ensemble whose variance is a poor pre-

dictor of error variance or is it that the Brier skill score

is insensitive to the accuracy of flow-dependent error

variance predictions? It is difficult to say because the

sensitivity of the Brier skill score (Brier 1950) to flow-

dependent error variance prediction accuracy is in-

direct and would depend on, among other things, the

true climatological range of error variances experienced

by the forecasting system. If, for example, the true error

variance showed little variance from one flow to the

next, thenAtger’s result would be unsurprising. It would

be helpful for many applications as well as to efforts

to understand predictability results such as Atger’s if

we could deduce (i) the climatological distribution of

the true conditional forecast error variances, (ii) the dis-

tribution of the error variance predictions given a true

error variance, and (iii) the distribution of the true error

variances given an error variance prediction. In Part I,

we showed that a compelling model of these three

distributions can be built from just six parameters. The

goal of this paper is to show how these six parameters

can be estimated from a long data record of (observa-

tion minus forecast, ensemble variance) pairs.

In section 2, we derive the six equations that define

the six parameters. Section 3 tests these parameter re-

covery equations. Discussion and conclusions follow in

section 4.

2. Estimation of hidden error variance parameters
with data

a. Review of hidden error variance distributions
and parameters

The first two distributions to be estimated from Part I

are as follows.

(i) Inverse-gamma probability distribution function

(pdf) describing the prior pdf of forecast error variances

s2 given by

rprior(s
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where s2
min is the climatological minimum of the true

forecast error variance and a and b are parameters de-

fining the climatological mean hs2i and variance var(s2)

of the climatological distribution ofs2. As pointed out in

Part I, a and b satisfy
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where the angle bracket indicates the expectation op-

erator. (ii) A gamma pdf describing the likelihood pdf

of ensemble variances s2 given a true error variance s2.

Namely,
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where s2min is the climatological minimum of the en-

semble variances and a and k determine the mean and

relative error variances of the likelihood pdf via the

equations

h(s22 s2min) js2i5 hs22 s2minis2 5 a(s22s2
min) (4)

and

var[(s22 s2min) js2]

[a(s22s2
min)]

2
5

1

k
, (5)

where h(s2 2 s2min) js2i5 hs2 2 s2minis2 and var[(s2 2 s2min) j
s2], respectively, refer to the mean and variance of the

distribution of (s2 2 s2min) for a fixed s2. Note also that

var[(s2 2 s2min) js2]5 var(s2 js2).Wewill later use var(s2)

to refer to the variance of s2 over the entire climatological

sample (and hence all possible values of s2).

The third key distribution of the hidden variance

model introduced in Part I is the posterior distribution

of the true forecast error variances given an ensemble

variance, but this distribution can be obtained directly
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from (1) and (3) via Bayes’ theorem. Hence, the key

challenge is to accurately estimate the six unknown pa-

rameters [s2
min,a,b, s

2
min, a, k], which define (1) and (3),

from a long time series of output from an ensemble

forecasting scheme. Since (2) shows how to derive

a andb from hs2i, var(s2) and s2
min, it is sufficient to

recover the true values of [hs2i, var(s2),s2
min, s

2
min, a,k].

The four parameters [var(s2),s2
min, a, k] would be

trivial to estimate if one could directly observe the true

flow-dependent forecast error variance s2. However, as

noted in Part I, s2 is practically unobservable in systems

exhibiting aperiodic chaos. For this reason, [var(s2),

s2
min, a, k] are the hidden parameters of Part I’s analyti-

cal pdf’s. In Part I, we used replicate systems to reveal

their values. In the following, we present equations that

allow them to be deduced from a single system.

b. Equations to estimate hidden parameters
of pdf’s of true error variances

Ensemble forecasting schemes usually provide a high-

resolution control forecast and a lower-resolution en-

semble mean forecast. Either one of these or a linear

combination of them could be used to define a single

‘‘best’’ forecast x
f
i of an observation yi with error vari-

anceRi (Ri may differ from one observation to the next).

Corresponding to each forecast of an observation is an

ensemble variance s2i and an innovation yi 5 yi 2 x
f
i .

Thus, it is straightforward to use an ensemble forecasting

system to create a long data record (yi, s
2
i ), i5 1, 2, . . . ,n

of (innovation, ensemble variance) data pairs. The cli-

matological mean of yi would be zero if all observations

and forecasts were unbiased. If bias is present and

hyii 6¼ 0, it is a simple matter to create an unbiased set

of innovations by subtracting hyii from each individual

realization of yi. Hence, we hereafter assume that the

dataset (yi, s
2
i ), i5 1, 2, . . . ,n has been bias corrected so

that hyii5 0. In the appendix, we derive equations that

estimate the parameters [hs2i, var(s2),s2
min, s

2
min, a, k]

from (yi, s
2
i ), i5 1, 2, . . . , n; namely,

hs2i5 hy2 2Ri , (6)

var(s2)5
hy4i
3

2 (hs2i1 hRi)22 var(R)

5 (hs2i1 hRi)2
�
kurtosis(y)2 3

3

�
2 var(R) ,

(7)

s2min- defined by ensemble designer or

s2min5min(s2i ) over all i if sample is large, (8)

a5
covar(y2, s2)

var(s2)
, (9)

s2
min5 hs2i2 hs2i2 s2min

a
, (10)

and the relative error variance

k215
var(s2)2 a2var(s2)

a2[(hs2i2s2
min)

21 var(s2)]
(11)

empirically define the parameters of Part I’s analytical

model. Equation (7) assumes that the innovation yi is

a stochastic normally distributed random process given

a true flow-dependent error variance s2
i and a true ob-

servation error variance Ri, covar(y
2, s2) gives the co-

variance between y2 and s2, and var(s2) give the variance

of the climatological distribution of ensemble variances.

In Part I, we point out that the minimum error vari-

ance estimate of the true error variance is the mean of

the posterior distribution of the true error variances

given an imperfect ensemble variance s2. In addition, we

show that this mean error variance is equal to a weighted

combination of the ensemble variance s2 and the cli-

matological error variance hs2i. We suggest that these

weights might be of assistance to researchers trying to

optimally tune hybrid error covariance models that lin-

early combine static covariances with flow-dependent

covariances. Specifically, in Part I we give the equation

P
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as an ansatz for the optimal weights for hybrid error

covariance models; although, strictly speaking, (12) is

only valid for variances, not covariances. For simplicity

and to conform to the hybrid covariance model sug-

gested by Hamill and Snyder (2000), let us assume that

P
f
Ensemble

a

21�
s2
min2

s2min

a

�
~Q
min

climatology’ 0,

#"
(13)

so that (12) can be approximated by

P
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where wE5
1

a

�
k
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�
and wc5

�
(a2 1)
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�
.

(14)
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To use (2) and (6)–(11) to estimate the weights wE

andwc for the respective ensemble-based and climato-

logical short-range forecast error covariances, one must

apply (6)–(11) to innovations from a short-range fore-

cast. One possible concern in applying (6)–(11) to such

innovations is that one of the key tests of the quality of

an observation is the degree by which its associated in-

novation magnitude exceeds the expected innovation

standard deviation. Many observation quality control

schemes deem observations associated with very large

innovations to be ‘‘poor’’ and remove them from the

observational dataset. Such systematic removal of large

innovations will compromise the estimate of the in-

novation kurtosis used in (7). For this reason, we were

initially concerned that estimates of the hybrid covari-

ance model weights given by Part I’s (10) might be

adversely affected by this data quality control issue.

However, the appendix shows that

wE 5
1

a

k

(k1a2 1)
5

covar(y2, s2)

var(s2)
. (15)

Consequently, wE is not directly affected by the kurtosis

of the innovations and hence observation quality control

schemes will affect wE only to the extent that observa-

tion quality control would negatively influence estima-

tion of the quantity covar(y2, s2)/var(s2). Once (15) has

been used to define wE, the requirement that the cli-

matological average of the hybrid variance be equal to

the observed climatological average of forecast error

variance gives

hs2i5wEhs2i1wchs2i0wc 5
hs2i2wEhs2i

hs2i . (16)

Equation (16) assumes that the variance elements in

P
f
climatology are equal to the climatological average of the

true error variance hs2i of their corresponding variables.
In practice, the static covariance matrix used in place

of P
f
climatology may have inaccurate variance elements,

which we will generically denote as hs2iguess, where it is

understood that, in general, hs2iguess 6¼ hs2i5 hy2 2Ri.
In this case, the requirement (16) gives

hs2i5wEhs2i1wchs2iguess0wc5
hs2i2wEhs2i

hs2iguess
.

(17)

Equations (16) and (17) show that the weight wc is also

largely independent of the kurtosis of innovations and

hence likely to be largely insensitive to adjustments of

data quality control schemes.

The above equations define the parameters of the

hidden error variance pdf’s defined in Part I. However,

they are more general than this because (i) they define

the mean and variance of the prior distribution of the

true error variances irrespective of whether the as-

sumption of an inverse-gamma prior is correct or not

and (ii) provided that the likelihood pdf L(s2 js2) of the

ensemble variances given a true error variance is created

by a stochastic process of the following form:

(s2 2 s2min)5 a(s22s2
min)1 j, where j is random and

hji5 hjs2i5 0. (18)

Equations (6)–(11) define the parameter a, which gives

the change of the mean of the pdf of the variance pre-

dictions per unit change in the true variance s2. The rate

value a obtained from these equations is valid irre-

spective of the precise form of the likelihood pdf. Hence,

the above equations can be used tomeasure the accuracy

of ensemble-based predictions of forecast error vari-

ance irrespective of the underlying forms of the prior

and likelihood pdf’s. We note that even if (18) was not

precisely satisfied, (18) can nevertheless serve as a first-

order statistical approximation to the relationship be-

tween ensemble variance and true error variance.

Our analysis provides a number of new measures of

ensemble forecast accuracy. Provided that the likeli-

hood pdfL(s2 js2) of the ensemble variances given a true

conditional error variance is created by a stochastic pro-

cess of the form given by (18), then the relative variance

of the likelihood pdf is given by

1

k
5

2

M2 1
5

var[(s22 s2min) js2]

[a(s22s2
min)]

2
5

var(s2 js2)

[a(s22s2
min)]

2
(19)

while its mean is a(s2 2s2
min)1 s2min irrespective of

whether the likelihood pdf takes the form of a gamma

pdf or some other distribution. Equation (18) can be

rearranged to obtain a debiased ensemble-based error

variance prediction s2
n ’ s2/a2 (s2min/a2s2

min), which is

unbiased in the sense that its average value for a fixed

s2 is precisely equal to s2. If the relative variance of

L(s2 js2) is very small (large), then the approximation

s2
n ’ s2/a2 (s2min/a2s2

min) is very accurate (inaccurate).

Note that this measure of the ability of the (unbiased)

ensemble variance to predict true error variance is in-

dependent of (i) the accuracy of the forecast xf and (ii) the

ensemble variance bias hs2 2s2i. In contrast, as far as the
authors are aware, existing measures of probabilistic

forecasting accuracy such as the Brier score, ignorance,

and relative operating characteristic methods are highly

sensitive to both the accuracy of xf and the degree of
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under- (over-) dispersion of the ensemble variance. Our

new measurement of ensemble variance accuracy can be

expressed either in terms of the relative variance k21 or

an effective ensemble size M [see (19)]. As shown in

Part I, M 5 2k 1 1.

A second new quantity revealed by our analysis is the

relative variance of the climatological distribution of

true conditional error variances. From (2),

1

(a2 1)
5

var(s2)

(hs2i2s2
min)

2 1 var(s2)
0

1

(a2 2)

5
var(s2)

(hs2i2s2
min)

2
. (20)

When this measure is large (small), the potential value

of the imperfect flow-dependent variance prediction is

large (small). As far as the authors are aware, this for-

mula provides the first practical ‘‘instrument’’ for mea-

suring this quantity.

3. Tests of estimation formulas

a. Can the hidden parameters of Part I be recovered
by (6)–(11)?

In Part I, we revealed the posterior distribution of

true error variances given an ensemble variance to-

gether with the associated hidden parameters [var(s2),

s2
min, a,M] by running 25 000 replicate systems all hav-

ing the same true state but differing realizations of

forecast and observation error. The setup allowed us

to collect 25 000 independent realizations of forecast

error for each flow, which, in turn, allowed us to accu-

rately compute the true flow-dependent forecast error

variance s2. From these realizations of s2, we were able

to estimate the four hidden parameters [var(s2),s2
min,

a,M]. Our claim is that (6)–(11) enable us to obtain

these parameters, not from the impractical artifice of

replicate systems, but from a long time series (yi, s
2
i ),

i5 1, 2, . . . , n of (innovation, ensemble variance) pairs

from a single ensemble forecasting system. To test this

claim, we extended one of the data assimilation (DA)–

forecast runs from Part I until we had a long time series

of (innovation, ensemble variance) pairs on which to

apply (6)–(11). We then compared the values of [hs2i,
var(s2),s2

min, s
2
min, a,M] obtained using (6)–(11) on this

long run with those obtained in Part I by applying the

replicate system approach to a much shorter run.

Details of the long run and replicate system short

run are as follow. The nonlinear model used is a

10-variable version of the Lorenz (1996) model [identical

to model 1 of Lorenz (2005)]. Model imperfection is

introduced by adding noise of variance q to the initial

conditions before each forecast is made. The DA scheme

is an adaptation of the ensemble transform Kalman filter

(ETKF; Bishop et al. 2001) that accounts for model er-

ror (details are given in appendix A of Part I). The time

step used in the model is analogous to a 6-h time step

(see Part I for details). DA is performed every two time

steps (;12 h). The short run that used replicate systems

was composed of 400 time steps and 200 corresponding

DA cycles. Results associated with the first 50 time steps

were removed to allow for system ‘‘spinup.’’ The long

run was the same as a short run except it started from

a different set of initial conditions and used differing

random realizations of forecast and model error and it

was run for 400 100 time steps, the first 100 of which

were discarded (400 100 time steps corresponds to

100 025 pseudodays). This approach left 200 000 ob-

servation times for use in constructing the archive of

(innovation, ensemble variance) pairs. Since 10 vari-

ables are observed at each DA time, the long run yields

23 106 (innovation, ensemble variance) pairs fromwhich

to attempt parameter recoveries using (6)–(11). To

quantify the sensitivity of the parameter recoveries ob-

tained by random processes, the long run and associated

parameter recoveries were independently repeated seven

times using differing random realizations of the initial,

observation, and model errors.

Comparison of ETKF variance with the true error

variance obtained from the replicate earth experiment

showed the ETKF to be an extremely accurate predictor

of error variance in our idealized system in which all

sources of error were known and accurately accounted

for (see Part I for details). Because such near-perfect

variance predictions are unattainable in real systems,

our primary interest here is in the distribution of the

true error variances given an imperfect ensemble var-

iance. To create imperfect ensemble variances, it was

necessary for us to generate synthetic ensemble vari-

ances from the ETKF variances that were less accurate

than the ETKF variance. For each of the seven long runs,

we did this by first finding the minimum value of the

ETKF ensemble forecast variance over the 400 000 time

step test period over all seven runs and defined this

value to be s2min. This approach gave s2min5min(s2ETKF)5
1:63053 1024, where s2ETKF is a realization from the set

of ETKF variances produced during the long run. Next,

degraded ensemble variances were obtained using

s25 s2min1h , (21)

where h is a variance drawn from a gamma distribution

with mean (s2ETKF 2 s2min) and relative variance k21 5
2/(M2 1). This approach produces distributions of

sample variances that would be identical to those given
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by (3) and (18) if the ETKF variance were precisely

equal to the true flow-dependent error variance (as

shown in Part I, there is a small variation in the ETKF

variances about the true error variance). In the follow-

ing experiments, we considered two distinct M values:

M 5 2 and M 5 8, which give relatively inaccurate and

accurate ensemble variances, respectively. For each of

the seven 200 000 DA cycles, we used (21) to produce

three sets of degraded ensemble variances for both the

M 5 2 and M 5 8 cases. This approach gave 21 quasi-

independent sets of (innovation, ensemble variance) pairs

(7 strictly independent 3 3 quasi independent).

Equation (8) gives two methods for estimating the

climatological minimum s2min of s2. The first is appro-

priate if the ensemble has been explicitly designed to

prevent the ensemble variance from falling below some

user-specified value s2min. In our system, the ensemble

variances have been designed to never fall below

min(s2ETKF), so we simply set s2min 5min(s2ETKF) over the

seven independent trials. This approach gave exactly

the same value as was used to generate the ensemble

variances. The second method given by (8) involves

simply setting s2min equal to the minimum observed

value of the stochastic s2 over some long trial period.

We performed experiments using this method as well

and found that it had little impact on the values ob-

tained for other variables. Presumably, this lack of

sensitivity is associated with the fact that both methods

of estimating s2min produced s2min values that were one to

two orders of magnitude smaller than the climatologi-

cal average of the ensemble variances hs2i. For the re-

mainder of the parameter recoveries to be discussed in

this paper, the first method is used to determine s2min.

Our idea of comparing the hidden parameters re-

trieved from a single long run to those ‘‘observed’’ in the

replicate system experiments in Part I assumes that the

climatological distribution of true error variances and

the likelihood distribution of ensemble variances are the

same for the ‘‘short’’ 400 time step period considered in

Part I as the 400 000 time step period considered here.

One crude indicator of the validity of this assumption is

the degree of similarity between the estimate of the

mean forecast error variance hs2i from the initial 400

time step period and the longer 400 100 time step pe-

riod. Figure 1 shows that the value of hs2i obtained from
the ‘‘short’’ 400 time step run is almost exactly the same

as the mean of the values obtained from the seven

‘‘long’’ 400 000 time step runs.

The bars in Fig. 2 marked ‘‘observed’’ give the values

of the hidden parameters var(s2),s2
min, a and M re-

vealed by Part I’s short replicate system experiment.

Figure 2 allows these observed values to be compared

with theminimum,mean, andmaximum values retrieved

from the 7 3 3 long sets of (innovation, ensemble

variance) pairs using (6)–(11). Figures 2a and 2c show

that for the hidden parameters var(s2) and a, the

mean of the values from the seven independent ex-

periments is very close to the observed value (see Figs.

2a and 2c).

Figure 2b shows that the range of retrievals of s2
min

obtained from individual runs is quite large. Equation

(10) does not exclude the possibility of negative s2
min

values and Fig. 2b shows that the minimum retrieved

value is actually negative. Since s2
min is known to be a

positive semidefinite quantity, one can imagine creating

a more sophisticated Bayesian estimation scheme for

s2
min that would combine the prior information about the

sign of s2
min with the value given by (10). However, for

the sake of simplicity, we do not explore that avenue in

this paper.

Figure 2b also shows that the mean value from the

seven independent trials is significantly smaller than

the observed value. However, recall from Part I that the

observed value was obtained by setting s2
min equal to

the smallest of the 1750 realizations of s2 obtained in the

replicate system experiment. Since it seems likely that

even smaller values of s2 would be obtained if this ex-

periment were run for a longer period of time, it is highly

probable that the value of s2
min obtained by this method

is an overestimate of the true value of forecast error

variance. Hence, the retrieved s2
min value may be more

accurate than that suggested by Fig. 2b. Examination

of (1) and (2) shows that, provided s2
min is significantly

smaller than hs2i, it will have very little effect on the

form of the prior pdf of the true conditional forecast

error variances. For the case considered in Fig. 2,

hs2i5 7:33 1023, while the retrieved range of s2
min is

[24:83 1024, 1:23 1023] for M 5 2 and [24:83 1024,

1:23 1023] for M 5 8. Hence, the retrieved s2
min were

FIG. 1. Comparison of the estimate of the climatological mean

forecast error variance hs2i from the ‘‘short’’ 400 time step ex-

periment with the minimum (min), mean, and maximum (max)

values of hs2i obtained from the seven independent ‘‘long’’ 400 000

time step experiments.
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all at least an order of magnitude smaller than hs2i5
7:33 1023. For this reason, the uncertainty in the re-

covered s2
min only has a minor effect on the prior pdf in

this case.

Figure 2d shows that (6)–(11) yield an effective en-

semble sizeM5 2k2 1 that is very close to the ‘‘given’’

values of M that were used to generate the ensemble

variances. In both the M 5 2 and 8 cases, the retrieved

values ofM are slightly smaller than the given values. A

possible explanation for this is that we saw in Part I that

the ETKF variances exhibit (slight) stochastic variations

around the true error variance. Hence, fluctuations of

s2 about the true flow-dependent error variance are not

only caused by the size of the random sample used to

generate s2 from the ETKF variance but also from the

inherent fluctuations of the ETKF variances about the

true conditional error variance. From this perspective,

one would expect the recovered effective ensemble sizes

to be smaller than the given ensemble sizes. Figure 2d is

consistent with this expectation.

In summary, Fig. 2 shows that mean of the retrievals

of the hidden parameters var(s2),s2
min, a and M from

long time series of (innovation, ensemble variance)

pairs are in reasonable agreement with the replicate

system approach. As shown in Part I, these parameters

define the inverse-gamma posterior pdf of true error

variances given an ensemble variance.

b. Model error dependence

Figure 2b showed that the relative error in individual

recoveries of the parameter s2
min was quite large while

the actual value of s2
min was very small compared with

the climatological average of the forecast error variance.

In addition, Fig. 1 shows that the mean forecast error

variance is about 10 times smaller than the observation

error variance (R 5 0.05) used for these experiments.

In atmospheric DA, observation error variance and

forecast error variances are generally estimated to be of

the same order of magnitude. Increasing model error

will increase forecast error variance and bring the ratio

of forecast error variance to observation error variance

closer to that of the atmosphere. How would the pa-

rameters of the hidden distributions of true error vari-

ance change if the model error variance parameter was

increased?

This question motivated us to explore how the re-

trieved parameters would change if we were to increase

the model error variance. In our setup, as described in

detail in Part I, model error is simulated by adding

random, uncorrelated noise of variance q and mean

zero to each of the initial conditions before themodel is

integrated.

Figure 3a shows how the ratio of the mean forecast

error variance divided by observation error variance

FIG. 2. Retrieved hidden parameters: (a) var(s2), (b) s2
min, (c) a, and (d) M. Each plot summarizes information

from 21 attempts to retrieve the hidden parameters from 200 000 DA–forecast cycles with the Lorenz model and

model error parameter q5 0.0001. The valuesmarked as ‘‘observed’’ are the values obtained from the 175DA cycles

of the 25 000 ‘‘replicate systems’’ described in Part I. The ‘‘given’’ ensemble sizes in (d) are the random sample

ensemble sizes used to degrade the quality of the ETKF ensemble variance. The values marked as min, mean, and

max are the minimum, mean, and maximum of the values retrieved from 21 sets of 200 000 DA cycles. In (b)–(d) the

black and gray bars correspond to given values of M 5 2 and 8 cases, respectively.
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increased by about a factor of 3.7 as the model error

variance parameter was increased by a factor of 100 from

q 5 0.0001 to q 5 0.01. Using the same method as for

the q 5 0.0001 case, the estimated s2min for the q 5 0.001

and q5 0.01 cases were estimated to be 1:293 1023 and

3:373 1023, respectively. (Recall that s2min 5 1:633 1024

in the q 5 0.0001 case.) We expected s2min to increase

with model error variance because the ensemble-based

estimation of model error variance was designed to per-

fectly match a constant model error variance q associated

with the first time step of each nonlinear integration of

the model (see appendix A in Part I). Consequently, as

the model error variance is increased, s2min ought to in-

crease as well.

Figures 3b and 3d show how the 100-fold increase in q

markedly increased the retrieved values of s2
min re-

gardless of the given ensemble sizeM. To be precise, the

mean of the recovered s2
min values increased by factors

of 32 and 37 for theM5 2 (Fig. 3b) andM5 8 (Fig. 3d)

cases as q was increased from 0.0001 to 0.01. With the

low q5 0.0001 value, a spurious negative value for s2
min

was obtained; however, with the q 5 0.001 and q 5 0.01

cases, no negative s2
min value were recovered. In prin-

ciple, the climatological minimum of true forecast error

variance s2
min should be independent of the ‘‘effective

ensemble size’’ M associated with the ensemble that is

used to retrieve the hidden parameter s2
min. The simi-

larity of the s2
min retrieved using the M 5 2 and 8 en-

sembles is in accord with this principle.

Figure 3c shows that the retrieved variance of the

climatological distribution of true conditional error vari-

ances is also an increasing function of q. To be precise,

as q was increased from 0.01 to 0.0001, the mean of the

retrieved values of var(s2) increased by a factor of 3.4

(this quantity is entirely independent of the given en-

semble size M).

The relative variance of the prior distribution of error

variances is tied to the a parameter of the inverse-gamma

distribution via the equation (a2 2)21 5 var(s2)/hs2i2.
When this parameter is large (small), the third moment

of the climatological distribution of the true conditional

error variances is large (small). Figure 4 shows that, for

our model error representation, this parameter was

a decreasing function of model error.

The slope parameter a determines the rate of increase

of the mean of the likelihood distribution of the en-

semble variances with the true error variance. In theory,

this parameter is independent of the effective ensemble

size of the ensemble used to retrieve it. Comparison of

Figs. 5a and 5c demonstrates that this theoretical expec-

tation is met by the retrieved a value. Figures 5a and 5c

suggest that a decreases (slightly) as q increases.

Figures 5b and 5d show that the retrieved effective

ensemble size is largely independent of q for given en-

semble sizes of 2 and 8. Furthermore, it shows that the

retrieved ensemble sizes are very close to the given en-

semble sizes. It also shows that the range of retrieved

effective ensemble sizes over the 7 3 3 trials decreased

FIG. 3. Variation with model error parameter q of the parameters defining the climatological prior distribution of

forecast error variances. Valuesmarkedmin, mean, andmax are theminimum,mean, andmaximum values obtained

from 21 trials. (a) Ratio of hs2i/hRi. (b),(d) The value of s2
min forM5 2 and 8, respectively. (c) The value of var(s2).
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as the model error was increased. Does this mean that

the error of retrieved effective ensemble sizes is smaller

in the parameter regime associated with the high model

error q 5 0.01? To investigate this question, in the next

subsection, we generate synthetic data that are precisely

consistent with the mean retrieved parameters obtained

in this section.

c. Tests based on synthetic data

To test whether (6)–(11) can infer the correct prior,

likelihood, and posterior distributions of forecast error

variance, in this section, we apply the equations to syn-

thetic data. This demonstration has the following steps:

1) Specify the six parameters [hs2i, var(s2),s2
min, s

2
min,

a,M]. From this set, use (2) and (5) to derive

[a,b,s2
min, s

2
min, a,k].

2) Generate n random samples s2
i , i5 1, 2, . . . ,n from

the inverse-gamma prior pdf of forecast error vari-

ances given by (1). This was done using built-in

Matlab functions to generate gamma random num-

bers and using the fact that if s2 ;G21(a,b), then

1/s2 ;G(a, 1/b).
3) Generate n corresponding innovations yi 5 «

f
i 2 «oi

for i5 1, 2, :: , n events, where the forecast errors «
f
i

and observation errors «oi are drawn from zero mean

normal distributions with variances of s2
i and Ri,

respectively.

4) Generate n corresponding random samples s2i , i5
1, 2, :: ,n from the likelihood gamma pdf of ensem-

ble variances corresponding to an ensemble size of

M given by (3).

5) Test whether the parameters used to generate (yi, si),

i5 1, 2, :: , n can be recovered by applying the hidden

error variance from (6)–(11) to the data pairs (yi, si),

i5 1, 2, :: , n.

Each of the parameter recoveries from the previous

subsections were based on 23 106 (innovation, ensemble

variance) pairs. We performed 60 completely indepen-

dent parameter recoveries using 23 106 synthetically

generated (innovation, ensemble variance) pairs. By

computing the minimum, mean, maximum, and standard

FIG. 4. Relative variance of the climatological distribution of the

true forecast error variances as a function of model error.

FIG. 5. Variation with model error parameter q of the parameters defining the likelihood distribution of ensemble

variances given a true error variance. Values marked min, mean, and max are the minimum, mean, and maximum

values obtained from 21 trials. (a),(c) The recovered slope parameters a for M 5 2 and 8, respectively. (b),(d) The

effective ensemble sizes M, retrieved from the M 5 2 and 8 experiments, respectively.
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deviation of the recovered parameters and comparing

these with the actual parameters that were used to

generate the (innovation, ensemble variance) pairs, we

were able to robustly describe the accuracy of the pa-

rameter recoveries obtained from (6)–(11). We test six

distinct parameter sets, each precisely corresponding to

the parameters previously retrieved from the Lorenz

model experiments for the (q 5 0.0001, M 5 8), (q 5
0.001, M 5 8), (q 5 0.01, M 5 8), (q 5 0.0001, M 5 2),

(q 5 0.001, M 5 2), and (q 5 0.01, M 5 2) cases.

Figure 6 gives the hidden parameter retrieval results

from the (q 5 0.0001, M 5 8), (q 5 0.001, M 5 8), and

(q 5 0.01, M 5 8) parameter sets. Comparison of the

specified values of var(s2),s2
min, a, and M with the mean

of the 60 retrieved values shows that the mean value is

very close to the specified value. Figure 7 gives the cor-

responding retrievals for the (q 5 0.0001, M 5 2), (q 5
0.001, M 5 2), and (q 5 0.01, M 5 2) cases. We do not

show the retrieval of var(s2) for these cases because they

are identical to those shown in Fig. 6a. Comparison of

Figs. 7a and 7b with Figs. 6b and 6c shows that the degrees

of accuracy of the retrievals of s2
min and the slope pa-

rameter a are similar for both the M 5 2 and 8 cases.

Comparison of Fig. 7c with Fig. 6d shows that the re-

covery of the effective ensemble size is even more accu-

rate for the M 5 2 case than it was for the M 5 8 case.

This result demonstrates that (6)–(11) recover the true

hidden parameters when the number of independent

samples is large enough. Comparison of the specified

values with the minimum, maximum, and standard de-

viation of the retrieved values over the 60 trials shows

that the retrievals from a single set of (innovation, en-

semble variance) pairs becomes more accurate as the

model error parameter q increases. In addition, the

accuracy of the retrievals from single sets of 23 106

(innovation, ensemble variance) pairs using (6)–(11) is

usefully accurate for all hidden variables except for

s2
min in the q 5 0.0001 case (Figs. 6b and 7a). In this

case, a larger sample size than 23 106 pairs would be

required in order to make the noise in the recovered

value small in comparison with the already very small

s2
min value.

4. Conclusions

Modern DA and ensemble forecasting research is

based on the assumption that the true forecast error

variance is flow dependent. However, flow-dependent

forecast error variance is difficult to observe in chaotic

systems. This fact makes it difficult to answer basic

questions like: What is the climatological variance of

true conditional error variances? How do ensemble

FIG. 6. Retrieved hidden parameters: (a) var(s2), (b) min(s2), (c) a, and (d)M. Each plot summarizes information

from 60 independent attempts to retrieve the hidden parameters from 2 000 000 (innovation, ensemble variance)

pairs synthetically generated from specified distributions. The values marked ‘‘specified’’ are equal to values re-

trieved from Lorenz model experiments with a given M 5 8 and differing values of the model error q. Black, light

gray, and gray bars correspond to q values of 0.0001, 0.001, and 0.01, respectively. The values marked as min, mean,

max, and std are the minimum, mean, maximum, and standard deviation of the values retrieved from 60 completely

independent synthetically generated datasets.
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variances vary about the true conditional error vari-

ance? What is the relative variance of true conditional

error variances given an ensemble variance?

The theory of hidden error variances developed in

Part I of this paper and the current work provides

compelling answers to these questions. Part I showed

that the inverse-gamma distribution provided a plausi-

ble model of the prior climatological distribution of

true conditional error variances and the posterior dis-

tribution of true conditional error variances given an

ensemble variance. It also showed that the gamma dis-

tribution provided a plausible model of the likelihood

distribution of ensemble variances given a true conditional

error variance. These three distributions are uniquely

defined by six parameters. Two of these parameters,

the climatological mean of forecast error variance hs2i

and the climatological minimum of ensemble variance

s2min, are trivially observable from a large set of (in-

novation, ensemble variance) pairs. The other four pa-

rameters are hidden. They are (i) var(s2), the variance

of the climatological distribution of the true condi-

tional forecast error variances; (ii) s2
min, the climato-

logical minimum of the true conditional forecast error

variances; (iii) the slope a of the line mapping true

conditional error variance to themean of the likelihood

distribution of ensemble variances; and (iv) the relative

variance k21 of the likelihood distribution of ensemble

variances, which can also be expressed in terms of an

effective ensemble size M 5 2k 1 1.

In Part I, these hidden parameters were estimated

using the artifice of 25 000 replicate systems that pro-

duced 25 000 independent realizations of forecast error

for each forecast and thus enabled accurate observations

of the true flow-dependent forecast error variance s2.

With observations of s2, it was a trivial matter to esti-

mate all of the hidden parameters, except for s2
min, be-

cause the length of the replicate system run was too

short to accurately estimate the climatological minimum

of error variance.

Here in Part II, we derived equations to retrieve the

hidden parameters from a single run of an ensemble

forecasting system. These equations accurately re-

covered the hidden parameter values of var(s2), a, and

M revealed by Part I’s replicate system experiment.

Increasing the model error variance increased the re-

trieved values of (hs2i, var(s2),s2
min). The retrieved

slope parameter a and effective ensemble size param-

eter M of the likelihood distribution were insensitive to

increases in model error variance. The experiments

showed that the relative variance of the prior clima-

tological distribution of error variances was a de-

creasing function of our representation of the model

error variance.

This last finding has implications for hybrid models

of error variance (Hamill and Snyder 2000) that linearly

combine static and flow-dependent forecast error vari-

ances because, as was shown in Part I, the optimal weight

for the static part increases as the relative variance of

the prior climatological distribution decreases. Figure 8

shows how these ‘‘optimal hybrid weights’’ change as

a function of model error and ensemble size. Figure 8

depicts how the weights on the ensemble-based vari-

ance (black bars) decrease with increasing model error

but increase with an increased effective ensemble sizeM.

Figure 8 quantitatively demonstrates how the value of

ensemble variances to hybrid error variance prediction

increases (decreases) as the relative variance of the cli-

matological distribution of true conditional error vari-

ances increases (decreases).

FIG. 7. As in Fig. 6, but for the givenM5 2 case. Also, the var(s2)

case is omitted because it is identical to that shown in Fig. 6a.
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The possibility that the accuracy of recovered param-

eters might depend on parameter values motivated us

to develop a method for synthetically generating (in-

novation, ensemble variance) pairs that were consis-

tent with specified parameters and Part I’s hidden error

variance model. This synthetic data method enables one

to check the potential accuracy of recovered parameters

for any given set of parameters and any given sample size

of (innovation, ensemble variance) pairs. To illustrate the

technique, we applied it to sets of 23 106 (innovation,

ensemble variance) pairs synthetically generated from

parameters identical to the parameters retrieved in our

experiments using differing model errors. (The sample

size of 23 106 was chosen because this was exactly the

same as the sample size used in the long nonlinear DA

experiments.) It was found that all six of the parameters

defining the hidden error variance model could be accu-

rately retrieved from a single set of 23 106 (innovation,

ensemble variance) pairs except for the very small s2
min

value associated with the q 5 0.0001 experiment. Never-

theless, the mean of 60 independent retrievals did provide

an accurate estimate of s2
min for this case. The accuracy of

all retrieved parameter values was greater for higher

model error variance than for lowermodel error variance.

The ability to estimate the parameters of Part I’s hidden

error variance model may be of assistance to designers of

hybrid DA strategies because these parameters determine

the optimal weights for the static and flow-dependent es-

timates of error variance in hybrid error variance models.

The approach presented here gives the first framework for

estimating the weights for hybrid error variance models,

not from computationally expensive trial and error, but by

a direct analysis of the (innovation, ensemble variance)

pairs produced by the DA scheme of interest.

Our newly developed effective ensemble sizemeasure

of ensemble performance directly measures the extent

to which fluctuations in ensemble variance are tied to

fluctuations in true error variance. We are unaware of

any existing metric that measures this quantity. This

measure, unlike most probabilistic measures, does not

depend on the accuracy of the ensemble mean. It is also

directly connected to theweight that ensemble variances

should receive in hybrid error variancemodels.We hope

that it will prove useful to those attempting to quantify

ensemble performance.

A close relation of ensemble performance quantifica-

tion is ensemble postprocessing. The method, developed

in this two-part paper, of estimating the distribution of

true error variances given an imperfect ensemble vari-

ance may also be useful to ensemble postprocessing ef-

forts that attempt to statistically correct the imperfect

probabilities associated with a raw ensemble forecast.

The potential value this method adds to ensemble post-

processing techniques is the topic of a subsequent paper.
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APPENDIX

Derivation of (6)–(11) and (15)

a. Derivation of (6)–(11)

First, note that the innovation yi 5 (yi 2 xti)2
(x

f
i 2 xti)5 «oi 2 «

f
i , where xti is the true value of the ob-

served variable and «oi and «
f
i are the observation and

forecast errors, respectively. We assume that observa-

tion error is uncorrelated with forecast error; that is,

h«o«f i5 0. It follows that

hy2i 2Rii5 h(«fi )2i1 h(«oi )2i2 hRii
5 hs2i1 hRii2 hRii5 hs2i. (A1)

Note that in the case of normally distributed forecast

and observation errors innovations may be viewed as a

random draw from aGaussian distribution withmean zero

and variance s2
i 1Ri; in other words, yi 5 (Ri 1 s2

i )
1/2zi

where zi ; N(0, 1). The notation zi ;N(0, 1) means that

zi is a random draw from a normal distribution with mean

zero and a variance of unity. It turns out that the variance

of the prior climatological distribution of true (hidden)

error variances can be deduced from the expected value of

the fourth power of yi. To see this, note that

FIG. 8. Variation of weights for the mean of the posterior dis-

tribution of the true error variances with model error q and given

effective ensemble size M. Black bars give the weights for the de-

biased flow-dependent ensemble variance while gray bars give the

corresponding weights for the static mean of the climatological

error variances.
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hy4i i5 hz4(hs2
i i1 (s2

i 2 hs2
i i)1 hRii1R0

i)
2i, where R0

i 5Ri 2 hRii
5 hz4if[hs2

i i2 1 h(s2
i 2 hs2

i i)2i]1 [hRii21 hR02
i i]1 2hRiihs2

i ig
5 hz4if(hs2

i i1 hRii)21 var(s2
i )1 var(Ri)g5 hz4ifhy2i i2 1 var(s2

i )1 var(Ri)g. (A2)

Since hz4i5 3 for a normal distribution, (A2) implies

that

var(s2)5
hy4i
3

2 hy2i22 var(R)

5
hy4i
3

2 (hs2i1 hRi)2 2 var(R). (A3)

Equations (A1) and (A3) imply the estimators

hs2i’ 1

n
�
n

i51

(y2i 2Ri),

var(s2)’

1

n
�
n

i51

y4i

3
2

�
1

n
�
n

i51

(y2i )

�2

2
1

n2 1
�
n

i51

 
Ri 2

1

n
�
n

j51

Rj

!2

. (A4)

The climatological minimum of ensemble variance may be

predefined by the ensemble designer or, provided that

a large sample is available, a reasonable estimator of s2min is

simply theminimumof all realizations of s2i ; in otherwords,

s2min5min(s2i ) over all i . (A5)

To estimate the parameter a in the likelihood distribu-

tion (3), note that (3) and (4) imply that s2 is a stochastic

process of the form

(s22 s2min)5 a(s22s2
min)1 j, where j i is random,

hji5 hjs2i5 0 but hj3i 6¼ 0. (A6)

Taking the mean of (A6) over all realizations gives

hs2i2 s2min 5 a(hs2i2s2
min). Subtracting this from both

sides of (A6) then gives

s22 hs2i5 a(s2 2 hs2i)1 j0 s20 5 as201 j,

where s205 s22 hs2i and s205s22 hs2i. (A7)

We can then estimate a from the covariance

hy2s20i5
��

z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(s21R)

q �2
(s20)

�
5 h[z2[hs2i1(s20)][as201 j]]i5 ahz2(s20)2i fhji5hjs20i5hjzi5hs20hs2

i ii50g

5 ahz2ih(s20)2i5 a var(s2) fhz2i5 1 and hzs20i5 0g ; (A8)

since hy2s20i5 h(y2 2 hy2i)s20i5 covar(y2, s2), where

covar(y2, s2) gives the covariance between y2 and s2

because hhy2is20i5 hy2ihs20i5 0. Consequently,

a5
covar(y2, s2)

var(s2)
’

�
1

n2 1
�
n

i51

y2i (s
2
i 2 hs2i)

�
var(s2)

5

�
1

n2 1
�
n

i51

(y2i 2 hy2i)(s2i 2 hs2i)
�

var(s2)

where hs2i5 1

n
�
n

i51

s2i and hy2i5 1

n
�
n

i51

y2i (A9)

and var(s2) is obtained from (A3). To obtain s2
min, we

rearrange the mean hs2i2 s2min 5 a(hs2i2s2
min) of (A6)

to obtain

s2
min 5 hs2i2 hs2i2 s2min

a
. (A10)

To define the likelihood pdf given by (3), we must be

able to deduce the parameter k from the observational

dataset. Equation (5) defines k for a single value of s2.

Rearranging this equation gives

k var[(s22 s2min) js2]5 kh[(s22 s2min)2 hs22 s2minis2 ]
2is2

5 a2(s22s2
min)

2 , (A11)

where hxis2 indicates that the variable x is averaged

while holding the true error variance s2 constant. Using

the fact that hs2 2 s2minis2 5 a(s2 2s2
min) in (A11) and

taking the expectation of (A11) over all realizations of

s2 then gives

khh[(s22 s2min)2 a(s22s2
min)]

2is2i5 h[a(s22s2
min)]

2i
0kh[(hs2i2 s2min 1 s20)2 a[(hs2i2s2

min)1s20]]2i
5 a2[(hs2i2s2

min)
21 h(s20)2i] (A12)
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Using hs2i2 s2min 5 a(hs2i2s2
min) in (A12) gives

kh(s20 2 as20)2i5 a2[(hs2i2s2
min)

2 1 h(s20)2i]0kh(s20)22 2as20s201 a2(s20)2i5 a2[(hs2i2s2
min)

21 h(s20)2i] .
(A13)

Using (A7)’s relation s20 5 as20 1 j to substitute into the 2as20s20 term gives

0kh(s20)22 2as20(as20 1 j)1 a2(s20)2i5 a2[(hs2i2s2
min)

21 h(s20)2i]
0kh(s20)22 a2(s20)2i5 a2[(hs2i2s2

min)
21 h(s20)2i] fused hs20ji5 0g

0k5
a2[(hs2i2s2

min)
21 h(s20)2i]

h(s20)2i2 a2h(s20)2i
5

a2[(hs2i2s2
min)

21 var(s2)]

var(s2)2 a2 var(s2)
, (A14)

where one can use the estimator var(s2)’ 1/(n2 1)3

�n
i51(s

2 2 hs2i)2 .
b. Derivation of (15)

To prove the veracity of (15), begin by noting that (2)

implies that

a2 15
(hs2i2s2

min)
2 1 var(s2)

var(s2)
. (A15)

Using (A15) and (11) in (15) then gives

wE 5
1

a

k

(k1a2 1)
5

1

a

a2[var(s2)(a2 1)]

var(s2)2 a2 var(s2)

a2[var(s2)(a2 1)]

var(s2)2 a2 var(s2)
1 (a2 1)

5
1

a

a2[var(s2)(a2 1)]

var(s2)2 a2 var(s2)

a2[var(s2)(a2 1)]1 (a2 1)[var(s2)2 a2 var(s2)]

var(s2)2 a2 var(s2)

5
1

a

a2[var(s2)(a2 1)]

a2[var(s2)(a2 1)]1 (a2 1)[var(s2)2 a2 var(s2)]
5

1

a

a2[var(s2)(a2 1)]

(a2 1)[var(s2)]
5

a[var(s2)]

[var(s2)]

5
covar(y2, s2)

var(s2)
, [from (6)] (A16)

as was required by (15).
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