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ABSTRACT

Interannual variability of precipitation can directly or indirectly affect many hydrological, ecological, and

biogeochemical processes that, in turn, influence climate. Despite the significant importance of the phenomenon,

few studies have attempted to elucidate spatial patterns of this variability at the global scale. This study uses land

gauge precipitation records of the Global Historical Climatology Network, version 2, as well as reanalysis data to

provide an assessment of the spatial organization of characteristics of precipitation interannual variability. The

coefficient of variation, skewness, and short- and long-range dependence of the precipitation variability are

analyzed. Among the major inferences is that the coefficient of variation of annual precipitation shows a

significant correlation with intra-annual seasonality. Specifically, subyearly precipitation anomalies occurring in

locations with pronounced seasonality affect the total yearly amount, imposing a higher variability in the annual

precipitation fluctuations. Furthermore, the study illustrates that a positive skewness of the distribution of

annual precipitation is a robust property worldwide and its magnitude is related to the coefficient of variation.

Additionally, annual precipitation exhibits very weak small-lag autocorrelation. Conversely, the intensity of

long-memory–long-range dependence is significantly larger than zero, hinting that organized long-term varia-

tions are an important feature of the interannual variability of precipitation.

1. Introduction

Identifying the nature and patterns of the interannual

variability of precipitation can be crucial because these

fluctuations exert a long-term control on water resources,

affect plant growth and the biogeochemical cycle, and

modulate extreme events, such as floods and prolonged

dry periods. For instance, several studies suggested that

the variability of annual precipitation can be important

for the temporal dynamics of aboveground primary pro-

duction and thus for global vegetation biogeography

(Knapp and Smith 2001; Fang et al. 2001; Wiegand et al.

2004; Yang et al. 2008). The interannual variability of

hydroclimatic variables (including precipitation) has been

often connected to indices of large-scale atmospheric

patterns, such as El Niño–Southern Oscillation (ENSO),

Arctic Oscillation (AO), North Atlantic Oscillation

(NAO), sea level pressure (SLP), or to sea surface

temperature (SST) (New et al. 2001; Mason and Goddard

2001; Chen et al. 2002; Whiting et al. 2003; Grimm and

Natori 2006; Gu and Adler 2004, 2006, 2009; Gu et al.

2007; Medvigy et al. 2008; Small and Islam 2008; Bartolini

et al. 2009). These large-scale atmospheric patterns,

especially ENSO, were successful in explaining the time

variability of precipitation for certain geographic areas

(New et al. 2001; Chen et al. 2002; Gu and Adler 2011).

Nonetheless, they cannot explain the spatial interannual

dynamics of precipitation at the global scale.
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Other analyses have been limited to the investigation of

the interannual variability of precipitation during a

particular season (e.g., summer or fall) or for a specific

region (Cayan et al. 1998; Higgins et al. 1998; Rodriguez-

Puebla et al. 1998; Coulibaly 2006; Small and Islam 2008;

Mourato et al. 2010). When global datasets of pre-

cipitation were analyzed to detect precipitation trends,

only time series of anomalies were investigated (Dai et al.

1997; New et al. 2001; Chen et al. 2002), while spatial

patterns of precipitation interannual variability were

neglected. Practical and theoretical reasons contribute to

the complication of analyses of the interannual variability

of precipitation. The reasons are (i) the relatively short

and spatially sparse observed records and (ii) insufficient

understanding of the atmospheric dynamics responsible

for this process. For example, a modeling study with

general circulation models has highlighted the difficulty

of understanding the causes and predictability of the in-

terannual variability of precipitation (Koster et al. 2000).

Despite numerous previous research on global pre-

cipitation (e.g., Legates 1991; Xie and Arkin 1997; New

et al. 2001; Dai 2006), so far we have not reached a gen-

eralized statistical characterization of the structure of the

annual variability of land precipitation. Furthermore, no

previous study explicitly analyzed the uncertainty of

characterizing the interannual variability of precipitation

related to short observational records. Yet, interannual

variability affects many earth processes and can lead to

a range of disturbance phenomena, such as vegetation

mortality and establishment and/or biogeochemistry

dynamics, feeding back to the global climate. Therefore,

a more detailed investigation addressing these issues is

still warranted.

A detailed analysis of statistics and spatial patterns of

metrics characterizing the interannual variability of land

precipitation at the global scale is presented in this study.

These include the coefficient of variation, autocorrela-

tion, skewness, and variables characterizing intra-annual

seasonality and long-range dependence of the process.

Global patterns of dependencies and properties are

investigated. Furthermore, the study addresses the issue

of uncertainty inherent to inferences based on short

observational records. Major inferences of this study are

based on data from a precipitation database, the monthly

scale of the Global Historical Climatology Network

(GHCN-Monthly) version 2, available through the

National Climatic Data Center (NCDC) (Peterson and

Vose 1997). The retrieved data represent one of the most

complete databases and include measurements from

precipitation gauges located worldwide with the longest

available records.

Although point-scale precipitation exhibits a non-

homogeneous coverage of the earth, it avoids problems

related to the interpolation of precipitation data on grids

(Dai et al. 1997; Xie and Arkin 1997; Chen et al. 2002;

Adler et al. 2003; Mitchell and Jones 2005; Ensor and

Robeson 2008). Additionally, the presented study sum-

marizes all of the available information and has been car-

ried out at the global scale (for land areas), which

overcomes the limitations of local-scale analyses. Similar

analyses using the data from reanalysis projects such as the

National Centers for Environmental Prediction–National

Center for Atmospheric Research (NCEP–NCAR) re-

analysis (Kalnay et al. 1996; Kistler et al. 2001), the 40-yr

European Centre for Medium-Range Weather Forecasts

Re-Analysis (ERA-40) (Uppala et al. 2005), and pre-

cipitation products from the Global Precipitation Clima-

tology Project (GPCP) (Huffman et al. 1997; Adler et al.

2003; Rudolf et al. 2010) have confirmed the findings of this

study. This further assures that the results are not affected

by the nonhomogeneity of spatial coverage of the gauge

stations.

It must be underlined that no mechanistic explanation

of interannual precipitation variability is attempted here.

Addressing causes and mechanisms controlling in-

terannual variability would require a different type of

study and data. However, statistical inferences character-

izing precipitation interannual variability drawn in this

study could be important for future research addressing

these needs. They can be also important for studies aiming

to parameterize the variability of precipitation in hydro-

logical, ecological, or other disciplines.

2. Data and methods

Precipitation data are obtained from GHCN-Monthly

(Peterson and Vose 1997; Chen et al. 2002). This archive

contains two sets of data. The first type represents the

historical precipitation data for thousands of land stations

worldwide checked for quality but not adjusted to

account for inhomogeneities (Alexandersson 1986;

Peterson et al. 1998). The second set contains adjusted

data, free of inhomogeneities. The adjusted dataset is

significantly smaller and includes a subset of stations from

the first dataset, mainly located in the United States and

a few additional stations from other countries (Peterson

et al. 1998). In this study, the two subsets were merged

using homogeneity adjusted data and nonadjusted data.

In total 20 319 stations with more than 10 yr of data were

identified, corresponding to more than one million station-

year data. The period of record varies spatially, with

several thousand stations having continuous records that

extend back to 1950, that is, about 60 yr of observations

and about 150 stations with more than 150 yr of data.

The last analyzed year is the 2009. The best spatial cov-

erage is in North America, Europe, Australia, and some
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parts of Asia. Likewise, the coverage in the Northern

Hemisphere is better than in the Southern Hemisphere

(Fig. 1). The historical data network underwent rigorous

quality screening by the NCDC. Additionally, in this study,

when one or more months had missing values in a given

year, such a year was eliminated from the analysis.

The variability of annual precipitation for each station

was characterized by calculating several statistics of the

process. In addition to conventional statistics—such as

the coefficient of variation Cy, skewness g, and the first 10

lags of autocorrelation r(1, . . . , 10)—the long-range

dependence–long-memory parameter of the process

d was estimated using the periodogram method (Taqqu

et al. 1995; Caballero et al. 2002). Specifically, the long-

range dependence is a behavior observable when time

series exhibit a slow decay of the autocorrelation function

for large lags (Beran 1994; Koutsoyiannis 2003; Fatichi

et al. 2009). Long memory can be characterized by a

parameter d that can be related to the Hurst coefficient,

H 5 d 1 0.5 (Beran 1994), and expresses the intensity of

the long-memory process. For a stationary time series, d

varies within the range 0 # d # 0.5 (Beran 1994).

To explore the linkage of interannual variability with

intra-annual seasonality of precipitation, indices charac-

terizing the latter process were calculated. Specifically,

the precipitation concentration index (PCI) (De Lùis

et al. 2000; Fatichi and Caporali 2009), the seasonality

index (SI) (Walsh and Lawler 1981; Pryor and Schoof

2008), the seasonality concentration index (SCI) (Fujita

2008), and the seasonal variability within year, Mr, as

defined by Davidowitz (2002) using the Levene’s statistic,

were calculated for each station-year using monthly data.

They were consequently averaged over the observation

period for each station. For the PCI, the coefficient of

temporal variation, Cy,PCI, was additionally calculated.

Details of the definition and estimation of the above-

mentioned indices are provided in the appendix.

Since the characterization of metrics of interannual

variability is expected to strongly depend on the length of

the time series, short records were excluded from the

analysis and all of the above-mentioned statistics were

calculated only for stations with an observation period

longer than 50 yr (the number of stations, n 5 8197). For

the parameter d, characterizing the long-range dependence,

this period was increased to 90 yr (n 5 3358) due to inherent

uncertainties in estimating d using short time series.

All of the correlation statistics and their significance

(p values) have been computed with classic statistical

tests (Wilks 2006). However, the presence of spatial

autocorrelation in the variables can invalidate the as-

sumption of independence among samples, artificially

increasing the degrees of freedom in the traditional test

of significance of the Pearson correlation coefficient

(Liebhold and Sharov 1998). Because of this reason, we

also tested the significance of the correlations with the

modified t test and F test (Clifford et al. 1989; Dutilleul

1993; Dutilleul et al. 2008). These tests of decreasing the

degrees of freedom for spatially correlated samples al-

low one to effectively evaluate the significance of the

tests also when variables are spatially autocorrelated.

In addition to station data, Cy, g, PCI, and r(1, . . . , 10)

were calculated using four gridded datasets (Table 1) at

the global scale. The NCEP–NCAR precipitation re-

analysis product contains 62 yr of data (Kalnay et al. 1996;

Kistler et al. 2001). Precipitation product from the re-

analysis project ERA-40 contains 45 yr of data (Uppala

et al. 2005). Two other products represent updates of the

version 2 GPCP reanalysis data (Huffman et al. 1997;

FIG. 1. The global map of Cy. Only stations with .50 yr of observations are included (n 5 8197).
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Adler et al. 2003; Huffman et al. 2009): the Variability

Analysis of Surface Climate Observations (VASClimO)

dataset covers a period of 50 yr and the Global Pre-

cipitation Climatology Centre (GPCC) Full Data Re-

analysis product, version 5, covers a period of 109 yr (Adler

et al. 2003; Beck et al. 2005; Rudolf 2005; Rudolf and

Schneider 2005; Rudolf et al. 2010). These two databases

are not independent from the historical GHCN database

because gauge data were also used in the compilation of

these products, but they also used gauge data from other

historical databases (Beck et al. 2005; Rudolf 2005;

Rudolf and Schneider 2005). Specifically, the GPCC Full

Data Reanalysis product, version 5, uses the complete

GPCC station database (about 64 400 stations with at

least 10 yr of data) with a monthly data coverage ranging

from some 10 000 to more than 47 000 stations (Beck

et al. 2005; Rudolf et al. 2010).

We note that precipitation time series derived from the

reanalysis project and the GPCP products should be used

with caution: the reanalysis data represent model outputs,

whereas the GPCP gridded datasets are the result of

spatial interpolation techniques (Beck et al. 2005; Rudolf

and Schneider 2005; Ensor and Robeson 2008). None-

theless, these data are still useful for a qualitative evalu-

ation of the influence of using data from precipitation

gauges that are irregularly distributed in space (Fig. 1). For

example, it has been noted that even though reanalysis

estimates of precipitation can be biased, the inferred

interannual variability from these products tends to be

well correlated with independent observations (Kistler

et al. 2001). Statistics from precipitation reanalysis data

and gridded datasets are therefore only used to assess the

findings of this study; all quantitative inferences are fully

based on the GHCN point-scale gauge observations.

3. Results

a. Global properties of annual precipitation
variability

The global pattern of the coefficient of variation is

illustrated in Fig. 1. About 92% of stations have the

coefficient of variation between 0.15 and 0.5; although

values as high as 3.5 can be detected. Gradual spatial

gradients can be observed in Fig. 1, where smooth tran-

sitions from regions of low variability to regions of high

variability are more typical than abrupt transitions or

scattered patterns. Higher values of Cy can be identified in

arid or semiarid areas, such as in the Southwest of the

United States and northern Mexico, western India and

Pakistan, African Sahara and Kalahari, and inland Aus-

tralia. Exceptions to the above-mentioned observation are

areas of inland Brazil and eastern Australia, where the

values of Cy are high despite humid climates. Regions

where climate is influenced by the northern Atlantic tend

to have similar interannual variabilities: Cy of annual

precipitation of the eastern United States and northern

Europe exhibit a very narrow range of 0.16–0.21. Similar

values can be observed for equatorial Africa, Indochina,

Japan, and southern Australia. The observed patterns

point to a possible relation between Cy and the mean

annual precipitation (MAP), which has been addressed

previously (Knapp and Smith 2001). There is indeed

a tendency for a large interannual variability in regions

characterized by lower precipitation. Nonetheless, the

coefficient of determination between Cy and MAP is only

R2 5 0.16 (with a value of p , 0.0001), which increases to

R2 5 0.36 (p , 0.0001) when the logarithms of Cy and

MAP are used. These results suggest that most of the in-

terannual variability cannot be explained by MAP alone.

In the following, the seasonality of precipitation is

analyzed further in attempt to better explain the

geographical differences of Cy. Given the subjectivity of

seasonality characterization, several indices have been

computed, as described previously. While different in

mathematical formulation, the PCI, SI, SCI, and Mr in-

dices are strongly correlated among themselves. Specifi-

cally, the R2 between the station long-term averages of

PCI and the other three indices are 0.92, 0.96, and 0.77,

respectively. For this reason, only the PCI was used in the

following to represent precipitation seasonality. In short,

PCI characterizes changes in the seasonal distribution of

precipitation: values below 12 suggest a fairly uniform

TABLE 1. Characteristics of gridded precipitation datasets used in this study: NCEP–NCAR reanalysis data, ERA-40 data, VASClimO

50 yr, and GPCC Full Data Reanalysis product, version 5. The R2 of the log-linear relationship between Cy and PCI–MAP; between g and

Cy; and between g and MAP are also reported. The values in parentheses in the Cy–MAP–PCI column are for grid cells representing sea.

Database Years

Resolution

latitude–longitude

grid (8) R2, Cy–MAP–PCI R2, g2Cy R2, g2MAP

NCEP–NCAR Jan 1948–Dec 2009 (62) ’2 0.72 (0.57) 0.63 0.18

ERA-40 Sep 1957–Aug 2002 (45) ’2.5 0.50 (0.67) 0.82 0.05

VASClimO Jan 1951–Dec 2000 (50) ’0.5 0.60 0.63 0.40

GPCC Full Reanalysis Jan 1901–Dec 2009 (109) ’0.5 0.78 0.47 0.05
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distribution of rainfall during the year, values between 12

and 20 indicate seasonality, and values above 20 indicate

a strong irregularity of precipitation throughout the year.

An illustration of the global distribution of PCI over land

is available in Fig. 2.

A correlation emerges between the seasonality of

precipitation, expressed as PCI, and the interannual

variability Cy. A multiple regression analysis between Cy,

PCI, and MAP indicates that the interannual variabil-

ity of precipitation can be largely explained by PCI and

MAP. The graphical correlation is shown in Fig. 3. The

determination coefficient is R2 5 0.64 (p , 0.0001, n 5

8197) when stations with more than 50 yr of data are

considered, and R2 5 0.69 (p , 0.0001, n 5 4987) and

R2 5 0.74 (p , 0.0001, n 5 3358) when the data avail-

ability threshold is increased to 70 and 90 yr, respectively.

This underlines how the length of the observational pe-

riod can influence the results and that inferences on global

patterns of precipitation variability are reinforced when

longer time series are available. The increase of R2 with

the series length has been tested to be robust to differ-

ences in the composition of the sample, that is, the result

is not an artifact of a better correlation for the specific set

of stations with longer time series. The correlation illus-

trated in Fig. 3 is important because it suggests that the

interannual variability of precipitation can be evaluated

with a certain degree of accuracy, when only the mean

annual precipitation and average intra-annual seasonality

are known. The latter variables can be also approximated

in the absence of long observational records.

A possible statistical interpretation of the positive

correlation between irregularity in the precipitation

seasonality and Cy can be attributed to a relatively small

likelihood of strong interannual variability in areas

where precipitation is uniformly distributed within the

year, as opposed to areas where precipitation is

concentrated in just few months. When an anomaly of

precipitation, such as a drought or a wet period, occurs

in locations with pronounced seasonality, it is likely that

the total annual amount is also nonnegligibly affected.

Conversely, a more uniform within-year distribution of

precipitation leads to a less appreciable sensitivity of the

total annual precipitation to a seasonal anomaly. The

above-mentioned considerations are corroborated

by the significant correlation, R2 5 0.72 (p , 0.0001),

between Cy and the coefficient of variation of the

FIG. 2. The global map of the PCI. Stations with .50 yr of observations are included. About 94% of PCI values are

contained between 10 and 30, but the range diminishes significantly for the eastern United States and northern Europe.

FIG. 3. The Cy as a function of MAP and PCI. Only data for

stations with .90 yr of observations are included (n 5 3358). The

surface is a linear least squares fit of the log-transformed Cy, log-

transformed MAP, and log-transformed PCI, log(Cy) 5 22.3581 2

0.179 log(MAP) 1 0.793 log(PCI), R2 5 0.74, ( p , 0.0001).
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seasonality Cy,PCI (Fig. 4). The dynamics of precipitation

interannual variability, expressed by Cy, are thus domi-

nated by variations in the precipitation seasonality rather

than by uniform increases or decreases of precipitation

within the year. This consideration entails that monthly or

seasonal anomalies of precipitation are much more likely

to occur rather than an entire year or few-years-long

anomalies. The statement is reinforced by the generally

weak autocorrelation observed in annual precipitation

time series, as explained later in this section. The fact that

regions subjected to a significant seasonality also experi-

ence a strong interannual variability highlights these areas

as most critical for water resource management.

Other statistical properties of the interannual pre-

cipitation process were analyzed in search of emerging

global properties. An empirical distribution of skewness

of annual precipitation g, obtained from the analyzed

time series is shown in Fig. 5a. The calculation of skew-

ness is relatively uncertain given the short length of most

series. To highlight the degree of this uncertainty, white-

noise time series equivalent to the analyzed record in

terms of the number of series and their lengths were

simulated. Theoretically, all of the simulated white-noise

time series have skewness equal to zero, but their lengths

are often insufficient for a correct estimation of g. This is

apparent when the distribution of the skewness of the

simulated white noise is plotted together with the em-

pirical distribution of g estimated from the precipitation

record (Fig. 5a). This implies that the observed variability

in g is mainly due to the uncertainty of its estimation.

However, a clear tendency of g distribution obtained from

the observations toward positive values is appreciable,

with the median of g equal to 0.42. This tendency of an-

nual and seasonal precipitation to have positive skewness

was previously noticed (Srikanthan and McMahon 1982;

Sardeshmukh et al. 2000) but here it emerges as a global

tendency. From the global land map (Fig. 6), no clear

regional or continental pattern of g can be detected.

However, g is positively correlated with Cy (R2 5 0.329,

p , 0.0001) and weakly negatively correlated with MAP

(R2 5 0.063, p , 0.0001), suggesting that underlying pat-

terns may in fact exist. The inability to detect them is al-

most certainly affected by the short observational records

that hinder robust inferences. Note that in this analysis, g

was computed with the method of moments; however,

using other estimators, such as the Pearson skewness co-

efficient, does not affect the results.

Lags from 1 to 10 yr of the autocorrelation process

have been also investigated. Similar to the case of skew-

ness estimation, their identification is also complicated by

the relatively short duration of time series. Autocorrela-

tions of synthetic time series of white noise calculated

following the same approach as for the analysis of skew-

ness were computed for the same number of lags. The

variability of autocorrelation is well explained by

randomness (Fig. 7) and geographical patterns are hard to

distinguish at the global scale. The medians of global

autocorrelation for lags 1–10 yr, r(1, . . . , 10), are very low,

for example, r(1) 5 0.073 and r(2) 5 0.035, and tend to be

almost zero for lags larger than 6 yr, where the medians

corresponding to observations are very similar to those

calculated using the generated time series of white noise

(Fig. 7). Despite this similarity, the hypothesis tests, the

Wilcoxon–Mann–Whitney test, and the one-way analysis

of variance (ANOVA) (Hollander and Wolfe 1999; Box

et al. 2005) accept the null hypothesis of medians–means

from data and white-noise series as being not significantly

FIG. 4. The Cy,PCI as a function of Cy. Only data for stations with

.50 yr of observations are included; C
y,PCI

5 0:748C1:035
y , R2 5

0.72, (p , 0.0001).

FIG. 5. (a). The distribution of skewness of annual precipitation

at the global scale (bars) and the distribution of skewness of white-

noise time series (line with crosses) equivalent to the observational

records in terms of series number and lengths. Stations with .50 yr

of data are used. (b) The distribution d as inferred from observa-

tions (bars) and from white-noise time series (line with crosses)

equivalent to the observational records in terms of series number

and lengths. Stations with .90 yr of data are used (n 5 3358).
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different, only for lags equal to 9 and with a rather low

significance level, a 5 0.0001.

Very low autocorrelation of the annual precipitation

represents an interesting observation, given the fact that

a rather common assumption in hydrology is that annual

precipitation is correlated with the precipitation of

preceding years (Thyer and Kuczera 2000; Srikanthan

and McMahon 2001). While this cannot be generally

excluded and stations with larger values of r(1) can be

identified in the available records, this analysis argues

that this is unlikely to be a robust feature at the global

land scale. Areas with a higher ‘‘concentration’’ of r(1)

larger than 0.25 are located in the east and west coasts of

Canada, Atlantic Europe, central Russia, north Brazil,

and south Saharian Africa (Fig. 8). Nonetheless, it is

difficult to assert whether these outcomes are robust

patterns of precipitation climatology or whether they

are due to uncertainty in the estimation of r(1).

The uncertainty of evaluation of d is even higher than

for the previously discussed statistics. The analysis has

therefore been limited to stations with more than 90 yr of

observational records. The distribution of d is illustrated in

Fig. 5b, calculated from both the observational data and

the generated white-noise time series. Note that values of

d outside of the stationary range, that is, 0–0.5, can be also

observed in the results from the synthetic time series. The

standard deviation of empirical d is quite large and is

equal to 0.145, close to the estimate obtained from the

white-noise series. No geographical pattern can be iden-

tified (not shown). All of the above-mentioned consider-

ations highlight the large uncertainty in the determination

of the long-range dependence and certainly question

the values of d at the level of a single station. Nonetheless,

calculation at the global scale is considered to be statisti-

cally significant, since random errors due to short

observational records tend to compensate in the large

sample, as shown in the analysis of the white-noise time

series. The median value of d 5 0.097 is significantly larger

than 0 (Wilcoxon–Mann–Whitney test, p , 0.0001),

corroborating the notion that time series of annual

precipitation show a certain degree of long memory.

Furthermore, the long-range dependence coefficients d of

the longest available time series tend to converge around

a common value of d 5 0.1, which is similar to the global

average (Fig. 9). This supports the important role of long-

term fluctuations in the occurrence of precipitation (Thyer

and Kuczera 2000; New et al. 2001; Whiting et al. 2003).

Such an outcome also points to the need to use statistical

models that are able to reproduce long-range dependence

effects, to better simulate annual precipitation time series.

b. Robustness of inferences

The effect of spatial autocorrelation of the variables in

the significance of all of the detected correlations has

been tested by decreasing the degrees of freedom of the t

test and the F test for the null hypothesis of the absence

of correlation (Clifford et al. 1989; Dutilleul 1993;

Dutilleul et al. 2008). While some of the p values of the

analyzed regression increase in the modified tests, all of

the correlations identified as significant with the classical

tests (not accounting for spatial autocorrelation) remain

significant. The modified tests used a 0.05 level of

significance. Therefore, the conclusion of the analysis is

robust to spatial autocorrelations of the variables.

The point-scale results concerning the spatial patterns

of Cy are fully supported by the gridded precipitation

data (Fig. 10), with closer similarities when the higher-

resolution GPCC Full Data Reanalysis product, version

5, is considered. The correlation between Cy and PCI–

MAP is also confirmed and tends to be stronger when

FIG. 6. The global map of g for stations with .50 yr of observations.
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the database with longer time series are analyzed

(Table 1). Specifically, the coefficients of determination

of the multiple log-linear regressions of Cy with PCI and

MAP are R2 5 0.50, R2 5 0.60, R2 5 0.72, and R2 5 0.78

when ERA-40, the VASClimO 50-yr product, the

NCEP–NCAR reanalysis, and the GPCC Full Data

Reanalysis product, respectively, are used. Only grid

cells representing land were used in the computation.

FIG. 7. The distributions of autocorrelation values of annual precipitation (bars) for r(1, . . . ,

10), the means of the distributions (bar with circle on top), and the distributions of the auto-

correlation values of white-noise time series (line with crosses) equivalent to the observed

series in terms of their number and lengths. Only stations with .50 yr of data are included.

FIG. 8. The global map of r(1) for stations with .50 yr of observations.
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However, significant correlations with R2 5 0.57 and

R2 5 0.67 are also obtained for the grid cells representing

sea in the NCEP–NCAR reanalysis and ERA-40 data.

A statistically significant positive skewness of the

annual precipitation distribution is also corroborated by

the gridded precipitation data (not shown) as well as its

positive correlation with Cy (R2 5 0.40–0.82) and a weak

negative correlation with MAP (R2 5 0.05–0.18) as

reported in Table 1. The relatively larger weight of desert

and semiarid areas (where gauge networks are typically

sparse) in these datasets tends to increase the significance

of these correlations when compared with the GHCN

station data. Conversely, the very low values of autocor-

relation of annual precipitation obtained using gauge data

are not corroborated by the reanalysis data and by the

GPCP gridded precipitation that show autocorrelations

for lags 1–5 yr significantly larger than zero (especially in

the driest and wettest areas of the planet). This difference

can be an artifact of the reanalysis data or, most likely, it is

due to considering precipitation in grid boxes of 0.58–28 of

latitude–longitude. Precipitation at such spatial scales is

likely to show a rather different annual correlation

structure as compared to the point-scale process (Ensor

and Robeson 2008).

4. Discussion and conclusions

This study illustrates geographic patterns and statistical

properties of variability of annual land precipitation at the

global scale. Despite the relative simplicity of the analysis,

important features of interannual variability have been

identified. Specifically, the coefficient of variation of

annual precipitation Cy exhibits a well-defined geo-

graphical distribution with relatively smooth transitions

between the regions of large Cy and regions with low

interannual variability.

An important statistical linkage of Cy with MAP and

intra-annual precipitation seasonality (R2 5 0.74) has been

detected, indicating that the magnitude of interannual

variability is related to seasonality and not only to MAP,

as previously observed. This can have important conse-

quences for estimating Cy when only short observational

records are available.

The estimation of the skewness, the autocorrelation,

and the long-memory parameter of annual precipitation

is complicated by the relatively short length of available

time series. Nonetheless, g tends to be significantly larger

than zero and is positively correlated with Cy. The short-

range autocorrelation of the precipitation process is

relatively weak worldwide. Conversely, the intensity of

the long-range dependence expressed with the long-

memory statistic d is significantly different from zero,

pointing to an important role of the long-term persistence

in the annual precipitation process.

Important variables that can influence interannual

variability, such as topographic or local geographic effects

(e.g., proximity to sea, orographic precipitation, pre-

dominant atmospheric fluxes), cannot be identified with

this analysis. Furthermore, no attempt has been made to

include indices of atmospheric circulation and no clima-

tological explanations have been sought. The focus of the

current analysis is to integrate the current knowledge on

interannual variability and provide a comprehensive

picture of this phenomenon using ‘‘in situ’’ information,

that is, using gauge observations only. A similar statistical

analysis using gridded reanalysis data supported all of the

major findings of this study, except for those that concern

annual autocorrelation. It also supports the fact that the

length of the time series influences the estimation of the

annual precipitation statistics. Therefore, the principal

conclusions of the study can be considered to be essen-

tially unaffected by the spatial irregularity in the distri-

bution of gauge stations.

The results of this study can provide a useful guidance

for further studies that aim to characterize the in-

terannual variability of precipitation. For instance, they

can be used to validate the results of general circulation

models in terms of long-term precipitation variability

FIG. 9. The parameter d as a function of the number of years of observational records (squares)

and average values of d (solid line).
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(Dai 2006) as well as be used as a starting point for

analyses aiming to find causal linkages and physical

controls driving the observed patterns. Finally, the

presented results can have a notable importance for

local analyses that need to simulate a realistic annual

precipitation variability as input into other earth system

components, for example, hydrological, ecological, and

geomorphological studies.
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APPENDIX

Indices of Seasonality

The PCI (De Lùis et al. 2000; Fatichi and Caporali

2009) for a given year ‘‘yr’’ is calculated on the basis of

FIG. 10. The global map of Cy derived from (a) NCEP–NCAR reanalysis data land grid cells, (b) NCEP–NCAR reanalysis data sea grid

cells, (c) ERA-40 data land grid cells, (b) ERA-40 data sea grid cells, and (e) GPCC Full Data Reanalysis product, version 5.
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annual precipitation Pyr (mm) and monthly pre-

cipitation for a month i, Pm(i) (mm) as follows:

PCI 5

100 �
12

i
Pm(i)2

P2
yr

. (A1)

The SI (Walsh and Lawler 1981; Pryor and Schoof

2008) for a given year is calculated as

SI 5

�
12

i

�
�
�
�
Pm(i) 2

Pyr

12

�
�
�
�

Pyr

. (A2)

The SCI (Fujita 2008) for a given year is the ratio

between the standard deviation sPm
and the mean of

monthly precipitation as follows:

SCI 5
sP

m

Pyr

12

. (A3)

The Mr for a given year, as defined from Davidowitz

(2002) using Levene’s statistic, is calculated as

Mr 5

�
12

i
jlog10Pm(i) 2 Median[log10Pm(i)]j

12
, (A4)

where Median is the median operator and months with

zero precipitation are replaced by 0.01 (mm), as sug-

gested by Davidowitz (2002), to avoid 2‘ values.

The long-term values of the indices are successively

calculated for each station averaging the yearly values.

The standard deviation of the PCI for each station has

also been computed to evaluate the corresponding co-

efficient of variation Cy,PCI.
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