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ABSTRACT

Heavy precipitation events (HPE) can incur significant economic losses as well as losses of lives through

catastrophic floods. Evidence of increasing heavy precipitation at continental and global scales clearly em-

phasizes the need to accurately quantify these phenomena. The current study focuses on the error analysis of

two of the main quasi-global, high-resolution satellite products [Climate Prediction Center (CPC) morphing

technique (CMORPH) and Precipitation Estimation fromRemotely Sensed Imagery Using Artificial Neural

Networks (PERSIANN)], using rainfall data derived from high-quality weather radar rainfall estimates as

a reference. This analysis is based on seven major flood-inducing HPEs that developed over complex terrain

areas in northern Italy (Fella and Sessia regions) and southern France (Cevennes–Vivarais region). The storm

cases were categorized as convective or stratiform based on their characteristics, including rainfall intensity,

duration, and area coverage. The results indicate that precipitation type has an effect on the algorithm’s

ability to capture rainfall effectively. Convective storm cases exhibited greater rain rate retrieval errors, while

low rain rates in stratiform-type systems are not well captured by the satellite algorithms investigated in this

study, thus leading to greater missed rainfall volumes. Overall, CMORPH exhibited better error statistics

than PERSIANN for the HPEs of this study. Similarities are also shown in the two satellite products’ error

characteristics for the HPEs that occurred in the same geographical area.

1. Introduction

Heavy precipitation events (HPEs) are the main cause

of catastrophic floods in complex terrain basins. HPEs are

characterized by varying spatiotemporal characteristics:

short-duration, heavy rain rates from convective storms or

persistent moderate-intensity rainfall rates from stationary

systems (Gaume et al. 2009; Ducrocq et al. 2008). De-

pending on the severity of the event and storm duration,

floods caused by such events can be categorized as flash

floods, which constitute one of the top-ranked natural di-

sasters. The timely and reliable quantitative estimation

of HPEs represents one of the most serious challenges

to hydrometeorological research. Furthermore, there is

evidence of increasing heavy precipitation at continental

(Groisman et al. 2004) and global scales (Groisman et al.

2005), which emphasizes the need for accurate quantifi-

cation of these storm events and will in turn provide more

reliable data for flood modeling.

Up until recently, rain gauges had been undoubtedly

the primary source of precipitation data. Although they

have an undisputed advantage of directly measuring

precipitation, they are severely plagued by their poor

spatial resolution. Providing only point measurements,

rain gauge distribution over land is highly uneven, while

over mountainous basins the gauge coverage is very

limited. Even the few relatively dense rain gauge net-

works over some continental areas (parts of the United

States and Europe) are unable to depict the intensity

and spatial extent of heavy precipitation (Scofield and

Kuligowski 2003). Moreover, other sources of uncer-

tainty (e.g., wind effects) can significantly impact the

reliability of the rain gauge measurements.

The advent of weather radar technology and the es-

tablishment of national networks have partly addressed
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the gauge sampling issue. More spatially representative

estimates of precipitation became available, which are,

however, subject to various limitations. The conversion

of the radar-measured reflectivity to rainfall rates is

characterized by significant variability due to variations

in the rainfall drop size distribution, surface effects,

mixed-phase precipitation, and ground returns. Other

issues include rain-path attenuation, beam blockage,

beam filling, and beam overshoot effects (Gruber and

Levizzani 2006; Krajewski and Smith 2002). Finally, as

the distance from the radar increases, its efficiency to

detect precipitation decreases, especially over mountain-

ous terrain. Even for the most advanced national weather

radar networks, the observational gaps over mountainous

areas can be quite significant (Maddox et al. 2002).

As stated above, although radar-derived rainfall esti-

mates are in many cases quite reliable, their coverage is

still very limited relative to satellite observations (e.g.,

mountainous areas, developing regions like Africa, and

parts of Asia), and this renders them less desirable for

global hydrological applications. Also, deploying and

maintaining a fully functional radar network is a very

costly task, and in certain places of the world, this is not

practical. Moreover, depending on the topography, there

are regions where radar networks may not be deployed,

such as high-elevation areas or areas with complex

terrain in general. The only way to measure rainfall

over these regions is through remote sensing from space.

Finally, satellite techniques are constantly improving

and are very promising with regards to detecting rain-

fall under different conditions (i.e., precipitation type).

Therefore, a satisfactory way to compensate for some of

the limitations that rain gauges and radars entail is by

applying satellite remote sensing that provides nearly

global coverage. These advantages have led to the exis-

tence of a significant number of satellite-based rainfall

products that meet various hydrometeorological needs

(Michaelides et al. 2009).

Satellite-based estimates of precipitation can be de-

rived from various sensors. Depending on the type of

observation, the retrieval methodologies are based on

visible (VIS) or infrared (IR) techniques, active or

passive microwave (MW) techniques, and multisensor

techniques. Both approaches (VIS/IR and MW) are

associated with errors and uncertainties. Arguably, the

relationship between satellite-measured radiances and

surface rainfall rate is less robust than that between ra-

dar reflectivity and rainfall (Scofield and Kuligowski

2003). More specifically, the relationship between cloud

properties inferred fromVIS/IR and surface precipitation

is indirect; therefore, their link is weak (Anagnostou et al.

2010; Sapiano and Arkin 2009; Adler et al. 2000). Con-

versely, MW instruments provide rainfall estimates with

greater accuracy, since their observations are related to

the hydrometeor content present within the atmospheric

column, but because of their low observational frequency

and large sensor field of view areas, they suffer from larger

sampling errors, and this is a limiting factor when dealing

with short-term rainfall estimates (Kidd et al. 2003). One

example of satellite algorithms that use exclusively pas-

sive microwave rain estimates is the Climate Prediction

Center (CPC) morphing technique (CMORPH), while

examples of satellite rainfall products that use both

MW and IR are the Precipitation Estimation from Re-

motely Sensed Imagery Using Artificial Neural Networks

(PERSIANN) and the National Aeronautics and Space

Administration’s (NASA) Tropical Rainfall Measuring

Mission (TRMM) Multisatellite Precipitation Analysis

(TMPA) (Huffman et al. 2007).

Previous research has shown that the accuracy of satel-

lite rainfall data is subject to precipitation type (convective

or stratiform), topography of the region (e.g., complex

terrain), and climatological factors (Tang and Hossain

2012; Stampoulis andAnagnostou 2012; Scheel et al. 2010;

Dinku et al. 2008; Jiang et al. 2008; Artan et al. 2007;

Schumacher and Houze 2003; Scofield and Kuligowski

2003; Steiner and Smith 1998). Furthermore, since strati-

form and convective precipitation may occur in adjacent

regions of a convective system, this poses considerable

problems when retrieving rainfall intensity from satellites

(Levizzani 1999). Accurate quantification of precipitation

occurring during short-term storm events (of both con-

vective and stratiform origin) is a very difficult problem

that satellite rainfall retrievals are continuing to address.

There have only been a few studies assessing the error

of satellite algorithms for heavy precipitation and moun-

tainous areas. Turk et al. (2006) analyzed rainfall accu-

mulations derived from CMORPH and four other

satellite-based precipitation techniques during the land-

fall of Hurricane Wilma over the Yucatan Peninsula in

Mexico and compared them to the rainfall measured by

rain gauges. Time series of the maximum accumulated

precipitation both over ocean and land clearly showed

that CMORPH underestimated rainfall in both cases,

especially over ocean.

In another study, Demaria et al. (2011) examined the

ability of three satellite products (TRMM, CMORPH,

and PERSIANN) to represent the spatial characteristics

of mesoscale convective systems over the La Plata River

basin in southeastern South America. The evaluation

was performed against observed precipitation (obtained

from an extended rain gauge network). CMORPH ex-

hibited overestimation against ground observations for

rainfall accumulation exceeding 30mmday21, while

PERSIANN estimates were lower than observations.

However, the spatial extent of mesoscale convective

OCTOBER 2013 S TAMPOUL I S ET AL . 1501



systems was found to be overestimated by PERSIANN,

which exhibited systematically larger storm areas than

observations.Moreover, bothCMORPHandPERSIANN

successfully captured the maximum rainfall of the storm

events, while high rainfall rates were underestimated at

all times.

AghaKouchak et al. (2011) also evaluated satellite-

derived precipitation products [CMORPH, PERSIANN,

near-real-time TMPA (TMPA-RT), and TMPA version

6 (TMPA-V6)] with respect to their performance in

capturing precipitation extremes. Weather Surveillance

Radar-1988 Doppler (WSR-88D) stage IV (gauge ad-

justed) radar-rainfall data were used as reference in their

analysis. They found that CMORPH, PERSIANN, and

TMPA-RT overestimated precipitation, particularly in

the warm season, and this overestimation increased

significantly for higher thresholds of reference data.

Furthermore, among the different satellite products,

PERSIANN exhibited the lowest bias regardless of the

reference threshold, while TMPA-RT estimates showed

the highest bias over all thresholds. Moreover, CMORPH

and PERSIANN were found to perform better in de-

tecting precipitation areas, but as the threshold increased,

their skill to detect rainfall volumes decreased. Overall,

CMORPH and PERSIANNwere found to miss the least

amount of rainfall volume and as the rainfall thresholds

increased, so did the volume of missed rainfall. Lastly,

CMORPH and PERSIANN consistently exhibited higher

false alarm ratios than TMPA-RT.

Prat and Barros (2010) conducted a study in which

rain gauge observations were used as reference to assess

precipitation estimates from the Precipitation Radar

(PR 2A25) on board the TRMM satellite for a period of

one year that includes Tropical Storm Fay. Overall, they

found that the bias for TRMM PR 2A25 is approxi-

mately 27% underestimation for the 1-yr study period,

while in the case of the tropical storm, a much greater

bias was observed (259%). In both cases, the mismatch

corresponded to low and moderate rainfall regimes,

with most of the misses being in the light rainfall range.

Finally, in a case study, Salio et al. (2007) validated

CMORPH data over the central region of Argentina

for a period of successive convective systems that gen-

erated strong rainfall rates and extensive floods. Daily

accumulated rainfall observed by gauges was used to

validate CMORPH rainfall estimates. They showed that

CMORPH represented well the region associated with

the flooded area, and in general, extreme valueswerewell

detected.

Arguably, current satellite rainfall estimates are associ-

ated with significant uncertainty over land. Therefore, in-

formation on satellite rainfall products’ performance for

different precipitation types (stratiform versus convective),

over different climatic regions, and for various levels of

terrain complexity is essential for understanding and

improving the deficiencies of current retrieval algorithms;

this information can further contribute to the accurate

characterization of satellite rainfall error structure (e.g.,

the dependence on rainfall magnitude, temporal vari-

ability, etc.) and can therefore lead to more reliable

precipitation estimates at global scale. Along these lines,

the current study is focused on the detailed error analysis

of two of the main quasi-global, high-resolution satellite

products (CMORPH and PERSIANN) for seven major

HPEs that occurred over mountainous areas in northern

Italy (Fella and Sessia regions) and southern France

(Cevennes–Vivarais region). The study regions are prone

to hydrologic extremes because of the terrain’s high

complexity, which in turn acts as the driver of flood-

inducing rain events. The analysis is performed based on

reference rainfall data derived from rain gauge–calibrated

weather radar rainfall estimates. All HPEs were reported

as flood-inducing storms, some of which are characterized

by very high return periods (.100yr). The aim of this

study is to provide quantitative information about the

error structure of CMORPH and PERSIANN products

during these major precipitation events. As a result, this

work should contribute toward understanding the error

characteristics, which can provide feedback to algorithm

developers and those involved in error modeling and can

therefore lead to improved accuracy estimates of HPEs.

Ultimately, results from this study should help hydrologists

understand the usefulness of satellite-derived rainfall es-

timates for flood modeling. In the next section, we will

discuss the study regions and storm cases used for the

satellite error analysis. In section 3 we discuss the data and

the error methodology, while in section 4 we present the

results.

2. Study regions and storm cases

We selected seven major storm events over three dif-

ferent mountainous regions (Fella, Sesia, and Cevennes–

Vivarais) in the western Mediterranean. The study

regions are shown in Fig. 1, and the selected storms are

summarized in Table 1. Below, we discuss the charac-

teristics of the study areas and storm cases.

Fella, located in northeastern Italy, specifically the

Friuli–Venezia Giulia region, includes a portion of the

central chain of easternAlps (Borga et al. 2007); its mean

elevation is approximately 1200m MSL and it borders

to the north with Austria, to the east with Slovenia, and

to the west with Veneto. Overall, the mean annual pre-

cipitation ranges from 1200 to 3300mm, with spatial

distribution controlled by orography. The region is char-

acterized by frequent HPEs, and daily rainfall amounts
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exceeding 500mm have been locally recorded in this area

in a 20–30-yr time span (Borga et al. 2007). On 29 August

2003, after a prolonged drought, a mesoscale convective

system affected the area, starting at 1000 local standard

time (LST) and lasting for approximately 12h (Borga et al.

2007). During the HPE, extremely high rain rates and rain

accumulations were observed on the eastern tributaries of

the Fella, whereas the west-side tributaries received much

less rainfall (Borga et al. 2007). Overall, rainfall accumu-

lation locally exceeded 350mm, which is beyond doubt an

extraordinary amount for a 12-h precipitation event. A

striking characteristic of the event was its organization in

four well-defined banded structures, some of which per-

sisted in the same locations for the duration of the event

(Borga et al. 2007), resulting in an astounding inho-

mogeneity of the rainfall accumulations throughout the

region. The storm affected an area of 1500km2, causing

losses of lives and immense problems in the local economy

(Table 1).

Sesia is also located in northern Italy. More specifi-

cally, the Sesia River basin is a left-hand tributary of the

Po River, with elevation ranging from 108 to 4555m

MSL (Sangati et al. 2009). The area is within the Pie-

monte region and is characterized by annual precip-

itation that ranges from 900 to 2000mm, depending on

elevation. Most of the basin’s area is mountainous with

steep slopes, and this topography is associated with the

orographic enhancement of precipitation over the area.

In general, the area is very frequently (once every two

years), subject to calamitous storm events, especially on

the upper part of the basin (Rabuffetti and Barbero

2005); two such events from this area are investigated in

this study. The first storm was in early August 2005

(hereafter named Sesia 2005) and is characterized by

two short convective storm episodes with duration of

6–8 h each occurring over the Sesia River basin (Sangati

et al. 2009). The event lasted 18 h and its accumulated

peak rainfall exceeded 220mm, with hourly rainfall in-

tensities up to 50mmh21. The spatial extent of this

storm was relatively small, but its overall impact was

significant (Table 1). The second storm event (hereafter

named Sesia 2006) took place on 15 September 2006 and

lasted 23 h. It was characterized by mainly stratiform

rainfall with small imbedded convective cells (Sangati

et al. 2009), giving accumulated rainfall that reached

200mm and rainfall rates up to 40mmh21 (Table 1).

The Cevennes–Vivarais is situated southeast of the

Massif Central in France. The relief is a southeasterly

facing slope starting from the Mediterranean shore and

the Rhone valley (Younis et al. 2008). The elevation

gradient is relatively weaker than the two northern Italy

study areas (from sea level to 1700m over roughly

70 km). The main Cevennes river basins are Virdourle,

Ardeche, Ceze, and Gard and are characterized by

a typical Mediterranean hydrological regime with very

low levels of water in the summers and floods occurring

FIG. 1. Topography of central and southern Europe depicting the three selected study regions, marked with

rectangular shapes, and the rainfall accumulation maps for each storm case.
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mainly during fall (Younis et al. 2008). The four storm

events selected for this study occurred in theGard basin.

The first event was on 29 September 2007 (hereafter

named Gard 2007 Sep); its duration was 48 h, reaching

a maximum accumulated rainfall of 200mm. This storm

was characterized by moderate average rainfall rate but

included very high maximum rainfall intensities (up to

71mmh21) (Table 1). The second event (hereafter

named Gard 2007 Nov) was a relatively long-duration

(96 h) event. Rainfall accumulations did not exceed

290mm, while rainfall rates were up to 24mmh21. This

storm case was mainly stratiform-type precipitation

(Table 1). The third event, (hereafter named Gard 2008

Oct) in October 2008 lasted 66 h, exhibiting high rainfall

accumulations reaching a maximum of 400mm over the

Gard basin. Rainfall intensities were also high, with

maximum intensities of 70mmh21 (Table 1). The fourth

event (Gard 2008 Nov) was a convective storm episode

a few days later. It occurred in the period 31 October to

1 November 2008 and was characterized by extremely

high rainfall accumulations (up to 440mm) and high

rainfall rates (up to 60mmh21). The average rainfall

rate for this storm was 2.85mmh21 and its overall du-

ration was 48 h (Table 1).

3. Data and methodology

The data used in this study are either radar-derived or

satellite-retrieved rainfall. On the one hand, the radar

data used for the Fella 2003 were derived from volume

scan reflectivity data from a Doppler dual-polarized

C-band OsservatorioMeteorologico Regionale (OSMER)

radar station with a time resolution of 5min and a spa-

tial resolution of 250m in range by 0.98 in azimuth. In

this case, rainfall rates were estimated based on single-

polarization reflectivity observations and differential

reflectivity (ZDR) values were used to discriminate

ground clutter from rainfall observations. On the other

hand, the rainfall fields for the two Sesia storm cases

(Sesia 2005 and Sesia 2006) were derived from volume

scans of the Bric della Croce [L’Agenzia Regionale per

la Protezione dell’Ambiente (ARPA), Piemonte, Italy]

Doppler weather radar at a 1-km spatial resolution and

10-min time scale. Ten-minute rainfall data from 25 rain

gauge stations in the Sesia River basin (with a spatial

density of around 1 station per 100km2) were used to

adjust radar rainfall estimates (Sangati et al. 2009). For

all three storm events over Italy, several procedures were

applied to the reflectivity observations in order to cor-

rect for the following error sources: 1) ground clutter,

2) partial beam occlusion, 3) path attenuation, and 4)

wind drift. During the storm cases there was no obser-

vation of hail; hence, no correction was implemented
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for hail contamination (Borga et al. 2007). The clutter-

contaminated data in the polar volumes were flagged by

an algorithm that used a three-step decision tree based

on Doppler velocity, clear-air echo statistics, and ZDR

variance (Bechini et al. 2002). Beam occlusion correction

was based on offline computation of the percentage of

beampower that was intercepted by the orography, using

a model of beam propagation and a high-resolution

(20m) digital elevationmodel (Borga et al. 2000; Pellarin

et al. 2002). For rain-path attenuation the correction was

conducted using a variational method with gauge accu-

mulations as external constraints and the Hitschfel-

Bordan (1954) equation as attenuation correction model

(Berenguer et al. 2002). The final radar rainfall estimates

for the Fella, as well as for the two Sesia cases used in the

analysis, involved a spatial resolution of 1000m and

a temporal aggregation of 30min.

The radar rainfall estimation for the four Gard storm

cases (2007 Sep, 2007 Nov, 2008 Oct, and 2008 Nov) was

based on a careful analysis of the observation conditions

for the radar systems available in the region (Bouilloud

et al. 2010). First, a preprocessing step was aimed at

checking the stability of the radar calibration by charac-

terizing dry weather clutter and determining beam

blockage for all elevation angles. Next, techniques for

identifying clutter and rain types along with the corre-

sponding vertical profiles of reflectivity (VPR) were im-

plemented during the course of a rain event. Ground

clutter was also used in checking the radar antenna posi-

tioning and geophysical errors by comparing observations

and simulations based on the use of digital terrain models.

VPR was either inferred from radar data if volume

scanning data were available or simply defined with the

08C isotherm altitude and the slope of the VPR above

the 08C isotherm. This information was then used in the

correction of cluttered pixels through the refined inter-

polation techniques, and correction factor maps were

plotted for each elevation angle to correct for range-

dependent error sources (e.g., beam blockage). Finally,

for the parameterization of the radar data processing,

rather than applying a radar–rain gauge merging tech-

nique, an effective Z–R relationship was defined by com-

paring the radar and rain gauge rain amounts at the event

time scale in the region hit by the rain event. This pro-

cedure was followed to ensure that the radar rainfall esti-

mates are unbiasedwith respect to rain gauge rainfall at the

event time scale. Radar rainfall estimates for the fourGard

cases were hourly and available on a 1-km regular grid.

Two different high-resolution satellite rainfall products,

CMORPH and PERSIANN, were assessed in this study;

there are several differences between the two algorithms.

The CMORPH technique produces global datasets of

precipitation using exclusively passive microwave rainfall

estimates derived from the low-orbit Special Sensor Mi-

crowave Imager (SSM/I), TRMM, Advanced Microwave

Sounding Unit (AMSU), and Advanced Microwave

Scanning Radiometer for Earth Observing System (EOS)

(AMSR-E) satellites, whose features are propagated by

motion vectors derived from geostationary satellite IR

data (Joyce et al. 2004). The original product is created

on a 0.078 grid at half-hourly temporal resolution, but

3-hourly 0.258 spatial resolution datasets are also avail-

able. For the purpose of this study, we chose the high-

resolution (temporal and spatial) CMORPH data (0.078/
half-hourly), as we are dealing with short-term rainfall

events that are characterized by localized, yet extreme,

effects. All CMORPHdata have a nearly global coverage

and are available between 608N and 608S starting in

December 2002.

PERSIANN is the other high-resolution, satellite-

derived rainfall product utilized in this study. Hourly

global Cloud Classification System (CCS) PERSIANN

data, created on a 0.0368 grid, are used to capture the

extreme localized high-impact rainfall events. The

PERSIANN CCS algorithm extracts local and regional

cloud features from infrared (10.7mm) geostationary

satellite imagery, and using an automated neural network

it estimates finer-scale rainfall distribution (Hong et al.

2007). The neural network parameters are regularly up-

dated using TRMM Microwave Imager (TMI), SSM/I,

andAMSUestimates (Hsu et al. 1997). PERSIANNCCS

data cover the latitudinal range of 608N to 608S and start

in 2002.

The error analysis in this paper was conducted at the

nominal spatial resolution of CMORPH (0.078), and all

rainfall products (PERSIANN and radar) were there-

fore resampled at 0.078 grids and at hourly temporal

scales. There are three categories of statistics used for

this current analysis: 1) overall statistics that generally

characterize the rainfall variability of each storm case,

2) performance statistics for the two selected satellite

products, and 3) overall statistics for the two satellite

products and for each storm event.

The various statistics used to characterize the storm

events are shown in a tabulated form, and these are the

coefficients of variation (standard deviation of the rain

rates divided by the average rain rate) across time and

space, rainfall correlation length, rain fraction, fraction

of rainfall rates exceeding 10mmh21, and fraction of

rainfall rates below 1mmh21. Correlation length char-

acterizes the decay of the spatial correlation of the

rainfall event studied, while the rain fraction defines the

rain (spatial) coverage of the storm. The fraction of

the rainfall rates that exceed 10mmh21 or are below

1mmh21 provide insight into the type of precipitation

of the storm event (heavy versus light precipitation).
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The satellite retrieval performance metrics used in

this study are shown as graphs plotted for various rain-

fall intensity bins and are the following: normalized

mean error (NME), normalized random error standard

deviation (NRESD), and normalized missed satellite

rainfall volume (NMSRV). NME provides information

about the differences between rainfall detected by the

satellite products and the reference (radar), while

NRESD is used to evaluate the variance of the estima-

tion error. A point to note is that the random component

of the satellite retrieval error does not account for the

high systematic bias of the algorithm. It is therefore an

estimate of the satellite’s retrieval error variability. The

NMSRV performance metric shows the radar rainfall

volume that the satellite retrieval technique missed

throughout the storm event, normalized by the total

reference rainfall volume during that period. We cal-

culated these metrics as follows:

NME5

1

n
�[Sat(c)2Rad(c)]

1

n
�[Rad(c)]

, (1)

NRESD5
STDEVf[Sat(c)3Bias(c)]2 [Rad(c)]g

1

n
�[Rad(c)]

,

where

Bias5
�[Rad(c)]

�[Sat(c)]
, (2)

NMSRV5
�(Rad.m and Sat5 0)

�(Rad. 0)
. (3)

Equations (1) and (2) are valid only for those pixels in

time and space that satisfy criterion (c) according to

which both satellite (Sat) and radar (Rad) indicate rain,

but for different Rad rainfall intensity thresholds.

Equation (3) is used for those pixels in time and space

for which Sat indicates no rain but Rad does, and for

various Rad thresholds (m). STDEV is standard de-

viation, while n is the number of events that satisfy

a specific condition, which may change according to the

rainfall regime or the investigated metric.

We also used overall error statistics, such as correla-

tion coefficient (CC), root-mean-square error (RMSE),

and bias ratio (BR), all presented in Table 2. The CC is

calculated between the reference radar rainfall and each

satellite product, while the RMSE is a quadratic measure

of the magnitude of the difference between the sensor

estimates and the reference rainfall. BR is defined as the

ratio between the sensor’s estimates to those of radar

rainfall, and the closer it is to unity, the less biased the

satellite estimates are. All statistics were calculated based

on the radar domain of each storm event. The formulas

for RMSE and BR are given below:

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�(Sat2Rad)2

n

s
, (4)

BR5
�(Sat)

�(Rad)
. (5)

Equations (4) and (5) are calculated for all pixels in

space and time; the same is true for CC. RMSE, CC, and

BR are metrics that were performed both unconditionally

(including no-rain indicating pixels) and conditionally (for

rain pixels only) for both satellite products and for each

storm event.

4. Discussion of results

In an attempt to qualitatively assess the two satellite

products investigated in this study, scatterplots for both

TABLE 2. Overall performance statistics of CMORPH and PERSIANN products for each storm event.

Correlation coefficient

(radar–CMORPH/radar-PERSIANN)

RMSE (mm)

(radar–CMORPH/PERSIANN)

Bias ratio

(radar–CMORPH/PERSIANN)

Storm event Unconditional j Conditional Unconditional j Conditional Unconditional j Conditional
Fella 2003 0.63/0.49 j 0.61/0.65 3.84/5.09 j 8.28/11.98 0.96/0.44 j 0.54/0.28
Sesia 2005 0.54/0.53 j 0.69/0.80 3.33/3.67 j 4.95/7.39 0.60/0.21 j 0.73/0.42
Sesia 2006 0.51/0.47 j 0.44/0.38 3.30/3.62 j 4.64/5.63 0.64/0.29 j 0.60/0.38
Gard

2007 Sep

0.44/0.32 j 0.53/0.63 3.37/3.35 j 7.58/8.87 0.11/0.25 j 0.24/0.44

Gard

2007 Nov

0.64/0.30 j 0.53/0.35 1.71/2.20 j 3.29/3.74 0.28/0.40 j 0.47/0.50

Gard

2008 Oct

0.67/0.52 j 0.58/0.55 2.64/2.81 j 8.22/8.75 0.49/0.31 j 0.55/0.37

Gard

2008 Nov

0.51/0.38 j 0.53/0.42 4.17/4.27 j 6.67/6.17 0.19/0.28 j 0.32/0.47
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satellite techniques are shown in Figs. 2 and 3 for each

storm event. Figure 2 shows the scatter diagrams for the

three storm events that took place in northern Italy, while

Fig. 3 shows those for the four storm cases of southern

France. Evidently, in all storm events, the measurements

of both satellite algorithms do not agree well with those of

the radar, as they significantly underestimate the high rain

rates and overestimate the light precipitation. In the fol-

lowing paragraphs, we quantitatively evaluate those dif-

ferences using the error metrics discussed in section 3.

The NME exhibits positive values (overestimation)

for low rainfall intensity for both CMORPH and

PERSIANN and for all storm events studied (Fig. 4).

However, as the rainfall intensity increases, NME values

decrease, reaching a break point where NME becomes

zero. This is true for both satellite techniques and for all

storm cases, with the value of the aforementioned break

point varying between the two satellite products and

among the storm events. Beyond the break point, NME

turns negative (underestimation), the absolute magni-

tude of which increases with increasing rainfall intensity.

Remarkably, for both CMORPH and PERSIANN, all

storm events exhibit similar NME values at very high

rainfall rates, indicating severe underestimation (on the

order of 60%–70%).

More specifically, there are two distinct patterns in

CMORPH’s NME (Fig. 4a): one that is followed by all

three storm cases in Italy (Sesia 2005, Sesia 2006, and

Fella 2003), as well as one in southern France (Gard

2008 Oct), and another pattern that is followed by the

remaining three storm events in France (Gard 2007Nov,

Gard 2007 Sep, and Gard 2008 Nov). In the first cluster

(Sesia 2005, Sesia 2006, Fella 2003, and Gard 2008 Oct),

the NME varies significantly among the four storm

events for very low rainfall intensity values (exhibiting

high overestimation), but for moderate or high rainfall

intensities, NME values agree well with each other among

all four cases. NME becomes zero for these events at rain

rates ranging from 2 to 4mmhr21. In the other cluster,

NME values are in good agreement with each other for all

three storm events throughout all rainfall intensity bins,

and the break point, where NME values change from

positive to negative, takes place at rain rates around

1mmh21. Notably, the overestimation of the three storm

cases in Italy together with Gard 2008 Oct is substantially

higher than that of the other storm events, at very low rain

rates; this is attributed to the confounding effect of mixed

rainfall areas, which are commonly found in most con-

vective systems; typically, stratiform precipitation covers

larger areas and contributes to a significant portion (40%–

50%) of the rainfall volume of major convective systems

(Anagnostou et al. 1999). Overall, the decay of NME

values is much faster for the cases in Italy and the Gard

2008 Oct than the other three cases in France. The storm

FIG. 2. Scatterplots of radar and satellite measurements for both CMORPH (dark gray) and PERSIANN (light gray) for the three storm

events over northern Italy.
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cases that exhibit relatively higher NME values for

CMORPH (upper cluster in Fig. 4a) also have some

common characteristics (Table 1); one such is that all

three storm cases in northern Italy are characterized by

the short duration of the event, whereas all of the other

events have long durations. Moreover, all four events

comprising the upper cluster in Fig. 4a have the highest

coefficient of variation (CV) in space and are among the

ones with the lowest rain fraction and correlation length

(i.e., spatial correlation of rain rates). Finally, most of

them exhibit a high fraction of rainfall rate exceeding

10mmhr21 (convective rainfall) and are among the ones

with the highest maximum rainfall accumulations. The

above characteristics of the storms reflect the differences

between deep convective andmore stratiform-dominated

systems. Storm cases with low rain fraction, high convec-

tive fractional rainfall coverage, high maximum rainfall

accumulations and CV in space, and low spatial correla-

tion of rain rates clearly fall into the deep convective

category; these storm cases are the ones that comprise the

upper cluster in Fig. 4a. Storm events that are character-

ized by a high degree of spatial variation (high CV in

space) will inevitably lead to higher retrieval errors.

PERSIANN, on the other hand, exhibits one common

pattern for all storm cases (Fig. 4b). The break point

where NME changes from positive to negative takes place

FIG. 3. Scatterplots of radar and satellite measurements for both CMORPH (dark gray) and PERSIANN (light gray) for the four storm

events over southern France.

FIG. 4. NME for (a) CMORPH and (b) PERSIANN for different rainfall intensity thresholds.
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at rain rates approximating 2mmh21, and as rainfall

intensity increases, NME values converge, indicating

a strong underestimation of about 70%–80%. The decay

of the NME values is similar among the various storm

events, and as such, no distinct patterns between the deep

convective storms and stratiform-type precipitation sys-

tems can be seen. Evidently, the IR imagery that ismainly

used in the PERSIANN algorithm does not behave dif-

ferently between the two aforementioned types of sys-

tems, potentially because of the lack of cloud penetration.

Both CMORPH and PERSIANN exhibit NRESD

values that follow a decreasing trend with increasing

rainfall intensity for all storm cases (Fig. 5); this is in

agreement with the findings ofAghaKouchak et al. (2012),

who have shown that that systematic error of both re-

trievals increases as the rain rate increases. However, be-

tween the two algorithms, PERSIANN (Fig. 5b) exhibits

higher NRESD values for most of the storm events and

for all rainfall intensity bins. Furthermore, the NRESD

values in the low rainfall intensity bins for PERSIANNare

characterized by a broader range among the different

storm events than for CMORPH (Fig. 5a). In general,

NRESD values for CMORPH range from 0.5 to 1.4,

whereas those for PERSIANN range from 0.8 to 2.1.

NRESD for CMORPH shows more distinct patterns than

for PERSIANN; regardless of the algorithm; however, two

of the storm events show a constant behavior regarding

NRESD. In both satellite techniques, Gard 2007 Nov and

Sesia 2006 consistently exhibit the lowest NRESD values.

These events are also characterized by the lowest fraction

of rainfall rate exceeding 10mmh21, the highest correla-

tion length, and the lowest maximum rainfall rate and

are among the storm cases with the highest rain fraction

(Table 1). The aforementioned storm events are catego-

rized as stratiform-dominated precipitation systems.

Another performance statistic used in this study is the

fraction of the total rainfall volume that the satellite

techniques fail to detect. We present this fraction as the

NMSRV expressed as a percentage and plotted against

various rainfall intensity categories (Fig. 6). As ex-

pected, by increasing the rainfall rate, the disagreement

between satellite and radar rainfall detection tends to

diminish because the satellite technique’s rainfall de-

tectability increases, and therefore, the NMSRV values

decrease. In both satellite techniques, one can see that

all three storm cases in Italy as well as theGard 2008Oct

FIG. 5. NRESD for (a) CMORPH and (b) PERSIANN for different rainfall intensity thresholds.

FIG. 6. NMSRV for (a) CMORPH and (b) PERSIANN for different rainfall intensity thresholds.
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show a similar pattern of decay in their NMSRV values.

The remaining three storm cases in France are charac-

terized by patterns that are similar to each other. More

specifically, Fella 2003, Sesia 2005, Sesia 2006, and Gard

2008 Oct exhibit lower NMSRV values for both satellite

algorithms and for all rain rates, compared to Gard 2007

Sep, Gard 2007 Nov, andGard 2008Nov. The first group

of storm events (lower NMSRV values) is composed of

cases characterized by shorter duration, whereas the

other three events lasted longer (Table 1). As noted in

the NME analysis, all four events comprising the lower

cluster in Figs. 6a and 6b have the highest CV in space

and are among the ones with the lowest rain fraction and

spatial correlation of rain rates. Finally, most of them

exhibit a high fraction of rainfall rate exceeding 10mmh21

(heavy rainfall) are characterized by a moderate-to-high

fractional coverage of rainfall rates that are smaller than

1mmh21, and are among the ones with the highest

maximum rainfall accumulations (Table 1). Overall, as

shown inFig. 6, heavy rainfall episodes generated by deep

convective systems, which are usually characterized by

a high degree of spatial variation (low spatial correlation

of rain rates and high coefficient of variation in space)

and localized pockets of high rain rates resulting in high

total accumulations, are more accurately detected by

both CMORPH and PERSIANN algorithms, especially

at high rain rates, while stratiform-type systems are less

efficiently captured by the two algorithms, resulting in

higher missed rainfall volumes compared to those asso-

ciated with the deep convective storms. Although this is

true for both rainfall algorithms, CMORPHwas found to

perform better than PERSIANN during most of the

HPEs investigated in this study, and this is probably due

to the fact that surface precipitation is more directly re-

lated to cloud properties inferred from MW than those

inferred from IR.

In Fig. 7, we present the overall NMSRV in column

bars for both satellite techniques. In six out of seven

storm cases, PERSIANN misses rainfall to a greater ex-

tent than CMORPH, while in only one case in southern

France (Gard 2007 Sep) CMORPH exhibits a higher

NMSRV value than PERSIANN. Overall, PERSIANN

is characterized by greater NMSRV values and in some

storm events (Fella 2003, Sesia 2005, Sesia 2006) the

difference in this metric between CMORPH and

PERSIANN is significant. Among the different storm

cases, Gard 2007 Sep, Gard 2007 Nov, Gard 2008 Nov,

and Sesia 2005 exhibit the highest NMSRV values for

both satellite techniques. This corroborates our hypothe-

sis that these events include significant portions of light

precipitation (rainfall rates below 1mmh21) that go un-

detected by passive microwave techniques.

In Table 2 we present overall statistics for both in-

vestigated satellite techniques and for each storm event

separately. The conditional (i.e., for rainy pixels only)

CC is consistently higher for CMORPH relative to

PERSIANN (Table 2) when compared to the reference

(radar). However, the unconditional CC is higher for

CMORPH for four out of the seven events (Sesia 2006,

Gard 2007 Nov, Gard 2008 Oct, and Gard 2008 Nov).

Most of these events are characterized by the lowest CV

in time, the highest rain fraction, the highest correlation

length, and the lowest CV in space (Table 1).

The unconditional RMSE is higher for PERSIANN

for all events but the Gard 2007 Sep (Table 2), which is

characterized by relatively low maximum rainfall accu-

mulation and average rain rates. Similarly, the condi-

tional RMSE is higher for PERSIANN for all storm

events except for the case of Gard 2008 Nov, which is

characterized by the highest maximum rainfall accu-

mulation, highest average rainfall rate, the lowest CV in

time and space, and the highest rain fraction (Table 1).

FIG. 7. Overall NMSRV for CMORPH and PERSIANN.
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TheBR (conditional or unconditional) is always lower

than 1, indicating rainfall underestimation for all storm

cases and both satellite techniques (Table 2). These

findings agree with those of Demaria et al. (2011), who

showed that satellite estimates of high rainfall rates from

bothCMORPHand PERSIANNwere at all times lower

than observed values, as well as those of Turk et al.

(2006), who found that CMORPH underestimated

heavy rainfall both over land and ocean. More specifi-

cally, BR is closer to unity (less underestimation) for

CMORPH than for PERSIANN for the Sesia 2005,

Sesia 2006, Fella 2003, and Gard 2008 Oct events. These

events exhibit a relatively higher NME for CMORPH,

especially for low rainfall intensity values (Fig. 4), and

are characterized by high CV values in time and space,

low rain fraction and low correlation lengths (Table 1).

Moreover, the same storm cases are characterized by

lower NMSRV values for both satellite algorithms and

for all rain rates (Fig. 6). For all the other storm events

CMORPH BR is lower (more underestimation) than

the PERSIANN BR.

Finally, we present the time series of the domain-

averaged rainfall rate for CMORPH, PERSIANN, and

radar for all the storm cases examined in this study

(Figs. 8, 9). Figure 8 shows the time series for the storm

cases over Italy, whereas Fig. 9 shows the storm cases

over France. In the case of the two Sesia (2005 and 2006)

events (Fig. 8), it is evident that both satellite algorithms

underestimate rainfall at all times, with PERSIANN

exhibiting the highest underestimation. However, de-

spite their quantitative differences with respect to the

reference (radar), both CMORPH and PERSIANN

perform well in terms of capturing the event (especially

in the case of Sesia 2006). Fella 2003, on the other hand,

shows a general agreement between CMORPH and

radar and an underestimation from PERSIANN, with

an instant overestimation toward the end of the event

and without capturing well the event. As far as the four

cases in France (Fig. 9), we note an overall under-

estimating trend for both satellite techniques, but with

a few incidents of overestimation. The temporal evolu-

tion of the storm events is not well captured in the cases

of Gard 2007 Sep, Gard 2007 Nov, and Gard 2008 Nov;

the heavy-rainfall parts of the storms, however, are

sufficiently represented in both satellite rainfall prod-

ucts. Gard 2008 Oct is the only storm case in France

where the two satellite techniques captured the event

well (especially the part of the event characterized by

high rain rates).

5. Conclusions

We can draw several conclusions from the findings of

this study. For most of the storm events, CMORPH is

characterized by higher CCs, lower missed rainfall vol-

umes, and better bias ratios than PERSIANN. Thus, its

FIG. 8. Time series of domain-averaged rainfall rate for radar, CMORPH, and PERSIANN for the three storm events over northern Italy.

The scales on the x and y axes are not the same among the three cases.
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performance in regards to the heavy precipitation events

examined in this study can be deemed better than that of

PERSIANN. In terms of NME, the type of precipitation

plays an important role in determining the magnitude

of CMORPH’s error, but only for low-to-medium rain-

fall rates, where deep convective precipitation events

are characterized by higher error than stratiform-

dominated rainfall systems, while for high rainfall in-

tensity values, the type of precipitation does not seem to

influence the magnitude of the error, as both convective

and stratiform-dominated types of precipitation exhibit

almost identical errors. In the case of PERSIANN there

is no clear relationship between precipitation type and

error characteristics.

Both satellite techniques underestimated rainfall for

all storm cases, at all times, and especially at high rainfall

rates. PERSIANNwas found to underestimate to a greater

extent than CMORPH. The PERSIANN’s tendency to

underestimate more than CMORPH can be attributed to

the fact that IR measurements are not adequately phys-

ically related to precipitation. Differences in the magni-

tude of underestimation can be associated to the type of

precipitation.Within each event, and for very low rainfall

rates, rainfall is always overestimated by both satellite

techniques. The underestimation of all the other rainfall

regimes (especially at high rain rates), however, is much

greater in magnitude. Overall, the higher errors associ-

ated with the convective storm cases could be attributed

to the fact that most of these events are characterized by

mixed rainfall areas and a high degree of spatial vari-

ability, thus leading to greater retrieval errors.

The NRESD of CMORPH was found to be generally

lower than that of PERSIANN, regardless of the storm

event, or the rainfall regime, while the missed rainfall

volume by PERSIANN was for most of the investigated

cases larger than that for CMORPH, and it was greater

for the stratiform-dominated storm cases. The type of

retrieval technique determines the restrictions and ca-

pabilities of the precipitation estimation. More specifi-

cally, the ability of CMORPH to provide information

about the entire cloud profile, while PERSIANN does

not, is probably the reason for the differences in the

missed rainfall volume between the two algorithms.

Fella 2003, Sesia 2005, and Sesia 2006 (and Gard 2008

Oct, to a lesser extent) are characterized by bias ratio

values that are closer to unity (especially for CMORPH)

and higher RMSE values (especially for PERSIANN).

Taking into account the deep convective type of pre-

cipitation associated with those storm cases, we can

conclude that the morphing procedure (CMORPH) cap-

tures convective events better than the adaptive neural

network calibration of IR imagery (PERSIANN). Dif-

ferences in the type of precipitation (convective versus

stratiform) therefore have an effect on the algorithm’s

ability to capture rainfall effectively. Geographical factors

also determine the performance of the satellite. In our

FIG. 9. As in Fig. 8, but for the four storm events over southern France.
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results, clustering of events that are characterized by

geographical proximity indicates that satellite techniques

perform in a certain ‘‘fashion’’ over a specific region,

probably because of topographic and climatic similarities,

which undoubtedly affect the retrieval’s ability.

The results of this study are valid for heavy convective

or mixed-phase precipitation events occurring over the

aforementioned mountainous regions. Although we can-

not extend the validity of the present findings to other

hydroclimatic regimes, or draw generalized conclusions,

the results of this study clearly show that despite the re-

lentless improvement in the accuracy and robustness of

satellite-based precipitation estimation algorithms, many

challenges still remain in the development of these algo-

rithms, especially for heavy/extreme precipitation events.

This analysis offers important knowledge about the de-

ficiencies of two of the major satellite-based rainfall re-

trieval algorithms when it comes to flood-inducing heavy

rain rates over complex terrain, and its findings indicate

the existence of different behavioral patterns of the sat-

ellite techniques investigated (depending on the event

severity and duration, the topography of the area and

precipitation type, etc.). Our main premise is that more

analyses and investigations over different geographical

regions and climatic regimes, and for a more extensive

record of HPEs, will shed light on this challenge facing

satellite rainfall-retrieval algorithms, and more clear pat-

terns in the satellite techniques’ behavior will emerge.

Future continuation of this work would include inves-

tigating the error of the same and other satellite retrieval

techniques over other geographical regions of the world

and for storm cases of different intensities and duration.

Furthermore, the present analysis will be used as the basis

for developing a satellite error model for ensemble rep-

resentation of satellite rainfall and satellite-driven flood

modeling over complex terrain basins.
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