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Abstract: This paper presents and compares two basis systems, spherical
harmonics and plane waves, for studying diverging and converging beams
in an optical system. We show a similarity between a converging field and
the time reversed field of a radiation field. We present and analyze the
differences between the Debye-Wolf diffraction integral and the multipole
theory for focusing of polarized light. The Debye-Wolf diffraction integral
gives a well-known anomalous behavior on the optical axis and at the edge
of the focused beam that can be avoided by using the multipole theory.
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22. A. J. Devaney and E. Wolf, “Multipole expansions and plane wave representations of the electromagnetic field,”

J. Math. Phys. 15, 234–244 (1974).
23. T. X. Hoang, X. Chen, and C. J. R. Sheppard, “Multipole theory for tight focusing of polarized light, including

radially polarized and other special cases,” J. Opt. Soc. Am. A 29, 32–43 (2012).
24. C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (John Wiley, 1998).
25. Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: Time-reversed lasers,” Phys. Rev.

Lett. 105, 053901 (2010).
26. W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control

of absorption,” Science 331, 889–892 (2011).
27. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics, 2nd ed. (World Scientific, 2006).
28. E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field,” Proc.

R. Soc. London Ser. A 253, 349–357 (1959).
29. B. Richards, “Diffraction in systems of high relative aperture,” in Astronomical Optics and Related Subjects, Z.

Kopal, ed. (North Holland, 1955).
30. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an

aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959).
31. T. X. Hoang, X. Chen, and C. J. R. Sheppard, “Rigorous analytical modeling of high-aperture focusing through

a spherical interface,” J. Opt. Soc. Am. A 30, 1426–1440 (2013).
32. T. X. Hoang, X. Chen, and C. J. R. Sheppard, “Interpretation of the scattering mechanism for particles in a

focused beam,” Phys. Rev. A 86, 033817 (2012).
33. J. A. Kong, Electromagnetic Wave Theory (EMW Publishing, 2008).
34. C. J. R. Sheppard, “Intermediate field behind a nanostructure,” Phys. Rev. A 88, 033839 (2013).
35. U. Leonhardt, “Perfect imaging without negative refraction,” New J. Phys. 11, 093040 (2009).
36. U. Leonhardt and T. G. Philbin, “Perfect imaging with positive refraction in three dimensions,” Phys. Rev. A 81,

011804(R) (2010).
37. R. J. Blaikie, “Comment on ‘Perfect imaging without negative refraction’,” New J. Phys. 12, 058001 (2010).
38. R. Merlin, “Comment on “Perfect imaging with positive refraction in three dimensions”,” Phys. Rev. A 82,

057801 (2010).
39. U. Leonhardt, “Reply to “Comment on ‘Perfect imaging with positive refraction in three dimensions’ ”,” Phys.

Rev. A 82, 057802 (2010).
40. Y. G. Ma, S. Sahebdivan, C. K. Ong, T. Tyc, and U. Leonhardt, ”Evidence for subwavelength imaging with

positive refraction,” New J. Phys. 13, 033016 (2011).
41. R. Merlin, “Maxwell’s fish-eye lens and the mirage of perfect imaging,” J. Opt. 13, 024017 (2011).
42. X. Zhang, “Perfect lenses in focus: No drain, no gain,” Nature 480, 42–43 (2011).
43. S. K. Rhodes, K. A. Nugent, and A. Roberts, “Precision measurement of the electromagnetic fields in the focal

region of a high-numerical-aperture lens using a tapered fiber probe,” J. Opt. Soc. Am. A 19, 1689–1693 (2002).
44. J. C. Maxwell, “On the general laws of optical instruments,” Q. J. Pure Appl. Math. 2, 271 (1858).
45. J. B. Pendry, “Negative refraction makes perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
46. C. J. R. Sheppard and C. J. Cogswell, “Reflection and transmission confocal microscopy,” presented at the Optics

in Medicine, Biology and Environmental Research: Proceedings of the International Conference on Optics Within
Life Sciences, Garmisch-Partenkirchen, Germany, 1993, 1990.

47. S. W. Hell and E. H. K. Stelzer, “Properties of a 4Pi confocal flourescence microscope,” J. Opt. Soc. Am. A 9,
2159–2166 (1992).

48. M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “I5M: 3D widefield light microscopy with better than 100nm
axial resolution,” J. Microsc. 195, 10–16 (1999).

49. A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of
quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).

50. G. C. Sherman and W. C. Chew, “Aperture and far-field distributions expressed by the Debye integral represen-
tation of focused fields,” J. Opt. Soc. Am. 72, 1076–1083 (1981).

51. N. G. Van Kampen, “An asymptotic treatment of diffraction problems,” Physica XIV, 575–589 (1949).
52. M. R. Foreman, S. S. Sherif, P. R. T. Munro, and P. Török, “Inversion of the Debye-Wolf diffraction integral using

an eigenfunction representation of the electric fields in the focal region,” Opt. Express 16, 4901–4917 (2008).
53. W. H. Carter, “Bandlimited angular spectrum approximation to a scalar dipole field,” Opt. Commun. 2, 142–148

(1970).
54. W. H. Carter, “Bandlimited angular spectrum approximation to a spherical scalar wave field,” J. Opt. Soc. Am.

65, 1054–1058 (1975).

#205111 - $15.00 USD Received 20 Jan 2014; revised 12 Mar 2014; accepted 13 Mar 2014; published 7 Apr 2014
(C) 2014 OSA 21 April 2014 | Vol. 22,  No. 8 | DOI:10.1364/OE.22.008949 | OPTICS EXPRESS  8950



1. Introduction

Diffraction phenomena have been known since the time of Leonardo da Vinci [1]. And since the
time of Abbe, diffraction has been believed to be the fundamental physical phenomenon which
limits the resolution of a conventional microscope [1]. However, in the last several decades we
have witnessed the invention of some methods to push the capacity of imaging of a microscope
beyond the diffraction limit [2]. In this paper, we decompose a diffraction field into a converging
field and a diverging field, and discuss the implications of each for sub-wavelength focusing and
imaging.

Feynman pointed out that both inward and outward spherical waves traveling to and from
the origin are solutions of Maxwell’s equations in free space [3]. In his lectures, he also briefly
mentioned that only the outgoing (diverging) wave solution makes “physical sense” when de-
scribing the electromagnetic field radiated by a source. After the invention of laser, the concept
of a converging wave has been mentioned more frequently, especially in light focusing sys-
tems. Many lasers produce Gaussian beams that exhibit a Gaussian variation in the waist [4].
To describe the propagation of the Gaussian beam in free space, the complex-source-point the-
ory has been developed. The central idea of this theory is to move the source an imaginary
distance z0 from the origin so that there is no source in real space and the propagation of the
beam still satisfies the Maxwell’s equations. However, this complex-source-point theory results
in a singularity in free space. Due to this singularity, a theory based on a source-sink pair has
been proposed to avoid it ( [4], and references therein). In the context of describing the prop-
agation of the Gaussian beam, the source and the sink are purely-mathematical concepts. But
the source and the sink in the context of time reversal symmetry have represented an active
research topic for the last two decades and have been accepted widely as physical concepts.
The sinks can be categorized into two types, i.e., passive sinks and active sinks, respectively.
A passive sink absorbs energy and its physical mechanism has been explained in different con-
texts [5–7]. The physical mechanism of an active sink is to radiate a wave that destructively
interferes completely with the resultant diverging wave of the converging wave. The active sink
has been demonstrated in acoustic wave experiments, and has been exploited commercially in
noise cancellation [8, 9].

The source shown in Fig. 1 radiates a wave propagating towards infinity. If the propagation
direction of the radiated wave is reversed in all degrees of freedom - for example, by a process of
phase conjugating the radiated field using a nonlinear material [10], metamaterial, or graphene
[11]- we will have a converging wave approaching back to the position of the source. Now, we
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Fig. 1. Source radiates a wave propagating towards infinity.
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Fig. 2. A sink absorbs a wave converging from infinity.

consider the case in which the source is removed and hence the region around the origin is a
source-free region. Due to energy flux conservation, there must be a diverging wave following
the converging wave. And the total field in the source-free region is due to the interference
of these two beams. It has been shown that the interference results in a focal spot which is
subject to the diffraction limit [5, 12]. As a quantum mechanism, the nature of photons is the
reason behind the diffraction limit that can be explained in terms of the Heisenberg uncertainty
principle. The principle says that the spatial confinement of a photon, i.e. the focal spot, is
inversely proportional to its momentum spread [11]. However, if the source is replaced by
the time reversed source as shown in Fig. 2, which, in a more general context, is a sink, the
converging wave will be absorbed completely. The energy of the converging wave is converted
into two parts when approaching the sink: the energy of non-propagating field and the absorbed
energy. The non-propagating field, or equivalently the evanescent field, is associated with large
or complex k-vectors [13], which are believed to be necessary for producing a sub-diffraction
limit spot at the focus. In the particle-like manifestations of the electromagnetic field, Ole Keller
developed new equations to study photon wave mechanics and used the concept of the photon
embryo to describe the evanescent field [14]. This evanescent field is also referred to as a
localized field.

Due to the simplicity in explaining various phenomena relating to the light focusing, the time
reversal symmetry has gained much attention from many researchers in recent years [15]. Under
the guidance of time reversal symmetry, Quabis and colleagues predicted that using a radially
polarized beam produces a tighter focal spot in comparison with a linearly polarized beam [16].
This prediction was later confirmed by Dorn et. al. [17]. Similarly, under this guidance, Mudry
et. al. improved the performance of confocal microscopy to obtain a 4Pi microscope with a
combination of a spatial light modulator, a single microscope objective, and a mirror [18].
Light-matter interaction between a focused beam and a quantum target is also usually studied
and explained in the context of time reversal symmetry [19, 20].

2. Theory

In this paper, we derive fields representing a source and a sink based on plane waves and
spherical harmonics. We then employ the general field expressions to discuss the two methods,
the Debye-Wolf diffraction integral and multipole theory, for evaluating the focal field of an
aplanatic system shown in Fig. 3.
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Here, we use the definitions of the vectorial multipole fields as follows:

Nlm(r̄) = ∇×∇× [r̄Λlm(r̄)],

Mlm(r̄) = ik∇× [r̄Λlm(r̄)],

where the scalar multipole Debye potential Λlm represents
∧

lm, ∏(1)
lm , and ∏(2)

lm that are shown
in Eqs. (1), (2), and (3), respectively [21]:

∧

lm
(r̄) = jl(kr)Y m

l (θ ,φ) =Cm
l

{[
1
ik

(
∂
∂x

+ i
∂
∂y

)]m

P(m)
l

(
1
ik

∂
∂ z

)}
sin(kr)

kr
, (1)

∏(1)
lm (r̄) = h(1)l (kr)Y m

l (θ ,φ) =Cm
l

{[
1
ik

(
∂
∂x

+ i
∂
∂y

)]m

P(m)
l

(
1
ik

∂
∂ z

)}
eikr

ikr
, (2)

∏(2)
lm (r̄) = h(2)l (kr)Y m

l (θ ,φ) =Cm
l

{[
1
ik

(
∂
∂x

+ i
∂
∂y

)]m

P(m)
l

(
1
ik

∂
∂ z

)}
e−ikr

−ikr
. (3)

It is obvious that ∏(1)
lm (r̄)+∏(2)

lm (r̄) = 2
∧

lm(r̄). The scalar multipole field
∧

lm(r̄) is appropriate
for a description of a source-free monochromatic scalar wave field [22]. On the other hand,

∏(1)
lm (r̄) and ∏(2)

lm (r̄) are appropriate for descriptions of a monochromatic scalar wave field in
presence of a localized source distribution or a localized sink distribution, respectively.

Now, we consider a real, monochromatic, electromagnetic field Ē1(r̄, t) = Re{Ē1(r̄)e−iωt}
generated by a charge-current distribution as shown in Fig. 1:

ρ1(r̄, t) = Re{ρ1(r̄)e
−iωt}, J̄1(r̄, t) = Re{J̄1(r̄)e

−iωt}.
If the source (ρ1(r̄) and J̄1(r̄)) is continuous and a continuously differentiable function of posi-
tion, and vanishes identically outside a sphere of radius R, we can show the radiation field due
to the source to be [22]:

Ē1(r̄) =
ik1

2π

∫ 2π

0
dβ1

∫

C±
dα1 sinα1Ê1(ŝ1)e

ik̄1.r̄, (4)

where the spectral amplitude vector Ê1(ŝ) is given by

Ê1(ŝ1) =
∫

|r̄′|≤R

[

i
k1

c
J̄1(r̄

′)−∇ρ1(r̄
′)
]

e−ik̄1.r̄
′
d3r̄′. (5)

Lens GRS
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2 2ˆ( )E s
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m

Fig. 3. Gaussian reference sphere represents an aplanatic focusing system.
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Here the integral contours are shown in Fig. 4, and C+ (D+) and C− (D−) are used for the
regions z > 0 and z < 0, respectively. Equation (4) expresses the electric field in terms of plane
waves, and equivalently the electric field can be expressed in terms of vectorial multipole fields
Nlm and Mlm as follows [22, 23]:

Ē1(r̄) =
∞

∑
l=1

l

∑
m=−l

[gm
ElN

(1)
lm (r̄)+gm

MlM
(1)
lm (r̄)], (6)

where the strengths of the multipoles gm
El and gm

Ml are

gm
El =

il+1

l(l+1)

∫ 2π

0

∫ π

0
(Ê1(ŝ1)× ŝ1) ·Ym∗

l (α1,β1)sinα1 dα1 dβ1, (7)

gm
Ml =

il+1

l(l+1)

∫ 2π

0

∫ π

0
Ê1(ŝ1) ·Ym∗

l (α1,β1)sinα1 dα1 dβ1. (8)

We can obtain the time-reversed field Ētr
1 (r̄) of the radiated field Ē1(r̄) by applying the phase

conjugation to the vectorial field in Eq. (6):

Ētr
1 (r̄) =

∞

∑
l=1

l

∑
m=−l

[gm∗
El N(2)

lm (r̄)−gm∗
MlM

(2)
lm (r̄)]. (9)

For complete absorption of the time-reversed field, the sink, which is the time-reversed source,
must comprise the charge-current distribution (ρ1(r̄,−t), J̄1(r̄,−t)) [24]. More details on the
sink can be obtained in [5, 7, 25, 26]. Now, we consider the case in which the time-reversed
field approaches the focus without a sink. Due to energy flux conservation, there must be a
diverging wave from the focus following the converging wave [12]. For convenience, we denote
the converging wave Ē2(r̄) and the diverging wave Ē1(r̄) as shown in Fig. 3. For the converging
wave, we can show that [27]:

Ē2(r̄) =− ik2

2π

∫ 2π

0
dβ2

∫

D±
dα2 sinα2Ê2(ŝ2)e

ik̄2.r̄. (10)

Equivalently, we can express the fields in terms of vectorial multipole fields N(2)
lm and M(2)

lm as
follows [22, 23]:

Ē2(r̄) =
∞

∑
l=1

l

∑
m=−l

[qm
ElN

(2)
lm (r̄)+qm

MlM
(2)
lm (r̄)], (11)

Re( )

Im( )

2

Re( )

Im( )

2

Re( )

Im( )

2
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Im( )

2

C
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D

0

0

0

0

D

Fig. 4. Integration contours.
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where the strengths of the multipoles qm
El and qm

Ml can be evaluated using Eq. (7) and Eq. (8),
respectively, by replacing (Ê1, ŝ1,α1,β1) with (Ê2, ŝ2,α2,β2). As observed in Fig. 3, we have
Ê1 = Ê2 = Ê and k̄1 = k̄2 = k̄. As a result, we have qm

El = gm
El = pm

El and qm
Ml = gm

Ml = pm
Ml .

Hence, without the sink the total field will be the interference between the converging field Ē2

and the diverging field Ē1:

Ē(r̄) = Ē1(r̄)+ Ē2(r̄)

= 2
∞

∑
l=1

l

∑
m=−l

[pm
ElNlm(r̄)+ pm

MlMlm(r̄)]. (12)

Equation (12) expresses the focal field in terms of the vectorial multipole fields. Equivalently,
we can express the focal field in terms of the plane waves by adding Eq. (4) and Eq. (10):

Ē(r̄) =
ik
2π

∫ 2π

0
dβ

∫ π

0
dα sinαÊ(ŝ)eik̄.r̄. (13)

Whereas the representation in Eq. (13) can be considered as Whittaker’s representation for the
source-free field which expands the field in terms of the plane waves traveling in all direc-
tions, the representations in Eq. (4) and Eq. (10) can be considered as Weyl’s representation for
diverging and converging fields, respectively [22].

3. Simulations and discussions

An aplanatic focusing system is represented by a Gaussian reference sphere (GRS) as shown in
Fig. 3. To evaluate the focal field, we can use either Eq. (12) or Eq. (13). As we derive above,
the two equations are equivalent and hence in no way give different results. However the above
formulas are for a diverging field and a converging field over a full solid angle, but practically
we more often encounter the case of a field converging and diverging from a partial solid angle.
For example, we often focus light using an aplanatic system with a finite focal length f and an
illumination semi-angle αm < π

2 . For this particular case, we need to make some assumptions
and some approximations before we can apply Eq. (12) and Eq. (13). This section is devoted to
study the focused field of the aplanatic system.

Based on the plane wave expansions, Debye derived an elegant formula for treating the
diffraction caused by a small aperture for the scalar case in 1909. In 1959, Wolf generalized
the formula by including the effect of the vectorial nature of the field ( [28], and references
therein). Richards and Wolf used the formula for estimating the focal field of an aplanatic sys-
tem [29, 30]. In this paper, we call the formula the Debye-Wolf diffraction integral (DI). As an
alternative to the DI, the multipole theory based on the multipole expansions has been devel-
oped and used [23, 31, 32]. We call the formula based on the multipole theory the multipole
theory method (MTM). We have showed that DI and MTM give a perfect agreement on the
electric intensity around the focus in [23]. However, there are interesting differences between
the two methods which are presented in this paper.

First, we consider a Hertzian electric dipole with the current dipole moment Il pointing in
the ẑ direction and located at the origin. We can show that the spectral amplitude vector of the
radiation field of the dipole is [33]:

Ê1(ŝ1) =− iωμIl
4π

sin(α1)α̂1, (14)

where ω is the angular frequency of the oscillation of the dipole. Substituting Eq. (14) into Eq.
(7) and Eq. (8), we can show that only g0

E1 �= 0 and that g0
E1 =

ωμIl
2
√

3π . Hence, the radiation field
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Ē1 and its time reversed field Ētr
1 are as follows:

Ē1(r̄) = g0
E1N(1)

10 , (15)

Ētr
1 (r̄) = g0

E1N(2)
10 . (16)

There are different approaches for producing the time reversed field, for example, using a mas-
sive array of sensors [12], a mode converter [20], or a combination of an objective lens, spatial
light modulator, and a mirror [18]. For convenience, we denote the time reversed field Ētr

1 as a
converging field Ē2. Now, we consider the case of absence of the sink at the origin. The con-
verging field from the full solid angle is equivalent to converging from the whole GRS αm = π
as shown in Fig. 3. As explained in the previous sections, the focal field is evaluated using Eq.
(12):

Ē(r̄) = 2g0
E1N10. (17)

Figure 5 shows a contour plot of electric energy density using Eq. (17). In this full solid angle
of convergence, the full widths at half maximum (FWHM) in the transversal direction and the
longitudinal direction are λ

2.48 and λ
1.73 , respectively. These values of FWHM are very close to

the usually assumed classical resolution limit of λ
2 [34]. In fact, the convergence from a full

solid angle has been known and investigated as a special ability of a fish eye lens since the
time of Maxwell [1]. Maxwell is attributed to be the first one to investigate the fish eye lens,
and hence the name of Maxwell’s fish eye lens is usually used. Leonhardt recently proposed
that Maxwell’s fish eye lens can be used as a perfect lens [35, 36]. It is interesting to note
that in his first papers he did not mention the necessity for a drain, or sink. After two critical
comments on two different papers [37, 38], he took the necessity for a drain on board [39],
and even experimentally demonstrated his approach using a drain for microwaves in a two-
dimensional setup [40]. However, extension to three dimensions might prove difficult due to
accessibility issues. Merlin [41] and Zhang [42] both consider this method to be really just an
example of time-reversal. Alternatively, we can think of it as being an example of near-field
microscopy, where in this case ‘near-field’ refers to image space, rather than the usual object
space. In fact near-field probes have already been used to investigate focused fields [43]. Near-
field imaging brings several drawbacks, however, that are also important for the current case,
especially the interaction of the probe with the focused field, i.e. the probe disturbing the field
that is being measured, which is exactly what Leonhardt’s approach requires. Maxwell’s fish
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Fig. 5. Contour plot of electric energy density due to the time reversed field in absence of
the sink.
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eye has a magnification of unity. In fact Maxwell proved that in order to image a 3D region
perfectly the magnification must be unity [44]. This may be a big disadvantage (which is also
shared by Pendry’s super-lens [45]), as if the image is only as large as the object, why bother
with the image? There may be also other ways of achieving the aberration-free focusing part
of Leonhardt’s scheme, other than using a Maxwell fish eye. Surprisingly, no one seems to
have mentioned the similarity with 4Pi microscopy, which uses two opposed high numerical
aperture microscope objectives [46, 47]. 4Pi microscopy is performed as a scanning technique,
but the corresponding non-scanning technique has also been demonstrated [48]. 4Pi focusing
would seem a viable alternative to the Maxwell’s fish eye, with some practical advantages
such as ease of setting up, magnification greater than unity, and the ability to access the image
space. In absence of the drain at the focus, Fig. 5 represents the focal electric field intensity
of 4Pi microscopy due to focusing the electric dipole field. Use of a single atom as the drain
in 4π-illumination has been proposed and studied extensively by Leuchs and colleagues [15,
16, 19, 20]. It is worth noting that convergence from a full solid angle is necessary for the
atom to act as a perfect absorber. For convergence from a partial solid angle, an integration
between the atom and an optical antenna [49] may be needed to absorb the converging field
perfectly due to the existence of higher multipole terms like quadrupole, octupole, etc. [23].
In the presence of the drain at the focus, the focal field is now represented by Eq. (16) which
contains both propagating and evanescent fields. One will observe that the amplitude of the
focal field keeps increasing when approaching the focus and stops only when finally reaching
atomic dimension [16]. Labeling a specimen with particles that act as drains, and observing
them in a 4π setup would then give perfect imaging. However, we would like to emphasize
again that the focal field in this scenario represents the interaction between the probe and the
focused beam, which is well understood in near-field microscopy. Leonhardt proposed a similar
idea, that the drain (outlet or sink) could be ‘part of a CCD array used to detect the field or a
photosensitive molecule’ [39]. In summary, we may identify that the drain is the key element
of Leonhardt’s super-resolving system, not the Maxwell’s fish eye.

Now, we consider the beam converging from a partial solid angle, which we call an axial
dipole wave (ADW) [23]. Ignoring the constant term − iωμIl

4π f eik f , the electric field on the GRS is:

Ē f
2 = a(α)α̂, (18)

where
a(α) = sinα for α ≤ αm; and a(α) = 0 for α > αm.

For a lens with a large focal length f , we have the relation between the electric field Ē f
2 and the

spectral amplitude vector Ê2 as follows [28, 31]:

Ê2 = f eik f Ē f
2 . (19)

In terms of ray optics, the spectral amplitude vector is usually referred to as the strength factor
of the associated ray [28]. The strength factor does not change along the ray. Although it is
well-known that ray optics, and consequently the concept of the strength factor, is not valid
around the focus of the focusing system, it is a valid and convenient concept in the region far
away from the focus. For example, on a sphere with radius R � λ , the concept of the strength
factor can be used. And hence applying Eq. (19), we can derive the electric field on the sphere
with radius R in the context of ray optics as follows:

ĒR
2 = eik( f−R) f

R
Ē f

2 = eik( f−R) f
R

a(α)α̂. (20)

In this paper, we refer to the method using Eq. (20) for evaluating the electric field as the
geometrical optics method (GOM).
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Fig. 6. Electric intensity distributions on the GRS with a low numerical aperture beam
(upper) and a high numerical aperture beam (lower) with L = 400.

Before we analyze simulation results of the focused field using the DI, MTM, and GOM, it is
worth reviewing and highlighting the differences among the three methods. All three methods
assume that the field incident on the GRS is perfectly tangent to the GRS. This assumption
introduces an error of the order (k f )−2 to the assumed field in Eq. (18). For the DI, Debye
showed that a peculiar behavior of the integrals exists on the optical axis in the far-region,
without giving an explanation [50]. Later, in his lecture, Sommerfeld argued that the behavior
was similar to the Poisson spot occurring in the diffraction pattern of a circular disk [50].
In an asymptotic treatment of the diffraction problem, Van Kampen showed that there were
three kinds of the critical points [51], which contributed to the diffraction field. The first kind
consists of all critical points in the diffraction aperture but not at the periphery of the aperture.
The second kind consists of all the points on the periphery but not at a corner, and the third kind
consists of all the corners of the aperture. For a circular aperture, there are only the first kind
and second kind of the critical points. In the derivation of DI, the authors used the principle of
stationary phase, i.e. they take into account only the first kind of critical points. However, the
second kind of critical point is known to contribute significantly to the diffraction field around
the optical axis and the shadow boundary behind the aperture [50]. In contrast to the DI, the
MTM does not use the principle of stationary phase, but an error comes from truncating the
double infinite summations in Eq. (11) and Eq. (12). The truncation error in MTM is similar to
the error in modeling a sharp step using a finite number of Fourier terms. The error in GOM is
from using ray optics to describe the propagation of the wave.

The electric intensity distributions on the GRS for a low-aperture beam αm = 16o and a high-
aperture beam αm = 60o are shown in Fig. 6, in which θ = 180o −α . All simulation results
in this paper were obtained assuming the wavelength of the focused beam λ = 1.34μm. We
assume the starting field on the GRS as the far field and hence the GOM is expected to describe
an ideal distribution on the GRS. For the plot using DI, we observe the peculiar behavior on the
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optical axis as mentioned by Debye [50]. The oscillation in the DI plot is due to excluding the
contribution of the periphery of the aperture which hence causes the strong oscillation around
the hard edge. There is no peculiar behavior for the plot using the MTM and there is a smaller
oscillation at the hard edge compared with the DI plot. The oscillation in the MTM plot is
due to the truncation of the infinite summation. The difference may be important in the inverse
problem of diffraction, in which given a focal field one must design the incident field on the
GRS [52]. Figure 7 shows the electric intensity distributions on spheres of different radius. We
can observe that when the beam approaches the focus, the distributions using DI and MTM
converge and give a perfect agreement on the sphere with R = 0.1cm. This is due to the fact
that the contribution of the critical points of the second kind is ignorable and a smaller number
of multipole terms are needed for accurately describing the focused beam. We also observe
a significant deviation of the distributions using DI and MTM from the distribution using the
GOM on the sphere R = 0.2cm. This deviation is due to the assumption of GOM that the rays
travel without interference.

To compare the three methods in absence of the contribution of the periphery of the aperture,
we change the apodization of the incident beam in Eq. (18) to a(α) = sin(3α) and take the
maximum illumination angle as αm = 60o. Hence, we have a(αm) = 0, which means there
is no contribution of the critical points of the second kind to the focused field [50]. Figure
8 shows the perfect agreement of the three methods on the electric intensity distributions on
the GRS. There is no oscillation caused by the truncation in the MTM because only a finite
number multipole terms L = 100 is needed for modeling the soft edge, just like modeling a
soft step using a finite number of Fourier terms. We observe an important difference between
the DI plot and the MTM plot, that the DI represents the interference between the converging
and diverging beams but the MTM represents only the converging beam. The DI plot for 0o <
θ < 60o represents the diverging beam. This difference is important in explaining the scattering
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Fig. 7. Electric intensity distributions on spheres of different radius R = 0.2cm (top) and
R = 0.1cm (bottom) with L = 400.
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Fig. 9. Electric intensity distribution on a sphere R = 5μm with L=30.

mechanism by spherical particles in a focused beam [32]. For this special case, geometrical
optics can approximate the field on the sphere R = 10μm, giving results very close to those
from DI and MTM. Figure 9 plots the electric intensity distribution on the sphere R = 5μm
in which the red circle plot is obtained by using Eq. (12) and the green plot is obtained by
using Eq. (11). The red circle plot represents the interference between the converging beam and
the diverging beam and hence agrees with the DI over the whole range of θ . The green plot
represents the converging beam only and hence leads to a small deviation from the other two
plots around the focus. This deviation represents the contribution of the inhomogeneous part of
the converging beam and has been discussed in [53, 54].
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4. Conclusion

In conclusion, we have derived and studied the multipole expansions and the plane wave expan-
sions of a diverging field, a time-reversed field, and a converging field. We show the similarity
between the converging field and the time reversed field of the radiated field. We have also
made a comparison between the Debye-Wolf diffraction integral and the multipole theory in
evaluating the focal field. The Debye-Wolf diffraction integral describes the interference be-
tween a converging beam and its associated diverging beam and ignores the contribution of the
critical points of the second kind. The multipole theory decomposes the focused beam into a
converging beam and a diverging beam, and introduces an error in evaluating the far field due to
the truncation of the infinite summations. Our theory may find applications in the time reversal
analysis and the light-matter interaction.
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