
Quantum properties of optical field in
photonic band gap structures

S. Severini, C. Sibilia, M. Bertolotti
INFM at Dipartimento di Energetica, Università di Roma “La Sapienza”,

Via A. Scarpa 16, I-00161 Rome, Italy.

M. Scalora and C. Bowden
Weapon Science Directorate, AM SMI-RD-WS, Redstone Arsenal

AL 35898 5000 USA

Abstract: A theoretical analysis of the quantum behaviour of radiation field’s
propagation in photonic band gaps structures is performed. In these initial
calculations we consider linear inhomogeneous and nondispersive media.
©2001 Optical Society of America
OCIS codes: (270.0270) Quantum optics ; (160.1190) anisotropic optical materials.

References and links
1. E.Yablonovitch , T.J. Gmitter, “Photonic band structure: the face-centered-cubic case” Phys. Rev. Lett. 63,

1950-1953 (1989).
2. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Photons and Atoms (John Wiley & Sons, 1997).
3. C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantum Mechanics (John Wiley & Sons, 1977)
4. Jon M. Bendickson, J. P. Dowling, M. Scalora, “Analytic expression for the electromagnetic mode density

in finite, one-dimensional, photonic band-gap structures”, Phys. Rev. E 53, 4107-4121 (1996).
5. T. Gruner and D.G. Welsch, “Quantum-optical input-output relations for dispersive and lossy multilayer

dielectric plates” Phys. Rev. A 54, 1661-1677 (1996).
6. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).

1. Introduction

Photonic band gap (PBG) structures have been extensively studied during these last years [1] ,
due to the possibility of handling light . The propagation can occur in 1D,2D, or 3D periodical
structures and gives rise to gaps in the transmission as for electron energy in crystals. In what
follows we consider a 1D PBG .
The propagation in inhomogeneous materials is described by the following equation:
[∇2+k2ε(z,ω)]f(z,ω)=0 , it does not have closed solution in the general form and for the
general case [1]. Of course this problem remains even when we work in a quantum domain. In
the absence of absorption and dispersion, in the quantum domain, we have the operator
equation
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In the previous equation we refer to an angular frequency of the vector potential operator; the
time-independent potential operator given by
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and the electric field operator is:
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These operators satisfy the well-known canonical commutation relation [2]:
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in which V is normalization constant and it is linked to the quantization volumes.

2. PBG structure.

We are interested to the study of Eq.(1) when ε(z) is function of the propagation variable z ,
for example in the particular case of 1 D photonic band gap (PBG) structures. Consider the
dielectric permittivity function given by:
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where Bj=|zi+1− zi| and z1= −∞  zN=+∞. j is an index related to the number of interfaces, and M
M is an index which defines the space: i.e. M=1 is the semi-space on the left side of the
structure. No absorption and dispersion are considered.

Let us consider the simplest case in which M=4. In this situation we have:

Fig. 1 In this figure the three homogeneous regions are represented, in which the permittivity
ε(z) is subdivided.

In homogeneous regions, i.e. where ε=Cost., the Â –potential operator is of the form :
..ˆ),(ˆ cHeaCzA ikz += ωω (6)

where Cω is a normalization constant and â is independent of z. We observe that â ≠ â +

instead Â = Â +. Operators â and â + satisfy the well know boson commutation relations:
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where we have considered two distinct fields, in region 1:
for z<z2⇒ [ ] ..ˆˆ),(ˆ

11 cHeaeaCzA ikzikz ++= −
−+ωω (8)

forward (1+) and backwards (1–) propagating fields, respectively. Subscripts j and I are
related to modes of the radiation field . The same considerations apply to the other external
region 3:

for z>z3⇒ [ ] ..ˆˆ),(ˆ
33 cHeaeaCzA ikzikz ++= −

−+ωω (9)

In the following calculations, we neglect the H.c. specifications. The operators jâ and

jâ + inside the two external regions (j=1,3) are linked through a linear transformation:
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Coefficients of this transformation are determined starting from boundary conditions [3].
We omit tedious calculations for the specific case of interest [2]; but it’s interesting to point
out the symmetries of this transformation: U22

*=U11=F; U21
*=U12=G and det U =1. Matrix U

could be easily linked to the Transmission matrix T :
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The coefficients F and G will depend on the particular shape of region between 1 and 2
half spaces. Using definition (5), for the permittivity coefficient, the F and G coefficients are
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where B2=|z3− z2|,
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We can also consider a more complicated structure, in which we have ε2 constituted of N
periodic regions (a real PBG structure), as reported in fig. 2.

Fig. 2 Extension of the previous calculations to a real PBG structure. Now ε2 is z-dependent,
and it consists of N regions in which we have n=constant.

In this case, in the further hypothesis of considering quarter-wave stacks (optical path in every
region it’s equal to each other and it’s a quarter of wave length), we have for the F and G
coefficients [4]
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where ΞN(β)=Sin(Nβ)/Sin(β) is the modified Chebyshev function, β is the Bloch phase and in
this particular case it’s defined as
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and ω~ is normalized to midgap frequency (≡ω/ω0).

z
z2 z3ε2(z)

na nb …
na nb

a b

-1- -N-

#35162 - $15.00 US Received September 06, 2001; Revised October 19, 2001

(C) 2001 OSA 22 October 2001 / Vol. 9,  No. 9 / OPTICS EXPRESS  456



3. Correlation Functions.

We can write the potential operator Â , in the following form [5]:
),(ˆ),(ˆ),(ˆ )()( ωωω zAzAzA jjj

−+ += (16)

where the positive part of Â is defined as
ikz

jj eaCzA +
+ = ωω ),(ˆ )( (17)

It is immediately evident that Â (–)(z,ω)= Â (+)(z,-ω)† and obviously Â j(z,ω)= Â j(z,ω)†. If we
use identical assumptions, used for the potential operator, for the electric field operator, we
find the output photon-number density, i.e. the correlation function 〈 )(
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Using the following photon-number densities (number of photons per unit frequency)
functions for the fields in the two regions (the 1st and the 3rd one) [6]:
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if we consider N1(ω)=N1out(ω)/N1in(ω), and N3(ω)=N3out(ω)/N1in(ω), in the further hypothesis of
irradiating the dielectrics from one side (the input field 3– is in the vacuum state):
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and using the transmission matrix formalism (see Eq.(16)), we have:
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where |t11|
2=|G/F|2. Similar calculations, performed for to the N3out(ω) field, give the following

results:

)(Nt)(N inout ωω 1
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where |t21|
2=|1/F|2.

Examples of photon number densities ratio are presented in figures 3 and 4 for one single
layer. Figure 3 represents N1(ω) as a function of the frequency and as a function of the
thickness B2 of the layer. Figure 4 represents N3(ω )as a function of the frequency and as a
function of the thickness B2 of the layer.
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Fig. 3. Photon number densities ratio of the reflected outgoing field over the incoming field,
N1(ω)=N1out(ω)/N1in(ω), as a function of frequency and dielectric thickness. ω is of the order of
1014 s-1 and B2 is of the order of 10-6 m. In this simulation N=1 (one layer).

Fig. 4 Photon number densities ratio of the transmitted outgoing field over the incoming field,
N3(ω)=N3out(ω)/N1in(ω), as a function of frequency and dielectric thickness. ω is of order 1014 s-1

and B2 is of order 10-6 m. In this simulation N=1 (one layer).

In Figure 5 the photon number densities of the reflected outgoing field over the
incoming field, N1(ω/ω0), is plotted as a function of the normalized frequency
ω/ω0=ωB2n2/c. In green the plot of the photon number densities of the transmitted
outgoing field over the incoming field, N3(ω/ω0), as a function of the normalized
frequency ω/ω0=ωB2n2/c is presented , B2 is the dielectric thickness and n2 is the
refractive index (≈3 in our example). In this simulation N=1 (single layer).
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Fig. 5 In red: Photon number densities of the reflected outgoing field over the incoming field,
N1(ω/ω0), as a function of the normalized frequency ω/ω0=ωB2n2/c. In green: Photon number
densities of the transmitted outgoing field over the incoming field, N3(ω/ω0), as a function of
the normalized frequency ω/ω0=ωB2n2/c. B2 is the dielectric thickness and n2 is the refractive
index (≈3 in our example). In this simulation N=1 (single layer).

In Figure 6 the photon number densities of the reflected outgoing field over the
incoming field, N1(ω/ω0), is plotted as a function of the normalized frequency ω/ω0.
In green the plot of the photon number densities of the transmitted outgoing field
over the incoming field, N3(ω/ω0), as a function of the normalized frequency ω/ω0 is
presented , B2 is the dielectric thickness and n2 is the refractive index (≈3 in our
example). In this simulation a quarter-wave stack has been considered, and
ω0=2πc/λ0. The refractive index of each layer is na=1, nb=2, and the number of cells
(see fig. 2) is N=3 (multi-layer material: PBG structure). We can observe as the
photon number density follows the classical transmission spectrum of the layered
structure [4].
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Fig. 6 In red: Photon number densities of the reflected outgoing field and incoming field,
N1(ω/ωn), as a function of the normalized frequency ω~ =ω/ω0. In green: Photon number densities
of the transmitted outgoing field and incoming field, N3(ω/ωn), as a function of the normalized
frequency ω~ . In this quarter-wave stack, ω0=2πc/λ0. In this simulation na=1, nb=2 and the
number of cells (see fig. 2) is N=3 (multi-layer material: PBG structure).

4. States symmetries.

Starting from U (or T) matrix, we obtain in the general case, the following property:

−+−+ +=+ 3113 ˆˆˆˆ nnnn (23)
that is the conservation energy relation for the total optical system, involving the 4 fields. The
Hilbert Space describing the system, has the following base vector (Fock state):

N1(ω/ω0)
N3(ω/ω0)

ω/ω0=ωB2n2/c

N1(ω/ω0)
N3(ω/ω0)

ω~ =ω/ω0
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psmn ,,,=ϕ (24)

where labels in the ket are the photon numbers of modes 1–,1+,3–,3+, respectively. The set
{|ϕ〉} is an ortho-normal set. If we try to calculate the average on this (general) state, of
equation 23, we obtain:

smnp +=+ (25)

where n,m,s,p are positive integer numbers. If we are in a state in which we have N photons
(in total), the general expression (24) gives the following state:

( )smnNsmnN ++−= ,,,ϕ (26)

where n+m+s≤ N. The number of such ortho-normal states is (6+11N+6N2+N3)/6. If we
consider the further condition (25), the number of ortho-normal states will became (2+N)2/4
and the general N photon state is:
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where the numbers n,m and N are positive integers. Replacing N with 2N’, and renaming N’
by N, equation (27) becomes:

[ ] ℵ∩∈−−= NmnnNmNmnN ,0,,,,,2ϕ (28)

This is the structure of the 2N photon field in the system.

6. Conclusion.

These calculations show the study of the quantum correlation behaviour of the optical field in
the space regions external to the PBG structures. The transfer matrix formalism has been
applied to follow the output behaviour of photon number density of a quantum field exiting
from the PBG structure. The knowledge of these properties will be of interest for
implementation of quantum computing and quantum gates. These calculations are only the
starting analysis of the interesting quantum properties of the inhomogeneous media. We’ll
extend the study of the state’s symmetries and the correlation functions from linear to
nonlinear cases.
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