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Abstract: Phase retrieval is a technique for extracting quantitative phase 
information from X-ray propagation-based phase-contrast tomography 
(PPCT). In this paper, the performance of different single distance phase 
retrieval algorithms will be investigated. The algorithms are herein called 
phase-attenuation duality Born Algorithm (PAD-BA), phase-attenuation 
duality Rytov Algorithm (PAD-RA), phase-attenuation duality Modified 
Bronnikov Algorithm (PAD-MBA), phase-attenuation duality Paganin 
algorithm (PAD-PA) and phase-attenuation duality Wu Algorithm (PAD-
WA), respectively. They are all based on phase-attenuation duality property 
and on weak absorption of the sample and they employ only a single 
distance PPCT data. In this paper, they are investigated via simulated noise-
free PPCT data considering the fulfillment of PAD property and weakly 
absorbing conditions, and with experimental PPCT data of a mixture 
sample containing absorbing and weakly absorbing materials, and of a 
polymer sample considering different degrees of statistical and structural 
noise. The simulation shows all algorithms can quantitatively reconstruct 
the 3D refractive index of a quasi-homogeneous weakly absorbing object 
from noise-free PPCT data. When the weakly absorbing condition is 
violated, the PAD-RA and PAD-PA/WA obtain better result than PAD-BA 
and PAD-MBA that are shown in both simulation and mixture sample 
results. When considering the statistical noise, the contrast-to-noise ratio 
values decreases as the photon number is reduced. The structural noise 
study shows that the result is progressively corrupted by ring-like artifacts 
with the increase of structural noise (i.e. phantom thickness). The PAD-RA 
and PAD-PA/WA gain better density resolution than the PAD-BA and 
PAD-MBA in both statistical and structural noise study. 
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1. Introduction 

X-ray computed tomography (CT) is a non-destructive technique widely used for visualizing 
the morphology of samples, and for assessing quantitative information on their three-
dimensional (3D) geometries and properties [1, 2]. With the availability of third generation 
Synchrotron Radiation sources, X-ray phase-sensitive imaging/CT has evolved as an 
increasingly accepted and utilized technique for characterizing the 3D internal structure of 
samples in the fields of material science and life sciences [3]. X-ray phase-sensitive 
imaging/CT utilizes phase shifts rather than absorption information, which is employed in X-
ray absorption imaging/CT, as imaging signal [4]. Among X-ray phase-sensitive CT 
techniques, the X-ray propagation-based phase-contrast computed tomography (PPCT) has a 
very simple experimental setup, which requires no additional optics in the imaging geometry 
and is identical to the conventional absorption CT except for providing the beam is 
sufficiently spatially coherent and increasing the sample-to-detector distance (SDD) [3]. 
Qualitative PPCT can be performed by applying the standard ðltered back-projection CT 
reconstruction algorithm to the PPCT data [5]. The results are proportional to the Laplacian of 
the sample refractive index distribution providing an edge-enhancement, which allows 
visualizing the boundaries of regions with different refraction properties. Besides, PPCT 
radiographies fringes contain phase information which could be extracted by means of phase-
retrieval [6]. Several phase retrieval algorithms have been developed [6–13]. In general, 
phase retrieval requires at least two intensity measurements, taken at two different SDDs, 
such as the transport of intensity equation (TIE) method [6], or the contrast transfer function 
method [9]. This is a limitation since typically hundreds or thousands of projections will be 
taken in PPCT experiment. Taking PPCT data at two different SDDs will increase the 
experiment time and deliver a higher radiation dose to the samples, which could hinder 
biomedical applications. Definitely, phase retrieval utilizing only one SDD PPCT data is 
preferable and more feasible, especially when dose is an essential issue in the experiment. 

Several phase-retrieval algorithms using a single SDD PPCT data have been proposed, 
such as the Modified Bronnikov algorithm (MBA) method [13], which modifies the 
Bronnikov algorithm [11] by introducing an absorption correction factor (ACF) and 
eliminating the need of additional contact plan projections; the algorithms based on first 
Born- and Rytov-type approximations proposed by Gureyev [8]; the TIE based method by 
Paganin [12], which provides a method to reconstruct the sample projected thickness of the 
homogeneous sample using a single defocused image by solving TIE, thus simultaneously 
extracting phase and amplitude information; and the phase-attenuation duality algorithm 
proposed by Wu [14], which also considers the effects of x-ray source coherence and detector 
resolution. All these algorithms employ only a single SDD PPCT data set and utilize the same 
two assumptions on material properties: i) that the absorption is weak and homogenous, 
which means that the intensity in the contact plane can be approximated to unity, and ii) 
phase-attenuation duality (PAD) property [12, 14], i.e. the refractive index decrement δ  and 
the absorption index β  of complex refractive index 1n iδ β= − +  are proportional to each 

other [15]. Other approaches can be found in [16–18]. 
Although comparison studies among phase retrieval algorithms, utilizing single- and 

multi- SDD(s) PPCT data, have been conducted [15, 19–21], it is interesting to know their 
performance considering the effect of statistical and structural noise, and different object 
composition. One trend in PPCT experiments is ultra-fast-CT, that aims to reduce the 
exposure time thus speeding up the data collection and reducing the radiation dose. When the 
exposure time is reduced, the statistical noise in the collected images increases accordingly 
and the quality of images becomes poorer. On the other side, a given sample may be 
surrounded by other uninteresting materials or structures, which have different shape and 
thickness and will affect the evaluation of the interesting objects. This is the case of structural 
noise, i.e. the presence in the image of unwanted and unavoidable structures besides the ones 
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of interest. Furthermore, it is also attractive to investigate the performance of phase retrieval 
algorithms when their assumptions are not strictly satisfied. 

In this paper, the performance of different single SDD phase retrieval algorithms will be 
studied. They are called phase-attenuation duality Born Algorithm (PAD-BA) [8, 22], phase-
attenuation duality Rytov Algorithm (PAD-RA) [8], phase-attenuation duality Modified 
Bronnikov Algorithm (PAD-MBA) [11, 13, 23], phase-attenuation duality Paganin algorithm 
(PAD-PA) [12], and phase-attenuation duality Wu Algorithm (PAD-WA) [14, 24], 
respectively in this paper. They are all based on phase-attenuation duality property and on 
weak absorption of the sample and they employ only a single SDD PPCT data. These 
algorithms will be investigated via simulated noise-free PPCT data considering the fulfillment 
of PAD property and weakly absorbing conditions, and with experimental PPCT data of a 
mixture sample containing absorbing and weakly-absorbing materials, and of a polymer 
sample considering different degrees of statistical and structural noise. 

2. Theory 

 

Fig. 1. Schematic of PPCT scanning geometry. 

As shown in Fig. 1, an object is illuminated by a monochromatic plane x-ray beam, and the 
PPCT projection images are collected in the image plane. The object can be described by its 
3D complex refractive index distribution, ( , , ) 1 ( , , ) ( , , )n x y z x y z i x y zδ β= − + , where δ  

and β  are the refractive index decrement and the absorption index respectively, and 

( , , )x y z  are the spatial coordinates. Because of the weak interaction of x-rays with matter, 

the beam propagation path inside the sample can be assumed to be straight and L  denotes the 
linear path in the sample. The wave-object interaction can then be represented as the object 
transmission function [25] 

 [ ]( , ) exp ( , ) ( , )T x y x y i x yθ θ θγ φ= − −  (1) 

where θ  represents the CT rotation angle; the sample phase ( , )x yθφ  function and 

absorption function ( , )x yθγ  are respectively: 

 
( , ) ( , , ) d

( , ) ( , , )d

L

L

x y k x y z z

x y k x y z z

θ θ

θ θ

φ δ

γ β

=

=




 (2) 

where 2k π λ=  is the wavenumber, λ  is the wavelength, and 
Lθ denotes the line integral 

over the object along the beam path L  at CT rotation angle θ. 
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When a sample is quasi-homogeneous, the real and imaginary parts of 1n −  are 
proportional to each other (PAD property) [12, 24]: 

 ( , , ) ( , , )x y z x y zδ εβ=  (3) 

where ε  is a constant. In this paper, a sample which fulfills PAD property will be referred to 
as a ratio object that is the ratio of the real and imaginary parts of 1n − is constant. 

In the following, the principle of single SDD phase retrieval algorithms, PAD-BA, PAD-
RA, PAD-MBA, PAD-PA and PAD-WA, will be introduced briefly. For describing 
convenience, let ,zI θ  and ,0Iθ  be the intensity distribution at SDD = z and SDD = 0 at 

rotation angle θ  of PPCT; φ̂  and γ̂  denote the Fourier transform of the phase and the 

absorption function, φ  and γ , respectively. 

2.1 Phase-attenuation duality Born algorithm 

Let us assume an object of weak absorption and slowly varying phase shift. According to the 
Born-type approximation PPCI theory, ,zI θ  can be approximated by the following equation 

[8] 

 ( ), ,0[( / 1) / 2] cos sinˆˆ,zI Iθ θ θ θχ χξ η γ φ− = +F  (4) 

where ( ),ξ η  are the spatial frequencies in the Fourier space corresponding to coordinates 

( ),x y  in real space, and 2 2( )zχ πλ ξ η= + . 

In case the object fulfills PAD condition and is weakly absorbing, i.e. ,0 1Iθ ≈ , 

substituting Eq. (3) into Eq. (4) yields the following equation [8]: 

 ,1
1

[( 1) / 2]
( , )

cos sin
zI

x y θ
θ χ χ

φ
ε

−
−

− 
=  + 

F
F  (5) 

After retrieving the phase function for the entire set of PPCT projections, the 3D 
refractive index can be reconstructed by applying the standard FBP algorithm to ( , )x yθφ  

[22], that is: 

 1

0
( , , ) ( , ) dx y z k x y

π

θδ φ ν θ−= ∗  (6) 

where ∗  denotes 1D convolution and ν  is the CT reconstruction filter. 

2.2 Phase-attenuation duality Rytov algorithm 

According to the Rytov-Type approximation of the PPCI theory, ,zI θ  can be approximated as 

[8] 

 ( ), ,0[ln( / ) / 2] cos sinˆˆ,zI Iθ θ θ θχ χξ η γ φ= +F  (7) 

If the object satisfies PAD condition and is weakly absorbing ( ,0 1Iθ ≈ ), combining Eqs. 

(3) and (7) yields the following equation [8]: 

 ,1
1

[ln( ) / 2]
( , )

cos sin
zI

x y θ
θ χ χ

φ
ε

−
−

 
=  + 

F
F  (8) 

After retrieving the phase function for the entire set of PPCT projections, the 3D 
refractive index can be reconstructed by applying the standard FBP algorithm to ( , )x yθφ  as 

in Eq. (6). 
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2.3 Phase-attenuation duality modified Bronnikov algorithm 

According to TIE theory [6] and considering the property of 2D and 3D Radon transform, the 
3D refractive index decrement ( , , )x y zδ  of the object can be reconstructed via the following 

equation that is the main result of the Bronnikov algorithm [11]: 

 [ ]2
0

1
( , , ) ( , ) ( , ) d

4
x y z q x y g x y

z

π

θδ θ
π

= ∗∗  (9) 

where ∗∗  indicate a 2D convolution, , ,0( , ) / 1zg x y I Iθ θ θ= − , and 
2 2

( , )
y

q x y
x y

=
+

 is a 

filter. Bronnikov algorithm needs double SDDs PPCT data, i.e. ,zIθ  and ,0Iθ  in ( , )g x yθ , 

during the reconstruction. For weakly absorbing sample ( ,0 1Iθ ≈ ), Groso modified the 

Bronnikov algorithm, by eliminating the need of ,0Iθ , i.e. ,( , ) 1zg x y Iθ θ= − , and 

introducing an absorption correction factor (ACF: α) in the filter, thus only single SDD PPCT 
data is needed [13]. The Fourier space form of modified filter is [13] 

 
2 2

( , )Q
ξ

ξ η
ξ η α

=
+ +

 (10) 

where α  is the ACF, which is determined by using a semi empirical approach in MBA [13]. 
However, an inappropriate α value will affect the reconstruction results, which will be blurred 
with a too small ACF value, while the filter will be eliminated with a too large value. 
Different groups have performed relative study on this topic and proposed a precise ACF 
value, which is based on the phase-attenuation duality property of low-Z sample, for MBA 
[23, 26, 27], namely: 

 
1

z
α

πελ
=  (11) 

The PAD-MBA is the combination of Eq. (9) with ,( , ) 1zg x y Iθ θ= − , and Eqs. (10) and 

(11). 

2.4 Phase-attenuation duality Paganin algorithm 

PAD-PA provides a method to reconstruct the projected thickness ( , )t x y  of the 

homogeneous sample using a single defocused image by solving the TIE [12], thus it 
simultaneously extracts phase and amplitude information. The projected thickness of the 
object ( , )t x y  is extracted as follows: 

 , ,01
2 2 2

/( )1
( , ) ln ( )

4 ( )
z II

t x y
z

θ θμ
μ π δ ξ η μ

− 
=  + + 

F
F  (12) 

For weakly absorbing sample ( ,0 1Iθ ≈ ), considering PAD property and substituting 

4πμ β
λ

=  and Eq. (12) into Eq. (2), the object phase function can be obtained via the 

following equation: 

 ,1
2 2

( )1
( , ) ln

2 1 ( )
zI

x y
z

θ
θφ ε

πελ ξ η
−   =   + +   

F
F  (13) 
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After retrieving the phase function for the entire set of PPCT projections, the 3D 
refractive index can be reconstructed by applying the standard FBP algorithm to ( , )x yθφ  as 

in Eq. (6). 

2.5 Phase-attenuation duality Wu algorithm 

PAD-WA is proposed by Wu using a single phase-contrast image [14]. Starting from either 
the paraxial Fresnel–Kirchhoff diffraction theory or the phase-space evolution of the Wigner 
distributions for x-ray wave fields, object phase function can be retrieved via following 
formula: 

 
2

1 2 2
, det

2
( , ) ln ( ) ( ) 1 ( )e e

z in in
KNKN

r zr
x y I I z OTFθ θ

λ πλφ μ λ ξ η
σσ

−
       = + +     

       
F F (14) 

where er  is the classical electron radius, KNσ  denotes the total cross section for x-ray 

Compton scattering from a single free electron, ( )in zμ λ  presents spatial coherence of the 

incident x-ray, detOTF is the detector spatial frequency response, and inI denotes the intensity 

of the incident x-ray upon the object. 
Let us assume a perfect coherent, homogeneous incident x-ray source and a perfect 

detector, i.e. 1, 1in inIμ ≈ ≈ , and det 1OTF ≈ . Considering 
2

e

KN

r ε
σ λ

=  [14,15], the object phase 

function can be extracted via the following equation: 

 ,1
2 2

( )1
( , ) ln

2 1 ( )
zI

x y
z

θ
θφ ε

πελ ξ η
−   =   + +   

F
F  (15) 

As mentioned before, the 3D refractive index can be reconstructed by applying the 
standard FBP algorithm to ( , )x yθφ , as in Eq. (6). 

It should be noted that, with PAD property and weakly absorbing approximation, the final 
single SDD phase retrieval equations of PAD-PA and PAD-WA are the same, as shown in 
Eqs. (13) and (15); thus, in the following study, we will not distinguish between these two 
algorithms and we will refer to them as PAD-PA/WA. 

3. Materials and methods 

3.1 Simulations 

The performance of all phase retrieval algorithms was first investigated by simulation. The 
noise-free PPCT data were generated via tomography projection theory and the Fresnel 
diffraction theory. The simulated phantom is shown in Fig. 2, in which Fig. 2(a) is the 3D 
phantom, and Figs. 2(b)-2(d) are phantom slices according to the line positions in Fig. 2(a). 
As the images show, the 3D phantom is made up of an ellipsoid and two spheres inside. Three 
different cases are conducted by assigning different complex refractive index values, i.e. the 

( ),δ β  values, to the three phantom regions. The first one is a weakly absorbing ratio 

phantom ( 1000ε = ), in which the ( ),δ β  values are (0.0, 0.0) (black, background), (1.0 × 

10−7, 1.0 × 10−10), (2.0 × 10−7, 2.0 × 10−10), (3.0 × 10−7, 3.0 × 10−10) (white) respectively; 
while in the second one, the ( ),δ β  values are (0.0, 0.0), (1.0 × 10−7, 1.0 × 10−9), (2.0 × 10−7, 

2.0 × 10−9), (3.0 × 10−7, 3.0 × 10−9) respectively for the phantom, which simulates an 
absorbing ratio phantom ( 100ε = ); the final one is a weakly absorbing no-ratio phantom, in 

which the ( ),δ β  values are (0.0, 0.0), (1.0 × 10−7, 1.2 × 10−10), (2.0 × 10−7, 2.0 × 10−10), (3.0 
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× 10−7, 2.0 × 10−10) respectively. The simulation parameters of all PPCT data sets are: energy 
of 14 keV, SDD = 0.6 m, and an effective pixel size of 9 μm. Within 180 degree CT scan 
range, 220 PPCT projections were generated. 

 

Fig. 2. Simulation phantom: (a) 3D phantom, (b)-(d) phantom slices according to the line 
positions in (a). 

3.2 Experiments 

The experimental PPCT data were collected at the SYRMEP beamline [28] at the ELETTRA 
synchrotron facility, Italy. The SYRMEP beamline employs a bending magnet source with a 
Si (111) double-crystal monochromator, which provides photon energy ranging from 8.5 to 
35 keV. 

3.2.1 Mixture sample containing absorbing and weakly-absorbing materials 

The assumptions of the single SDD phase retrieval algorithms are the object must fulfill PAD 
property, i.e. it is a ratio object, and weakly-absorbing. In this case, it is interesting to 
investigate their performance when the object does not fulfil these conditions. Here, a mixture 
sample is investigated. It is a PMMA cylinder where five holes have been drilled; four of the 
five holes are filled with aluminum, Teflon, water and Polyoxymethylene, while the other 
hole is left empty. The energy of 25 keV, SDD = 0.5 m and a CCD detector with an effective 
pixel size of 9 μm were used to acquire all PPCT data sets. At 25 keV, the ε  values for 
aluminum, Teflon, water, Polyoxymethylene, and PMMA are 490, 1663, 2152, 2464 and 
2787 respectively. In this case, this sample cannot be treated as ratio object since in particular 
the ε  value of aluminum is much smaller than the others. Moreover, aluminum is an 
absorbing material ( β = 1.8e-09 @ 25keV) compared to other polymer materials ( β ≈ 1.0e-

10 @ 25keV). 

3.2.2 Statistical and structural noise study with a polymer sample 

A polymer sample containing wires of nylon ( 1.6∅ = mm), polystyrene ( 1.6∅ = mm) and 
PMMA ( 2∅ = mm) was investigated. PPCT data sets were collected with different level of 

statistical and structural noise, which will be explained in the following. The energy of 16 
keV, SDD = 0.8 m and a CCD detector with an effective pixel size of 9 μm were used to 
acquire all PPCT data sets for statistical noise and structural noise study. Within 180 degree 
CT scan range, 900 PPCT projections were collected. 

For statistical noise PPCT data collection, we adjusted the exposure time and the filter 
thickness in order to obtain different fluence (photons/pixel) reach the detector. Eight PPCT 
data sets were collected: their parameters are summarized in Table 1. 

Table 1. Fluence (photons/pixel) in the background for the eight PPCT data sets collected 
for the statistical noise study. 

PPCT data index 1 2 3 4 5 6 7 8 
Fluence (photons/pixel) 4043 3193 2514 1948 1404 1079 614 218 
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For the structural noise study, the PPCT data sets were acquired by putting a structural 
noise phantom, Polyamide powder as presented in Fig. 3, behind the sample during PPCT 
data collection. As Fig. 3 shows, five different thicknesses of the structural noise phantom 
were employed in the experiment. Twelve PPCT data sets were collected. The parameters of 
collected PPCT data sets are summarized in Table 2. 

 

Fig. 3. Photo of structural noise phantom showing five different thicknesses of Polyamide 
powder. 

Table 2. The parameters of collected PPCT data sets for structural noise study. 

PPCT data 
index 

1 2 3 4 5 6 7 8 9 10 11 12 

SNPTa (mm) 0.60 0.60 0.60 0.94 0.94 1.96 1.96 2.97 2.97 5.03 5.03 5.03 
Fluence 
(photons/pixel) 

5270 3201 2398 5364 1955 2975 2390 3890 1956 3304 1956 1247 
aSNPT: structural noise phantom thickness 

3.3 PPCT data processing 

For PAD-BA, PAD-RA, and PAD-PA/WA, the phantom/object phase function was retrieved 
by applying the phase retrieval algorithms to the PPCT projections, and then the 3D refractive 
index was reconstructed by implementing the standard filter back-projection algorithm with 
Shepp-Logan filter. On the other hand, for PAD-MBA, the processing procedure was firstly 

filtering the ,( , ) 1zg x y Iθ θ= −  using the filter in Eq. (10) with 
1

z
α

πελ
= , and then applying 

the back-projection to obtain the 3D refractive index. During the phase retrieval, the ε  values 
of 1000, 1000 and 100 are used for simulated weakly absorbing ratio phantom, weakly 
absorbing no-ratio phantom and absorbing ratio phantom PPCT data respectively, and ε  
values of 1663 and 1739 are used respectively for mixture sample and sample polymer PPCT 
data. 

All data processing was performed via PITRE software package [29]. PITRE is a freeware 
which supports phase retrieval for PPCT projections, extracts apparent absorption, refractive 
and scattering information of diffraction enhanced imaging, and allows parallel beam 
tomography reconstruction for conventional absorption CT data and for PPCT phase retrieved 
and DEI-CT extracted information. 

3.4 Data analysis 

For the quantitative analysis of the results, i.e. slice in this case, the contrast-to-noise ratio 
(CNR) was measured for the slices reconstructed with the single SDD phase retrieval 
algorithms. CNR is defined by 

 
2 2

CNR a b

a b

S S

σ σ

−
=

+
 (16) 
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where aS  and bS  are the mean values of two homogeneous region of interest (ROI) in the 

slices, a  and b  representing two different materials; while aσ  and bσ  denote the standard 

deviations of the values in these two ROIs of identical size. 
Moreover, the histograms of the reconstructed slices for PAD-BA, PAD-RA, PAD-MBA 

and PAD-PA/WA obtained from the same PPCT data are calculated. In the histograms, each 
material in the reconstructed slice will show up as a peak. Histogram entropies have several 
properties which enable their use for resolution identification. For instance, the width of the 
peak directly represents the density resolution: the narrower the peak, the higher the density 
resolution [30, 31]. 

4. Results 

4.1 Simulations 

Figures 4(a)-4(d) present the reconstructed phantom slices of noise-free weakly absorbing 
ratio phantom, the position are same as Fig. 2(c), after implementing the PAD-BA, PAD-
MBA, PAD-RA and PAD-PA/WA respectively. Figure 4(f) is profile of Figs. 4(a)-4(d) and of 
the phantom itself, i.e. Figure 2(c), at line position shown in Fig. 4(a). As the image shows, 
for the noise-free weakly absorbing ratio phantom PPCT data, after implementing phase 
retrieval, the refractive index matches the phantom values well for all algorithms. This 
indicates that PAD-BA, PAD-MBA, PAD-RA and PAD-PA/WA can quantitatively 
reconstruct the 3D refractive index of a weakly absorbing ratio object by utilizing single SDD 
PPCT data. 

 

Fig. 4. Noise-free weakly absorbing ratio phantom simulation results: (a)-(d) are phase 
retrieval results, same slice as Fig. 2(c), of PAD-BA, PAD-MBA, PAD-RA and PAD-PA/WA 
(ε = 1000) respectively, (f) profile of (a)-(d) and of the phantom itself, i.e. Figure 2(c), at line 
position shown in Fig. 4(a). 

Figures 5(a) and 5(b) are profiles of weakly absorbing no-ratio phantom and absorbing 
ratio phantom simulation results, same slice as Fig. 2(c), after implementing PAD-BA, PAD-
MBA, PAD-RA and PAD-PA/WA phase retrieval algorithm, respectively. From the 
visualization, the phase retrieval slices of all algorithms for these two phantoms are similar to 
the ones of weakly absorbing ratio phantom, i.e. Figures 4(a)-4(d), therefore they are not 
presented here. 
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Fig. 5. (a) Profile of weakly absorbing no-ratio phantom simulation results, same slice as Fig. 
2(c), after implementing PAD-BA, PAD-MBA, PAD-RA and PAD-PA/WA (with ε = 1000) 
and phantom itself, i.e. Fig. 2(c), at same line position shown in Fig. 4(a), (b) Profile of 
absorbing ratio phantom simulation results, same slice as Fig. 2(c), after implementing PAD-
BA, PAD-MBA, PAD-RA and PAD-PA/WA (with ε = 100) and phantom itself, i.e. Fig. 2(c), 
at same line position shown in Fig. 4(a). 

From Fig. 5(a), it is clear that although slightly differences exist among different 
algorithms, they all have problem in reconstructing the correct refractive index for this 
weakly absorbing no-ratio phantom. These are expected since this phantom does not satisfy 
the ratio object condition, i.e. PAD property, of phase retrieval algorithms. In this case, 
although the quantitative result will not be preserved, quantitatively reasonable results may 
still be obtained. These results improve the contrast and could be used for distinguishing 
different materials. 

When investigating the absorbing ratio phantom, the results of PAD-RA and PAD-
PA/WA match the phantom values well as shown in Fig. 5(b), while PAD-BA and PAD-
MBA have clearly a problem. When comprising the PAD-BA and PAD-RA phase retrieval 
algorithms, the only difference between them is the use of ,( 1)zI θ −  in PAD-BA instead of 

,ln( )zI θ  in PAD-RA; moreover a similar situation exists in PAD-PA/WA and PAD-MBA. 

When the contrast of recording PPCT projection ( ,zI θ ) is low enough, then we can have 

, ,ln( ) 1z zI Iθ θ≈ −  [8]. Inspired by these points and considering that the contrast of this 

absorbing ratio phantom is not negligible, we reformulate ,( , ) 1zg x y Iθ θ= −  to 

,( , ) ln( )zg x y Iθ θ=  in PAD-MBA while keeping the other parameters in order to figure out 

the problem. The same simulated PPCT data was reconstructed with this trial phase retrieval 
algorithm, which is named as Log-PAD-MBA. The comparison of PAD-MBA and Log-PAD-
MBA is shown in Fig. 6, in which it is clear that after implementing the Log-PAD-MBA, the 
result has substantially improved compared to PAD-MBA one. This trial indicates that the 
reason PAD-RA and PAD-PA/WA obtain good results for absorbing ratio phantom is because 
they use a logarithm considering the contrast of recording PPCT projection is not negligible. 

 

Fig. 6. Profile of absorbing ratio phantom simulation results, same slice as Fig. 2(c), after 
implementing PAD-MBA and Log-PAD-MBA (with ε = 100) and phantom itself, i.e. Figure 
2(c), at same line position shown in Fig. 4(a). 
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4.2 Experiments 

Figures 7(a)-7(d) show the reconstructed slices of the mixture sample after applying PAD-
BA, PAD-MBA, PAD-RA and PAD-PA/WA phase retrieval algorithm respectively. In the 
image, it is clearly seen that PAD-BA and PAD-MBA results are corrupted by artefacts, 
especially near the aluminium rod (the brightest one). On the other hand, the results of PAD-
RA and PAD-PA/WA show homogeneous distribution for all materials. Comparing with the 
simulations results, this is due to the fact that the phantom does not fulfil the PAD property 
and weakly absorbing assumptions, and the absorption affects the result more than the 
violation of the ratio object condition. 

 

Fig. 7. Mixture sample reconstructed slices: (a)-(d) are using PAD-BA, PAD-MBA, PAD-RA 
and PAD-PA/WA (ε = 1663) phase retrieval algorithm respectively. 

Figures 8(a)-8(d) shows the histogram of reconstructed slices of the mixture sample using 
PAD-BA, PAD-RA, PAD-MBA and PAD-PA/WA phase retrieval algorithm respectively. 
The images show that, PPMA and water cannot be distinguished in all cases since their δ  
values are too close; Polyoxymethylene has a nice sharp peak in PAD-RA and PAD-PA/WA 
results, and a small peak in PAD-BA result, but not in PAD-MBA one; Teflon and aluminum 
have clear peak in PAD-RA and PAD-PA/WA results, but these peaks are diminishing 
sharply in PAD-BA and PAD-MBA ones, especially for aluminum. Moreover, it should be 
noted that the PAD-MBA reconstructed a negative value for the background/air, which it is 
not correct in the practical case. This indicates that the PAD-MBA meets problems when 
treating this kind of sample. The other three algorithms obtained positive value for all 
materials. These results indicate that PAD-RA and PAD-PA/WA algorithms have more 
tolerance for samples that do not fulfil their conditions, especially when containing absorbing 
materials. This could be very useful since the practical sample may be comprised of many 
different materials and cannot satisfy the ideal requirements. On the other hand, PAD-BA and 
PAD-MBA algorithms are more sensitive for conditions violations. 

 

Fig. 8. Histogram of reconstructed slices of PAD-BA, PAD-RA, PAD-MBA and PAD-PA/WA 
(ε = 1663) in Fig. 7. 

Figure 9 shows the reconstructed slices of statistical noise study of polymer sample. More 
in detail, Figs. 9(a)-9(c) are phase contrast slices of statistical noise PPCT data index 1, 5 and 
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8 respectively (see Table 1), while Figs. 9(d)-9(f) are phase retrieval slices obtained with the 
PAD-BA algorithm of same PPCT data as in Figs. 9(a)-9(c). From the visualization, it is hard 
to distinguish among phase retrieval slices of PAD-BA, PAD-MBA, PAD-RA and PAD-
PA/WA; here only PAD-BA slices are presented. As Fig. 9 shows, with the decrease of 
counted photons, the result is progressively corrupted by the noise, more obviously in phase 
contrast slices than in phase retrieval ones. However, the visibilities of all the slices are well 
preserved in both cases. The reconstructed refractive index values of PMMA, nylon and 
polystyrene are 1.05e-6, 9.08e-7, 6.74e-7 respectively from slice of PPCT data index 1 with 
PAD-BA algorithm applied; these values do not match their ideal values that are 1.04e-06, 
1.01e-06 and 9.07e-07 respectively for three materials. This could be expected since this 
polymer sample does not strictly satisfy the required conditions, especially the PAD property, 
of phase retrieval algorithms. In this case, although the quantitative result will not be 
preserved, it is obvious the contrast is improved that could be used for distinguishing different 
materials. 

The CNR values for PMMA, nylon and polystyrene of statistical noise reconstructed 
slices are presented in Table 3. For calculating the CNR value, material a  is one of PMMA, 
nylon or polystyrene, while material b  is air. Their ROIs are the rectangles marked in Fig. 
9(d), which applies for both statistical noise and structural noise study of this sample. As 
expected, the CNR values of three materials decrease as the fluence (photons/pixel) reduces. 
When close checking the results, PAD-PA/WA gains highest CNR and the trend is 

- / - - -CNR >CNR >CNR >CNRPAD PA WA PAD RA PAD MBA PAD BA . This fact is explained by their 

histogram, shown in Fig. 10, in which their density resolution has obvious differences. 

 

Fig. 9. Polymer sample reconstructed slices: (a)-(c) are phase contrast slices of statistical noise 
PPCT data index 1, 5 and 8 respectively (see Table 1); (d)-(f) are phase retrieval slices with 
PAD-BA algorithm and ε = 1739 of the same PPCT data as in (a)-(c) 

Table 3. CNR values for PMMA, nylon or polystyrene of reconstructed slices of polymer 
sample in the statistical noise study. 

PAD-BA PAD-MBA PAD-RA PAD-PA/WA 

Index Aa Bb Cc A B C A B C A B C 
1 73.2 51.0 53.9 88.6 62.0 67.7 162.2 124.7 98.4 181.8 129.3 100.5 
2 72.7 50.8 48.5 87.1 61.6 60.1 139.3 109.0 93.0 156.0 107.3 99.9 
3 69.0 49.1 43.2 82.6 58.8 54.3 139.1 97.2 88.1 151.1 103.6 90.0 
4 59.7 46.9 43.1 70.3 56.4 52.8 124.7 97.2 76.5 137.3 101.3 80.0 
5 55.8 46.6 43.0 64.9 56.2 52.2 122.8 93.3 74.4 127.3 98.4 76.8 
6 51.3 45.9 42.4 60.1 56.1 51.4 102.9 84.0 67.0 101.5 86.3 66.9 
7 47.1 38.4 39.2 54.2 45.2 47.9 95.3 71.4 56.5 97.0 71.1 57.3 
8 46.7 31.8 29.3 52.2 35.2 32.0 80.6 50.4 34.5 80.5 50.1 35.6 
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aPMMA, bnylon,cpolystyrene 

Figure 10 shows the histogram of reconstructed slices of PAD-BA, PAD-RA, PAD-MBA 
and PAD-PA/WA of PPCT data index 8 in Table 1 of polymer sample. As the image shows, 
the result of PAD-RA and PAD-PA/WA have narrower peak compared to PAD-BA and 
PAD-MBA ones, which means PAD-RA and PAD-PA/WA perform better in this statistical 
noise study than PAD-BA and PAD-MBA. This is likely due to the use of logarithm in PAD-
RA and PAD-PA/WA, since they do not need a further assumption, i.e. that the recording 
PPCT projection ( ,zI θ ) should be low enough to fulfill , ,ln( ) 1z zI Iθ θ≈ − , compared to PAD-

BA and PAD-MBA. 
Figures 11(a)-11(c) are phase contrast slices of structural noise PPCT data index 3, 7 and 

11 respectively (see Table 2), while Figs. 11(d)-11(f) are phase retrieval slices obtained with 
the PAD-BA algorithm of the same PPCT data as in Figs. 11(a)-11(c). As Fig. 11 shows, with 
the increase of structural noise (corresponding to increase in phantom thickness), the result is 
progressively corrupted by the noise. In this case it appears as ring-like artifacts in the slice. 
This is because the position and structure of structural phantom does not change during a 
complete PPCT data collection, thus the distribution of structural noise in all the projections 
is the same. This will generate vertical stripes in the sinogram, and they will appear as ring 
artifacts superimposed on the slices after back-projection. In the phase contrast slice, the edge 
enhancement is obviously decreased as compared to the statistical noise study result with 
roughly the same fluence. This is because the structural noise phantom not only introduces 
ring-like artifacts, but also acts as a diffuser, i.e. it changes the photon propagation direction, 
thus reducing the edge enhancement effect. 

 

Fig. 10. Histogram of reconstructed slices of PPCT data index 8 in Table 1 with different phase 
retrieval algorithm: (a)-(d) are of PAD-BA, PAD-RA, PAD-MBA and PAD-PA/WA (ε = 
1739) respectively. Each histogram identifies all densities on the image in the form of a graph: 
in this case, X-axis is related to δ  value, while Y-axis displays the number of pixels for each 

δ  value. 

The CNR values for PMMA, nylon or polystyrene of structural noise reconstructed slices 
are presented in Table 4. The CNR calculation rules are the same used in the statistical noise 
study. From Table 4, it is clear to see that there are not significant differences of CNR values 
for all algorithms and small differences with the changes of structural noise phantom 
thickness. There are two possible reasons: one is the ring-like artifact in the slice, that will 
increase the value in the denominator of Eq. (16); the other one is the reduced edge 
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enhancement, from which the contrast will be recovered after phase retrieval, caused by the 
structural phantom. 

 

Fig. 11. Polymer sample reconstructed slices: (a)-(c) are phase contrast slices of structural 
noise PPCT data index 3, 7 and 11 respectively (see Table 2); (d)-(f) are phase retrieval slices 
with PAD-BA (ε = 1739) algorithm of the same data as in (a)-(c). 

Table 4. CNR values for PMMA, nylon or polystyrene of structural noise reconstructed 
slices of polymer sample. 

PAD-BA PAD-MBA PAD-RA PAD-PA/WA 

Index Aa Bb Cc A B C A B C A B C 
1 27.4 17.3 13.3 28.1 17.8 13.7 26.9 17.9 13.6 28.2 18.3 13.9 
2 38.0 21.3 17.4 39.2 22.6 18.4 37.8 25.4 19.6 39.1 26.0 20.5 
3 29.9 21.8 18.3 31.0 23.1 19.2 32.4 25.8 19.8 32.9 26.3 20.2 
4 40.9 27.0 21.8 41.3 28.7 23.1 31.0 30.1 21.5 31.5 31.0 22.8 
5 38.3 23.8 18.7 38.3 24.9 19.4 31.1 27.2 19.5 32.1 27.6 20.4 
6 26.5 27.9 18.1 27.5 29.0 18.9 29.9 28.7 19.7 30.2 28.8 19.7 
7 27.6 22.0 16.8 28.9 23.7 18.0 29.2 26.7 19.3 29.4 27.0 19.5 
8 27.0 20.8 16.4 27.9 22.1 17.4 28.7 25.6 18.8 29.0 25.9 18.9 
9 28.0 22.7 18.9 29.5 23.6 19.9 34.3 23.1 21.6 34.8 24.2 21.9 
10 31.4 18.3 16.7 31.8 18.7 17.1 35.6 20.2 18.7 37.2 19.7 18.8 
11 26.4 18.9 18.6 27.3 19.3 19.3 30.7 19.8 20.7 29.8 19.7 20.5 
12 28.5 20.7 17.8 29.2 21.6 18.6 31.1 24.7 20.1 30.7 24.3 20.8 

aPMMA, bnylon,cpolystyrene 

Figure 12 shows the histogram of reconstructed slices of PAD-BA, PAD-RA, PAD-MBA 
and PAD-PA/WA of PPCT data index 11 in Table 2. Similarly to the statistical study result, 
PAD-RA and PAD-PA/WA obtain better density resolution than PAD-BA and PAD-MBA 
ones. Moreover, all the peaks for four algorithms are wider compare to the statistical noise 
result. This is due to the ring-like artifact caused by the structural noise phantom. 
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Fig. 12. Histogram of reconstructed slices of PPCT data index 11 in Table 2 with different 
phase retrieval algorithm: (a)-(d) are of PAD-BA, PAD-RA, PAD-MBA and PAD-PA/WA (ε 
= 1739) respectively. 

5. Discussions and conclusions 

We investigated the performance of different single SDD phase retrieval algorithms, PAD-
BA, PAD-MBA, PAD-RA and PAD-PA/WA, with simulated and experimental PPCT data. 
These algorithms require that the sample satisfy PAD property and weakly absorbing 
conditions. When the object fulfills these two assumptions, all algorithms can quantitatively 
reconstruct the 3D refractive index of a ratio object by utilizing single distance PPCT data. In 
case the PAD property is violated, they all have problems in reconstructing the correct 
refractive index although slight differences exist. Though the quantitative result will not be 
preserved, it is obvious the contrast is improved, compared to phase contrast slices, and this 
could be used for distinguishing different materials. When the weakly absorbing condition is 
not satisfied, which means the contrast of recording PPCT projection ( ,zI θ ) is too large to 

satisfy , ,ln( ) 1z zI Iθ θ≈ −  approximation, the PAD-RA and PAD-PA/WA obtain better result 

than PAD-BA and PAD-MBA because the use of logarithm in their algorithms. This is 
confirmed in the experimental results of mixture sample. 

When considering the statistical noise, the CNR values decrease as the fluence is reduced, 
and PAD-PA/WA and PAD-RA obtain higher CNR than PAD-BA and PAD-MBA. This is 
are likely due to the use of logarithm in PAD-RA and PAD-PA/WA, since they do not need 
the further approximation , ,ln( ) 1z zI Iθ θ≈ − . The structural noise study shows that with the 

increase of structural noise, the result is progressively corrupted by ring-like artifact due to 
the effect of the structural noise phantom. Moreover, because the structural noise phantom 
acts as a diffuser, the edge enhancement is obviously decreased in the phase contrast slice and 
thus decreases the CNR values of phase retrieval results. 

In summary, we conducted the comparison of single distance phase retrieval algorithms, 
on the reconstructed 3D slices, by considering their PAD property and weakly absorbing 
conditions, and the effect of statistical and structural noise. The results show that PAD-RA 
and PAD-PA/WA obtain better result than PAD-BA and PAD-MBA in the situations 
considered in this paper. 
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