
Stokes-space analysis of modal
dispersionin fibers with multiple mode

transmission

Cristian Antonelli, 1,∗ Antonio Mecozzi,1 Mark Shtaif, 2 and
Peter J. Winzer3

1 Department of Electrical and Information Engineering, University of L’Aquila, 67100
L’Aquila, Italy

2 School of Electrical Engineering, Tel Aviv University, Tel Aviv, 69978 Israel
3 Bell Labs, Alcatel-Lucent, 791 Holmdel-Keyport Rd., Holmdel, New Jersey 07733, USA

∗cristian.antonelli@univaq.it

Abstract: Modaldispersion (MD) in a multimode fiber may be considered
as a generalized form of polarization mode dispersion (PMD) in single
mode fibers. Using this analogy, we extend the formalism developed
for PMD to characterize MD in fibers with multiple spatial modes. We
introduce a MD vector defined in aD-dimensional extended Stokes space
whose square length is the sum of the square group delays of the generalized
principal states. For strong mode coupling, the MD vector undertakes a
D-dimensional isotropic random walk, so that the distribution of its length
is a chi distribution withD degrees of freedom. We also characterize the
largest differential group delay, that is the difference between the delays of
the fastest and the slowest principal states, and show that it too is very well
approximated by a chi distribution, although in general with a smaller num-
ber of degrees of freedom. Finally, we study the spectral properties of MD
in terms of the frequency autocorrelation functions of the MD vector, of the
square modulus of the MD vector, and of the largest differential group de-
lay. The analytical results are supported by extensive numerical simulations.
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1. Introduction

With the fiber-optic communications industry facing an imminent capacity crunch [1, 2], the
search for new, scalable technologies has become unavoidable. One of the most promising
approaches for preventing the predicted crisis is the use of spatially multiplexed transmission
[3] in a combination of multi-core (MCF) [4] and multi-mode (MMF) fibers [5, 6]. Indeed, a
notable fraction of regular and post-deadline papers presented in the last two largest conferences
on optical communications (the Optical Fiber Communications conference (OFC), Los Angeles
2011, and the European Conference on Optical Communications (ECOC), Geneva 2011) were
devoted to spatially multiplexed optical transmission.

Conceptually, provided that all fiber modes are selectively addressed at transmitter and re-
ceiver, spatially multiplexed fiber-optic transmission is a direct extension of polarization mul-
tiplexed transmission in single mode fibers that is being used today. To describe a fiber withN
spatial modes, the 2-dimensional polarization vector needs to be replaced by a 2Ndimensional
vector whose elements represent the excitation of the various modes (with the factor of 2 ac-
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counting for the fact that each mode supports two polarizations). Correspondingly, the 2× 2
transfermatrix that describes linear transmission in single mode fibers needs to be replaced by
a matrix whose dimension is 2N× 2N. This situation calls for the extension of the concepts
that are at the heart of polarization studies. Thus, rather than referring to the phenomena of
polarization mode dispersion (PMD) and polarization dependent loss (PDL), which describe
the relevant consequence of polarization coupling, one now has to deal with the more general
concepts of modal dispersion (MD) and mode dependent loss (MDL). Relevant work on this
topic has already been reported, where the concept of principal states of polarizations was gen-
eralized to the multi-mode case [7] and where the statistics of the corresponding group delays
was derived [8]. Important observations on the dynamics of MDL were also reported in [9].
Nonetheless, the understanding of the physical nature of these phenomena can greatly benefit
from the generalization of the analytical tools, which were invaluable in polarization studies.

Polarization vectors, which have two complex-number components, reside in a so-called
Jones space. This Jones space is isomorphic to a so-called Stokes space which consists of 3
dimensional real-valued column vectors [10]. Thus, every state of polarization can be uniquely
represented either as a Jones vector, or as a vector in Stokes space. In addition, unitary opera-
tions in Jones space can be represented by a Stokes vector, whose direction is the axis of rotation
and whose modulus equals the rotation angle. For this reason, the effect of birefringence (which
is a unitary operation in Jones space) is customarily represented by a 3-dimensional vector~β in
Stokes space, known as thebirefringence vector. Specifying the birefringence of a fiber there-
fore comes down to specifying the birefringence vector~β (z) that represents it at every pointz
along the fiber. Similarly, the effect of PMD is customarily represented by a vector~τ in Stokes
space, known as the PMD vector, capturing birefringence-induced waveform distortion. The
Stokes representations of the slowest and fastest states of polarization (known as the principal
states of polarization) coincide with±τ̂ (where τ̂ = ~τ/τ is a unit vector), and the differen-
tial group delay (DGD) between the slowest and fastest polarization components is equal to
τ = |~τ|. Even non-unitary phenomena such as PDL are typically represented in terms of vectors
in Stokes space [11]. It is thus natural for the analysis of spatially multiplexed transmission to
seek an extension of the above concepts to the multi-mode case.

In this paper, we introduce an extendedD = 4N2−1 dimensional Stokes space, that allows
the representation of multi-mode 2N-dimensional state-vectors (which are the extension of the
2-dimensional Jones vectors in the case of polarization). While generalized Stokes representa-
tions have been considered previously in other contexts [12, 13], the properties of the gener-
alized Stokes space and the relation to unitary dynamics (which is of particular importance in
our case) have not been fully formulated previously, to the best of our knowledge. We show
that while the extended Stokes-space lacks some of the properties of the usual Stokes-space
describing polarization, many properties can be generalized in a way that sheds light on the
physics of multi-mode propagation. In particular, focusing on the case where MDL is negligi-
ble, we show that the local birefringence vector~β and the PMD vector~τ can be extended to the
D-dimensional space so as to capture the effects of local mode coupling and MD. As in the case
of PMD, the MD vector~τ determines the temporal spread of propagating pulses, although the
relation between its magnitude and the differential mode delays is somewhat less direct in the
multi-mode case, as we shall see. In order to demonstrate the use of the proposed formalism we
consider the case of quasi-degenerate modes, namely transmission over multiple spatial modes
with varying degrees of coupling, but with small deterministic difference between the various
group delays, such that the delay spread observed at the output is always dominated by the ran-
dom coupling caused by perturbations. In addition, our theory applies to the case of arbitrary
deterministic group delay difference, as long as the coupling between the modes is strong. The
statistics of mode dispersion in this scenario are identical to that of strongly coupled degenerate
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modes. This framework includes real-world scenarios in which groups of modes propagating
atdifferent group velocities are processed separately [14]. For example, this corresponds to the
case in which the four degenerate LP11 modes of a step-index fiber are processed separately
from its two LP01 modes. Larger groups of degenerate modes can be encountered in situations
where multiple MMFs are combined in a MCF structure. Our analysis does not rely on a spe-
cific choice of the set of modes that are used to describe signal propagation in the optical fiber
and it is valid as long as the quasi-degeneracy conditions are satisfied. For example, in the case
of a single-core multi-mode fiber one could choose to work with either the exact (hybrid) fiber
modes, or with the linearly polarized mode approximation, with no consequence to the validity
of the results.

The source of MD within a group of degenerate modes is random fiber imperfection and
environmental perturbation that remove the degeneracy and cause group-delay spread. While
MD can in principle be compensated for using digital signal processing (DSP) [15], the re-
quirements from the DSP hardware and algorithm, as well as the overall system performance
strongly depend on the statistical properties of MD, which we extract in this paper. In what fol-
lows we will use the acronym MMF in order to refer collectively to all structures in which light
can propagate in multiple spatial modes, whether by means of a single multi-mode waveguide,
or through multiple cores.

2. Main results

Prior to delving into the analytical details of the proposed model, we devote the present section
to a summary of the main results.

2.1. Generalized Stokes space and modal dispersion vector

An important outcome of this work is the introduction of a generalizedD-dimensional Stokes
space (withD = 4N2 − 1) and the definition of aD-dimensional MD vector~τ, as derived in
Section 3. Knowledge of~τ allows the extraction of the principal modes of the system as well
as their various group delays, although the relations between those quantities and~τ are less
transparent than they are in the case of PMD. As shown in Section 3.2, the quantityτ2, which
is the square modulus of~τ, is proportional to the sum of the squares of the 2Nindividual group
delaysti ,

τ2 = 2N
2N

∑
i=1

t2
i . (1)

The individual group delays are defined with the mode averaged delay set to 0,∑ j t j = 0.
The MD vector~τ evolves as a Gaussian vector, such that its modulus is chi distributed (its
square modulus obeys the chi-square distribution). If no spatial mode coupling exists (while
still allowing for polarization coupling within each spatial mode), only 3Nof the components
of ~τ are different from zero, and the distribution of the modulusτ is chi distributed with 3N
degrees of freedom. In the other extreme, i.e. in the presence of significant random coupling
among allN spatial modes (as well as among the 2 polarizations within each spatial mode), the
number of degrees of freedom is 4N2−1 implying that the orientation of~τ is homogenously
distributed in the entire generalized Stokes space, and the chi distribution has 4N2−1 degrees
of freedom. Note that the chi distribution is a special case of the Nakagami distribution, which
is famous in the context of wireless communications [16]. Interestingly, in the presence of
partial coupling, the distribution ofτ can be well approximated as a chi distribution with an
effective number of degrees of freedomDeff, ranging between 3Nand 4N2−1. This transition
is illustrated in Fig. 1, where we plot the probability density function (PDF) ofτ for different
coupling regimes for the caseN = 2. In (a) the spatial modes are uncoupled (Deff = 3N) and in
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Fig. 1. Probability density function ofτ for N = 2, normalized to its root-mean square
value. The coupling magnitude increases from no coupling in (a) to full coupling in (d). A
similar behavior has been verified for a number of larger values ofN.

(d) there is full coupling (Deff = 4N2−1); plots (b) and (c) represent different degrees of partial
coupling. The dots are the results of Monte Carlo simulations and the solid curves correspond to
chi probability density functions withDeff degrees of freedom. The details of the computation
are discussed in Section 4.

2.2. Maximum modal delay spread

A quantity of particular relevance in the analyzed scenario is the largestdifferential group
delay, defined as the difference between the largest and the smallest group delays,T =
maxk{tk}−mink{tk}, as discussed in Section 3.2. This parameter defines the maximum spread
of the propagating waveforms and is therefore related to the required complexity of the digital
signal processing hardware (e.g. the number of taps of a finite impulse response equalizer).
While the derivation of the distribution ofT in the general case seems to be a very difficult task
[8, 9], the chi distribution turns out to provide an excellent approximation, as illustrated in Fig.
2 for the case of full coupling. The parameters〈T2〉 andKN characterizing the distribution were
obtained numerically and are plotted in the top panel of Fig. 2 as a function of the number of
spatial modesN. The term〈T2〉 is the mean square value ofT, whereasKN is what we refer to
as theshape parameterof the chi-distribution used to fit the PDF ofT [17]. The dependence of
〈T2〉 andKN onN is very well approximated by the following heuristic expressions

KN ≃ 3+
⌈

10.39× (N−1)1.36
⌉

(2)

〈T2〉 ≃ (N−1)2 +24.7× (N−1)+16.14
0.2532× (N−1)2 +7.401× (N−1)+16.14

〈τ2〉/N2, (3)

where⌈x⌉ denotes the smallest integer greater thanx. The approximate curves are not displayed
in Fig. 2, as they are practically indistinguishable from the actual curves in the plotted scale.
The curves in the bottom panels illustrate the accuracy of this approximation on a logarithmic
scale for three values ofN. The plots show that, as the number of spatial modes increases, the
chi distribution becomes more and more symmetric around the root-mean square value ofT,
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Fig. 2. Top panel. The solid line represents the shape parameterKN of the chi PDF that
provides the best approximation of the distribution of the largest DGDT as a function
of N; the dashed line shows the mean square value ofT normalized to〈τ2〉/N2. Bottom
panels. Probability density function ofT for (A) N = 3, (B) N = 50 and (C)N = 100.
Dots are the results of Monte-Carlo simulations, solid lines are the plot of chi PDFs with
parameters taken from the top panel.

asymptotically approaching the Gaussian distribution. The analytic expression provided in [8]
for the case of 2N= 3 (which unfortunately does not correspond to a practical multi-mode
scenario) also agrees very closely with the chi approximation, the differences between the two
curves being practically unnoticeable.

2.3. Autocorrelation functions

The spectral behavior of MD is conveniently quantified in terms of the autocorrelation functions
of the MD-vector and of its modulus. The width of these functions is a measure of the bandwidth
across which the distortion affecting different spectral components of the transmitted optical
field are statistically correlated, and it is also defined as the bandwidth across which the first-
order approximation [10] applies to the interpretation of MD effects. In the regime of strong
coupling we were able to derive analytic expressions for the frequency autocorrelation function
of the MD vector~τ,

R~τ(ω) = 〈~τ(Ω+ω) ·~τ(Ω)〉 =
D
ω2

[

1−exp

(

−ω2〈τ2〉
D

)]

, (4)

aswell as that of its square modulusτ2,

Rτ2(ω) = 〈τ2(Ω+ω)τ2(Ω)〉 = 〈τ2〉2 +
4〈τ2〉

ω2 − 4D
ω4

[

1−exp

(

−ω2〈τ2〉
D

)]

. (5)

Theseexpressions generalize the expressions obtained in the analysis of PMD [18, 19] to which
they reduce in the case ofN = 1, that isD = 3. The ACF of~τ, Eq. (4), normalized to its peak
value, is plotted versusω(〈τ2〉/D)1/2 by solid lines in the top panels of Fig. 3 forN = 2, N = 3
andN = 4. The stars are the results of Monte Carlo simulations that we performed to test the
analytical result. The corresponding ACF ofτ2, Eq. (5), after subtraction of its asymptotic value
for ω → ∞ and normalization to its peak value, is plotted by solid lines in the bottom panels of
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Fig. 3. Top panels: normalized autocorrelation function of~τ according to theory (solid
curve) and simulations (stars). Bottom panels: the normalized autocorrelation function of
τ2 according to theory (solid curve) and simulations (stars) as well as the autocorrelation
function ofT (circles). Dot-dashed curves represent the re-scaled ACF ofτ2 Eq. (5), mod-
ified by replacingD with KN as from Fig. 2.

Fig. 3, where the stars are again the results of Monte Carlo simulations. We numerically verified
that the autocorrelation function ofτ, Rτ(ω) = 〈τ(Ω+ω)τ(Ω)〉, whose analytic expression is
not available, is approximated very well by Eq. (5), provided that their asymptotic values are
removed and that they are normalized to their peak values. More remarkably, we verified that
Eq. (5), re-scaled and modified by replacingD with KN, gives an excellent approximation of
the autocorrelation function of the largestdifferentialgroup delay. The ACF ofT is plotted in
the bottom panels of Fig. 3 by circles and the modified Eq. (5) by dot-dashed lines: although
the modification of the re-scaled ACF ofτ2 is practically unnoticeable for small values of
N, an excellent match between simulations and analytical expressions characterizes all cases.
The bandwidth of the largestdifferentialgroup delayBT can thus be very well approximated
as the 3dB width of the modified ACF (5)BT ≃ 3.2

√

KN/〈τ2〉, which, for a moderate, yet
practically important, number of spatial modes (∼N < 5), is only negligibly different from
BT ≃ 3.2

√

D/〈τ2〉.
Analytical expressions corresponding to Eq. (4) and (5) in the regime of partial coupling

are not available. However, we found through numerical simulations that the intriguing result
illustrated in Fig. 1 (i.e., the good match to a chi distribution independent ofDeff) extends
somewhat to the MD correlation properties. Indeed, the shape of the autocorrelation function
of ~τ andτ2 is not affected by the coupling magnitude, whereas its bandwidth increases as the
coupling magnitude increases and scales, yet only approximately, with

√
Deff .

2.4. Non-degenerate modes

Figures 1(d), 2 and 3 were plotted for the case ofN degenerate fully coupled modes with no
MDL. This situation differs somewhat from reality, where there are groups of degenerate modes
that are characterized by deterministically different wave-numbers and hence they couple to
each other significantly less as a result of perturbations. Using the characteristic example of
the coupling between the LP01 and the LP11 groups of modes in step-index fibers [20], we
show that the results presented above remain practically unchanged. To illustrate this point, we
show in Fig. 4(a) the PDF of the length of theDLP11 = 15 dimensional MD vector~τLP11 that
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Fig. 4. (a) Probability density function of the length of the MD vector~τLP11 that represents
the four LP11 modes (subspace dimensionDLP11 = 15) and of the length of the MD vector
~τLP01 that represents the two LP01 modes (subspace dimensionDLP11 = 3). The degree of
coupling between the two groups of modes is discussed in the text. Figures (b) and (c) show
the ACFs of the the two MD vectors. Symbols refer to numerical simulations, solid lines to
the theory.

represents the four LP11 modes and the PDF of the length of theDLP01 = 3 dimensional MD
vector~τLP01 representing the two polarization modes of LP01. In Figs. 4(b) and 4(c) we show
the corresponding MD vector ACFs. In order to plausibly emulate the situation in a real fiber
[20], we adjusted the magnitude of the difference between the wave-numbers corresponding to
the two groups of modes to the point where the overall output power in the LP11 modes was
about 10dB lower than the output power in the LP01 mode, given that only the LP01 mode was
excited. As is evident from the figures, the numerically obtained distribution ofτLP11 andτLP01

(symbols) is still very well fitted by chi distributions ofDLP11 = 15 andDLP01 = 3 degrees of
freedom respectively (solid lines). At the same time the numerical ACF (symbols) still matches
the theoretical curves (solid lines) given by Eq. (4) very well. The individual MD vectors were
extracted by considering the unitary part of the corresponding 4×4 and 2×2 blocks along the
main diagonal of the simulated overall (6×6) transfer matrix.

3. Theory

Following [10], we use the notation|ψ(z,ω)〉 to represent the state of the field in what we refer
to as the generalize Jones space, at angular frequencyω at a given pointzalong the optical fiber.
One should interpret|ψ(z)〉 as a column vector with 2Ncomplex components representing
the excitation of the various modes in the fiber. The corresponding row vector, which is the
hermitian conjugate of|ψ(z)〉, is denoted by〈ψ(z)|= (|ψ(z)〉)†. For convenience we will also
assume in what follows that the state vector|ψ(z)〉 is normalized, such that〈ψ(z)|ψ(z)〉= 1.
Propagation between the positionsz0 andz along the fiber is represented by a linear operator
U(z,z0) so that

|ψ(z)〉= U(z,z0)|ψ(z0)〉, (6)

where the dependence ofU(z,z0) and|ψ(z)〉onω was suppressed for brevity of notation. When
considering the process of propagation in the frequency domain,U(z,z0) can be conveniently
represented by a 2N×2N frequency dependent matrix, which is unitary at each frequency in
the absence of MDL, such thatU(z0,z) = U−1(z,z0) = U†(z,z0). The space and frequency
evolution ofU(z,z0) can be expressed most generally as

dU(z,z0)

dz
= iB(z)U(z,z0) (7)

dU(z,z0)

dω
= iT(z,z0)U(z,z0), (8)
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whereB(z) andT(z,z0) are frequency dependent Hermitian matrices. Their Hermiticity is re-
quired for the unitarity ofU(z,z0) to be preserved at allz andω. The multi-mode propagation
problem of Eqs. (7) and (8) can be conveniently approached by extending the Pauli-matrix
formalism to the multi-mode case as we show in the section that follows.

3.1. Trace orthogonal matrices and the generalized Stokes space

A generic 2N×2N Hermitian matrixH contains 4N2 entries. Of these, 2Nare necessarily real
(on the main diagonal) and the remaining 2N(2N−1) come in complex conjugate pairs. Thus
4N2 real numbers are necessary to completely define a 2N×2N Hermitian matrix. This is hence
the number of basis elements in the linear space of 2N×2N Hermitian matrices. A convenient
basis for this space is the one consisting of the identity matrix1 and 4N2−1 matricesΛ j having
zero trace and satisfying the condition of trace-orthogonality

1
2N

Trace{ΛiΛ j} = δi, j , (9)

whereδi, j is the Kronecker delta function. Equation (9) can be shown to define an inner product
in the space of Hermitian matrices. An example of a trace-orthogonal basis in the case ofN =
1 is the identity with the three Pauli matrices that are used for the study of PMD [10]. The
choice of a trace-orthogonal basis is never unique, and many algorithms for constructing one are
possible. The Gell-Mann method [21] is one known method of construction. Its modification,
which is slightly more convenient for our purposes, is described in the appendix. As should be
expected, the choice of basis is immaterial for any of the physically meaningful results, and
the only guideline for its selection is the simplicity of calculations. Once a basis is chosen, the
matrix H is given by a superposition of the basis elements. A compact representation is the
following

H =
1

2N

(

η01+~η ·~Λ
)

, (10)

where~η is a vector of 4N2−1 real elementsη j ,~Λ is a vector whose elements are the matrices
Λ j , and the dot operator is implemented as

~η ·~Λ =
4N2−1

∑
j=1

η jΛ j . (11)

The components of~η can be extracted by using the trace-orthogonality of theΛ j matrices,

ηi = trace{ΛiH} and η0 = trace{H}. (12)

Note that the term proportional toη0 represents a mode independent quantity, whereas all mode
related phenomena are captured by the traceless content ofH, given by the term~η ·~Λ. The
vectors~η reside in a 4N2−1 dimensional space which is a generalization of the Stokes space
used in the analysis of polarizations (N= 1). In what follows we will refer to vectors in this
space as togeneralized Stokes vectors, to be distinguished from the vectors|ψ〉 to which we
refer asstate-vectors. Since a projection operator|ψ〉〈ψ| onto a normalized state-vector|ψ〉 is
a Hermitian operator, it too can be expressed in the form

|ψ〉〈ψ| = 1
2N

(

1+~ψ ·~Λ
)

. (13)

The generalized Stokes vector~ψ is obtained from|ψ〉 via Eq. (12), such that its components
are given by

ψ j = trace
{

Λ j |ψ〉〈ψ|
}

= 〈ψ|Λ j |ψ〉, (14)
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identical to the usual definition of Stokes vectors in the two-polarization case. Equations (13)
and (14) can be used to point out a number of interesting properties of generalized Stokes
vectors. Noting that|〈ψ|φ〉|2 = trace{|ψ〉〈ψ|φ〉〈φ |} and substituting the right-hand-side of
(13) instead of the individual projection operators, one finds that

|〈ψ|φ〉|2 =
1

2N

(

1+~ψ ·~φ
)

, (15)

where we have used the fact that trace{1}= 2N, trace{Λj} = 0, as well as the identity

1
2N

trace
{

(~A·~Λ)(~B·~Λ)
}

= ~A ·~B, (16)

which can readily be proven using Eqs. (9) and (11). Using|φ〉 = |ψ〉 in Eq. (15), one finds
that |~ψ|2 = 2N−1, implying that only in the caseN = 1, the Stokes representation of a nor-
malized state-vector is a unit vector. If the state vectors are orthogonal to each other, Eq. (15)
indicates that the product of their generalized Stokes vectors is equal to−1. Consequently, the
angleα between two generalized Stokes vectors that correspond to orthogonal states satisfies
cos(α) = −(2N− 1)−1, and the vectors are antipodal only in the caseN = 1. The fact that
0 ≤ |〈ψ|φ〉|2 ≤ 1 implies that−1 ≤ ~ψ ·~φ ≤ 2N−1. The left equality occurs when the state-
vectors are orthogonal to each other, whereas the right equality occurs when|ψ〉 = |φ〉. It is
evident that in the caseN > 1 not all generalized Stokes vectors with length

√
2N−1 have a

state vector that corresponds to them. For example, if~φ = −~ψ the product~ψ ·~φ = −2N+ 1
is smaller than−1 so that at least one of the two generalized Stokes vectors cannot represent
a legitimate state. This observation can also be made directly from Eq. (13), noting that the
projection operator|ψ〉〈ψ| has only two eigenvalues. A non-degenerate eigenvalue equal to 1
corresponds to the eigenstate|ψ〉 itself and another 2N−1 fold degenerate eigenvalue is equal
to 0. The eigenstates of the latter eigenvalue are the 2N−1 state vectors that are orthogonal to
|ψ〉. Thus,~ψ is a legitimate representation of a state-vector only if the matrix~ψ ·~Λ has a 2N−1
degenerate eigenvalue equal to−1 and exactly one non-degenerate eigenvalue, equal to 2N−1.
It is obvious that only a small fraction of Stokes vectors satisfies this requirement whenN > 1.

As discussed in Section 3.2, a relevant question concerns the relation between a generalized
Stokes vector~Sand the eigenvalues of the matrix~S·~Λ. In the caseN = 1 the two eigenvalues are
±|~S| and the corresponding eigenvectors are those whose Stokes representation is parallel, or
anti-parallel to the direction of~S. In the case of generalN, there is no such simple relationship.
The total number of eigenvalues is 2N, and the orientation of~Susually does not correspond to
a legitimate state-vector. Nonetheless, the following relationship can be established. Given that
|ψi〉 is an eigenvector of~S·~Λ, thereby satisfying~S·~Λ|ψi〉= θi |ψi〉, whereθi is the corresponding
eigenvalue, multiplication by〈ψi | from the left and using (14) yields

~S·~ψi = θi , (17)

implying that the largest eigenvalue corresponds to the eigenvector whose generalized Stokes
representation is best aligned with the direction of~S, whereas the smallest eigenvalue corre-
sponds to the eigenvector whose generalized Stokes representation is least aligned with it. A
more useful relationship follows from noting thatθ 2

i is an eigenvalue of(~S·~Λ)2 and hence that

∑θ 2
i = Trace

{

(~S·~Λ)2
}

. Using Eq. (16), this equality produces the relation

2N|~S|2 = ∑θ 2
i . (18)

As we shall see in what follows, this relation gives a physical meaning to the vectors that will
be used to represent the matrices associated with propagation in the fiber.
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3.2. Mode coupling and the mode-dispersion vector

UsingEq. (10), Eqs. (7) and (8) can be conveniently reexpressed as

dU(z,z0)

dz
=

i
2N

(

β01+~β ·~Λ
)

U(z,z0) (19)

dU(z,z0)

dω
=

i
2N

(

τ01+~τ ·~Λ
)

U(z,z0), (20)

where the dependence ofβ0, τ0, ~β and~τ on z and ω was suppressed for the simplicity of
notation. Note thatβ0 and τ0 introduce a phase and group delay that is common to all the
propagation modes in the fiber. These terms are therefore immaterial to our study of MD and
their values can be set to zero. The vectors~β and~τ are the two most important quantities
for the study of modal dispersion in optical fibers. The first vector,~β is a generalization of
the birefringence vector, as it describes the local coupling between the various modes. If one
chooses to use the basis presented in Appendix A, then the firstN triplets of the components
of ~β correspond to the birefringence vectors of theN individual propagation modes. Namely,
(β1,β2,β3) is the birefringence vector of the first mode,(β4,β5,β6) is the birefringence vector
of the second mode and so on. The remaining 4N2 − 3N− 1 terms of~β represent coupling
between spatial modes, or the difference in the spatial modes’ propagation vectors. The vector
~τ is the direct generalization of the PMD vector [10] and it captures the essentials of MD.

Equations (19) and (20) can be used to establish the concatenation rule satisfied by the MD
vector~τ. To this end let us consider an assembly of two concatenated fiber sections character-
ized by the two matricesU1 andU2. The matrix describing their concatenation isU = U2U1.
One may express the combined MD vector~τ of the two fibers as

~τ ·~Λ = −2Ni
dU
dω

U† = −2Ni
dU2

dω
U†

2 +U2

(

−2Ni
dU1

dω
U†

1

)

U†
2 =~τ2 ·~Λ+U2

(

~τ1 ·~Λ
)

U†
2, (21)

where~τ1 and~τ2 are the MD vectors of the first and second fiber section, respectively. The
concatenation rule (21) can be stated as follows: The joint MD vector equals the MD vector of
the first section rotated by the coupling matrix of the second section and supplemented by the
MD vector of the second section alone. This description is identical to that used in the case of
PMD [10], although the word rotation is applied more loosely in the present case, indicating
an operation that does not change the length of a generalized stokes vector. To see that this is

indeed the case with the second term in (21), one may define~τ(R)
1 ·~Λ = U2

(

~τ1 ·~Λ
)

U†
2 and take

advantage of identity (16) with~A = ~B to show that
∣

∣

∣
~τ(R)

1

∣

∣

∣

2
=

1
2N

trace

{

[

U2

(

~τ1 ·~Λ
)

U†
2

]2
}

= |~τ1|2 , (22)

where we made use of the fact that the trace of a product is invariant under cyclic permutations.
It is instructive to consider the case in whichU1 represents propagation fromz0 to zwhereasU2

represents an incremental evolution between the pointsz andz+ dz. Using Eq. (19) one finds
that to first order in dz,U2 = 1+(i/2N)~β (z,ω) ·~Λdz. Substituting this into (21) produces

∂
∂z

(

~τ ·~Λ
)

= ~βω ·~Λ+
i

2N

[(

~β ·~Λ
)(

~τ ·~Λ
)

−
(

~τ ·~Λ
)(

~β ·~Λ
)]

, (23)

with ~βω = ∂~β/∂ω . This expression reduces to Eq. (6.15) of [10] in the case ofN = 1. The
solution to Eq. (23) is formally identical to Eq. (7.22) of [10],

~τ(L) =
∫ L

0
R(L,z)~βωdz (24)
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whereR(L,z) is aD×D norm-preserving matrix accounting for the evolution of the infinitesi-
mal contribution~βω(z)dzfrom z to the fiber end atz= L and related toU(L,z)by

U(L,z)
(

~βω ·~Λ
)

U†(L,z) =
(

R(L,z)~βω

)

·~Λ. (25)

The physical meaning of~τ is provided by Eqs. (17), (18). Indeed, if we use~S=~τ/(2N), then
the eigenvaluesθi coincide with the group delays of the individual principal statesti and Eq.
(17) becomesti =~τ ·~ψi/(2N), thus showing that these are bounded between−τ

√
2N−1/(2N)

andτ
√

2N−1/(2N). On the other hand, Eq. (18) becomes

τ2 = 2N
2N

∑
i=1

t2
i , (26)

which gives the magnitude of the MD vector as proportional to the sum of the square group
delays. ForN = 1, τ is equal to the differential group delay|t2− t1|, as expected.

An alternative and much simpler formulation notationally follows by defining a cross-product
operation in the generalized Stokes space. The Hermiticity and the zero-trace property of the
matricesΛi imply that i (ΛiΛ j −Λ jΛi)/(2N) is also a traceless Hermitian matrix. Hence it
can be expanded asi (ΛiΛ j −Λ jΛi)/(2N) = ∑k fi, j,kΛk, with fi, j,k being a set of real-valued
structure constants,

fi, j,k =
i

(2N)2 trace
{

Λk (ΛiΛ j −Λ jΛi)
}

. (27)

Using this representation we define a generalized cross-product as

~A×~B = ∑
i, j,k

fi, j,kAiB j~ek (28)

where~ei are the orthogonal unit-length basis vector of theD-dimensional generalized Stokes
space [24]. Equation (28) can be used to re-express the second term on the right-hand-side of
Eq. (23) as(~β ×~τ) ·~Λ, so that Eq. (23) simplifies to

∂~τ
∂z

= ~βω +~β ×~τ, (29)

generalizing the familiar equation for the evolution of the PMD vector [10] to the multimode
case. By differentiating~S= 〈ψ(0)|U(z,0)†~ΛU(z,0)|ψ(0)〉 with respect tozandω, and by using
Eqs. (19) and (20), the evolution of the generalized Stokes vector in space and frequency can
be expressed as

∂~S
∂z

= ~β ×~S,
∂~S
∂ω

=~τ ×~S, (30)

generalizing, once again, the corresponding equations obtained in the single-mode fiber case.

4. Statistical analysis

In order to account for the statistical properties of MD, we assume that the distribution of
the mode coupling vector~β can be adequately modeled as white Gaussian noise. Although
this assumption is not strictly satisfied even in single-mode optical fibers [22], it was shown
to produce a very accurate description of PMD when the overall fiber length is significantly
larger than the correlation length of the local birefringence. In principle, the white noise model
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is viable whenever the correlation length of the mode coupling vector is very small relative
to the overall system length. Since the source of perturbations (geometrical distortions and
mechanical stress) are similar to those experienced by single-mode fibers, it is expected that
the correlation length of~β (z) is of a similar order of magnitude as the correlation length of
the polarization birefringence vector in single-mode fibers. Using this assumption, it is quite
obvious that the MD vector~τ is Gaussian and evolves as a Wiener process inz, which is the
continuous limit of a random walk. This conclusion can be readily drawn from Eq. (24) which
shows that~τ is the sum of rotated and statistically independent increments of~βω . Exploiting
similar arguments to those made in the analysis of PMD statistics [23], one can conclude that
the vector~τ(ω,z) experiences aD dimensional isotropic random walk, hence it is Gaussian
distributed and its modulusτ obeys a chi distribution. An important consequence of Eq. (24)
is that the mean-square MD value〈τ2〉 is equal to〈τ2〉 = γ2z, whereγ2 is defined through the
relation〈~βω(z)·~βω(z′)〉= γ2δ (z−z′). In the case of partial coupling,~τ is still Gaussian if~β (z)
is a white noise process, yet its distribution may not be isotropic, and the equation〈τ2〉 = γ2z
still rigorously applies. In this case, numerical modeling shows thatτ approximately obeys a
chi distribution with an effective number of degrees of freedomDeff < D.

The derivation of the autocorrelation functions Eqs. (4) and (5) is performed most simply
by using the relations introduced in Eq. (29). Just as in the procedure followed in the study
of PMD [19], we switch to a rotating reference frame, where, after a first-order expansion in
frequency,~β is replaced byω~βω with ω denoting the offset from the central frequency of the
propagating signal. The spatial dependence of~βω is modeled as white Gaussian noise. The cus-
tomary procedure in this case is to represent the integral of~βω over the propagation distance
as an isotropicD-dimensional Wiener process~W(z). The increments of~W(z) are character-
ized by〈dWi(z)dWj(z)〉= D−1γ2δi, jdz, whereγ is a constant proportional to the mean-square
magnitude of the generalized birefringence, such that〈τ2(z)〉= γ2z. Equation (29) can be re-
expressed as a stochastic differential equation

d~τ = d~W+ωd~W×~τ, (31)

which is to be interpreted in the Stratonovich sense. The corresponding Ito equation involves an
additive correction term−(γ2ω2/D)~τdz, which is obtained after some algebra. From this point
on, considering that our cross-product possesses the property~τ · (d~W×~τ) = 0, the derivation
of the autocorrelation functions is identical to the one presented in [19]. The only modification
is that the termD generalizes the factor 3 appearing in the corresponding term in [19].

Finally, we note that the scaling with the number of degrees of freedom is such that the
shape of the autocorrelation functions is uniquely determined by〈τ2〉/D, a quantity that has
the meaning of the mean square MD parameter per dimension in the extended Stokes space.
Polarization mode dispersion in single-mode fibers is a special case corresponding toD = 3.

4.1. Numerical simulations

In the numerical simulations a fiber is modeled as an assembly ofNs wave-plates, such that the
k-th element is characterized by a generalized real-valuedD-dimensional birefringence vector
~bdet+~bk, where~bdet describes the deterministic birefringence and~bk accounts for perturbation-
induced birefringence. In the simulation of quasi-degenerate modes~bdet = 0, whereas in the
study of non-degenerate modes reported in Fig. 4~bdet is used to tune the degree of determin-
istic coupling between different groups of quasi-degenerate modes. Since~bdet describes wave-
vector mismatch between different modes, as discussed in Appendix A, only the lastN− 1
components of~bdet can be nonzero. Expanding~bk to first order in the optical frequency, and
omitting the frequency-independent zeroth-order term (whose effect on the statistics of modal
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dispersion is immaterial) we write~bk = ω~b′k, whereω denotes the offset from the central fre-
quency of the transmitted signal. The transfer matrix of thek-th section is therefore given by

Uk = exp
[

i(~bdet+ω~b′k) ·~Λ/(2N)
]

. The frequency independent part of~bk was verified to have

no effect on the statistics of MD and hence it was omitted in the simulations. A similar omission
of the frequency independent part of the random birefringence is customary in the study of po-
larization effects and it is known to have no consequences on the statistics when characterizing
linear propagation problems. The vectors~b′k are selected independently of one another and with
each havingD statistically independent zero-mean Gaussian components.

We start from discussing the case of quasi-degenerate modes, when~bdet= 0. In this case, us-
ing Eq. (21), the average square-modulus of the MD vector can be shown to be〈τ2〉= Ns〈|~b′k|2〉.
To link this notation to the one used in prior sections we note that~bk is equivalent to~β (zk)∆zk

with zk being the position of thek-th fiber increment and with∆zk being its length.
In the case of full coupling, all components of the vector~b′k are identically distributed and

their variance is taken to beσ2 = 〈τ2〉/(NsD). While the modeling of the full coupling case
is relatively straightforward, the case of partial coupling is significantly more involved. Most
importantly, the regime of partial coupling cannot be captured unequivocally in terms of a single
parameter. Recent experimental work [20] characterized mode coupling between modesi and
j in terms of the fraction of power that is coupled into modej at the end of the link when mode
i is excited. While this is a practical and useful parameter for quantifying mode coupling, it
may not provide a unique characterization of the MD statistics, as the same coupling can be
generated in a variety of ways. While a detailed description of the partial coupling regime in
multi-mode fibers requires further experimental investigation, we model this situation in two
ways. If partial coupling is caused by the phase mismatch between non-degenerate modes, then
the magnitude of~bdet controls the degree of coupling. The results reported in Fig. 4 refer to
this situation. Otherwise, in the case of quasi-degenerate modes, partial coupling can only be
caused by an asymmetry of the coupling strength itself. This situation is modeled by attaching
different values to the variance of different components of~b′k. In particular, using our choice of
the matrices constructing~Λ (see Appendix A), the first 3Ncomponents of~b′k are responsible
for polarization coupling within the same spatial mode, whereas the remaining components are
responsible for coupling different spatial modes with one another. Thus the degree of inter-
modal coupling is controlled by varying the varianceσ2

c of the lastD−3N components of~b′k,
as compared to the variance of the first 3Ncomponents, which we denote byσ2

p. In this case
the average square modulus of the MD vector is given by〈τ2〉 = [3Nσ2

p +(D−3N)σ2
c ]Ns.

5. Conclusions

Inspired by the analogy between MD and PMD, we developed a formalism to characterize
modal dispersion in multimode fibers. The proposed formalism is based on the definition of a set
of D = 4N2−1 matrices — which are the generalization of the Pauli spin matrices — as a basis
for the expansion of the generalized Jones matrixU describing the propagation ofN spatial
modes. In the absence of mode-dependent loss, MD is characterized by a realD-dimensional
MD vector~τ, whose components are the coefficients of the expansion of the traceless part of
the matrixT =−i(dU/dω)U†. The eigenstates of such a matrix are generalized principal states
and its eigenvalues are the corresponding group delays; the square length of~τ is the sum of the
square group delays. In the regime of strong mode coupling the vector~τ is Gaussian distributed
and its modulus follows a chi distribution withD degrees of freedom. We found that to an
excellent degree of approximation, the same distribution, yet with a smaller number of degrees
of freedom, also characterizes the largest differential group delay, that is the difference between
the delays of the fastest and the slowest principal states. Finally, we studied the frequency
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autocorrelation of the MD vector, of the square modulus of the MD vector and of the largest
differential group delay. Extensive numerical simulations were used to check the analytical
results, showing good agreement in all cases.

A. Algorithm to build the Λ matrices

For N = 1 the matricesΛi coincide with the Pauli matrices, namely

Λ1 = σ1 =

(

1 0
0 −1

)

, Λ2 = σ2 =

(

0 1
1 0

)

, Λ3 = σ3 =

(

0 −i
i 0

)

. (32)

For N > 1 the algorithm which gives the 4N2−1 matrices proceeds as follows.

From Λ1 to Λ3N: Each 2×2 block in the main diagonal, from the leftmost to the rightmost,
is sequentially set to either one of the three Pauli matrices, while the other elements are
set to zero. This gives 3Nmatrices. The trace of such matrices squared is 2 and hence a
normalization coefficient

√
N is required.

From Λ3N+1 to Λ4N2−N: Each element outside the 2× 2 blocks in the main diagonal is se-
quentially set to either 1 ori and the symmetric element to 1 or−i respectively, while the
other elements are set to zero. This gives 4N2−4N matrices. The trace of such matrices
squared is 2 and hence a normalization coefficient

√
N is required.

From Λ4N2−N+1 to Λ4N2−1: We denote these matrices asΛ4N2−N+n, with n= 1, . . . ,N−1. The
2×2 blocks in the main diagonal from the first to then-th are set toσ0 and the(n+1)-th
to −nσ0, while the other elements are set to zero. The trace of such matrix squared is
2(n2 +n) and hence a normalization coefficient

√

N/(n2 +n) is required.

It is apparent from the definition that the matricesΛ1 . . .Λ3N do not couple different spatial
modes. Correspondingly, the componentsβ1 . . .β3N of the generalized birefringence vector~β
account for polarization-mode coupling within the same spatial mode. The matricesΛ3N+1 to
Λ4N2−N couple individual polarization modes of different spatial modes, whose magnitude is

defined by the corresponding components of~β . Finally, the matricesΛ4N2−N to Λ4N2−1 describe
wave-vector mismatch between different spatial modes.

As an example, we list below theΛi matrices for the caseN = 2.

Λ1 =
√

2









1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0









, Λ2 =
√

2









0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0









, Λ3 =
√

2









0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0









,

Λ4 =
√

2









0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1









, Λ5 =
√

2









0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0









, Λ6 =
√

2









0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0









,

Λ7 =
√

2









0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0









, Λ8 =
√

2









0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0









, Λ9 =
√

2









0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0









,
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Λ10 =
√

2









0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0









, Λ11 =
√

2









0 0 i 0
0 0 0 0
−i 0 0 0
0 0 0 0









, Λ12 =
√

2









0 0 0 i
0 0 0 0
0 0 0 0
−i 0 0 0









,

Λ13 =
√

2









0 0 0 0
0 0 i 0
0 −i 0 0
0 0 0 0









, Λ14 =
√

2









0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0









, Λ15 =









1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1









.
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