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ABSTRACT

Most test-day models used in genetic evaluations of
dairy cattle define contemporary groups (CG) as the
herd-test-date effect. Fitting this effect as fixed may
minimize prediction bias, but requires a minimum
number of observations per CG to simultaneously max-
imize the effective number of observations and mini-
mize the residual error and prediction error variance.
Nearly 4 million test-day records from the Portuguese
Holstein database of 238,271 cows calving in 1,330
herds from 1994 through 2006 were used to evaluate
the effect of clustering CG from small herds based on
the similarity of their production environments. Princi-
pal component analysis was used to summarize 14 de-
scriptive variables in 5 eigenvectors that explained 88%
of the total variation. Based on the distance matrix, 2
different approaches were applied to group the herds.
For each approach, 4 data sets were built having at
least 3, 5, 10, or 15 observations per CG, respectively.
For the data sets of group A, all herds, with or without
the required number of observations per CG, were used
in the clustering process. For the data sets of group B,
only herds without the minimum number of observa-
tions were candidates to form clusters. All data sets
were analyzed by an autoregressive test-day animal
model fitting a fixed herd test date in a multiple-lacta-
tion setting, and results were compared with the cur-
rent clustering procedure used in the Portuguese ge-
netic evaluations. The data set from group B, with a
minimum of 3 records per CG, was the one that provided
the highest accuracy of prediction and the smaller
within-CG variance, revealing a better fit for the data.
This procedure also preserved the original herd struc-
ture of the database, better maximizing the number of
herd groups. Correlations among EBV, rank, prediction
error variance, and accuracies of prediction for this data
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set were high (0.97, 0.97, 0.85, and 0.82, respectively),
suggesting that no major reranking is to be expected.
Key words: contemporary group, principal component
analysis, cluster analysis, autoregressive test-day
model

INTRODUCTION

In genetic evaluations, animal performances are com-
pared within contemporary groups (CG) of assumed
similar environmental conditions (Schaeffer, 1987;
Visscher and Goddard, 1993; Crump et al., 1997; Van
Bebber et al., 1997). Most test-day (TD) models used
in dairy cattle genetic evaluations define the CG as the
herd-test-date (HTD) effect. Fitting this effect as fixed
may minimize prediction bias if nonrandom associa-
tions with sires occur (Schaeffer, 1987; Van Vleck, 1987;
Visscher and Goddard, 1993), as is the case when herd
size or level of production is systematically related to
the quality of semen used in AI. This may be an example
of preferential treatment (Meyer, 1987; Van Vleck,
1987; Tierney and Schaeffer, 1994; Raffrenato et al.,
2003) and is a common situation in Portugal, where
high-ranking sires are preferentially used in high-pro-
duction herds. As a consequence, criteria for forming
CG that correctly account for the management impact
on recorded phenotypes are required.

Fitting CG as fixed, random, or a combination of both
is a matter of balance between accuracy and bias (Van
Vleck 1987; Visscher and Goddard, 1993; Van Bebber
et al., 1997). The random approach may recover some
information across CG (Strabel et al., 2005), especially
when the number of observations in some CG is small,
but it will introduce bias to the breeding value predic-
tions if there are nonrandom associations of animals
with effects considered to be fixed (Van Bebber et al.,
1997). Partitioning the environmental variables in fixed
and random effects (Wade and Quaas, 1993; Van Beb-
ber et al., 1997) may be a viable approach to simultane-
ously account for prediction bias and loss of informa-
tion. Following this line of thinking, Carabaño et al.
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(2006) compared alternative models to account for herd
effects in TD milk yield data by comparing several com-
binations of HTD as fixed or random and with or with-
out a random or fixed herd-year effect. They found small
differences among the models, but fitting a fixed HTD
and a random herd-year effect showed the worst results.
Although the models that included a random HTD had
the best results, the authors emphasized the need for
additional work for more conclusive recommendations
about modeling CG.

The need to simultaneously minimize the variance
of residuals and the prediction error variance (PEV),
assuming a fixed HTD, implies a minimum number of
observations per CG. Operationally, the HTD effect is
defined as the nested effect of month-of-test within year
and herd, which, in small herds, may have only 1 or 2
observations. The definition of this minimum number
of observations may become a limiting factor if the num-
ber of available TD records for the genetic analysis is
critical; therefore, all data, including those from small
herds without enough records per CG, have to be in-
cluded (Van Vleck, 1987; Strabel and Szwaczkowski,
1999; Vasconcelos et al., 2005). Schmitz et al. (1991)
suggested a minimum of 10 to 15 observations per CG,
whereas Carabaño et al. (2004) and Vasconcelos et al.
(2006) suggested a minimum of 5 and 3 observations,
respectively. With these criteria, there are many small
and recent farms that may be excluded from the genetic
evaluations unless some methodology is devised to form
larger CG and at the same time minimize the impact
that the change in the environmental and genetic struc-
ture of the data may bring to the genetic evaluations.

In Portugal, for example, defining CG by levels of the
HTD effect resulted in 97 and 40% of dairy farms having
at least one HTD class with less than 15 and 3 observa-
tions per CG, respectively. In terms of the percentage
of CG lacking that number of observations, the average
was 37 and 7%, respectively. If these farms are not
included in the evaluations, the sire EBV will be biased
(Vasconcelos et al., 2005) because of the loss of informa-
tion on their daughters, with negative consequences on
the genetic progress (Swalve, 1995). Furthermore, from
a breeder’s point of view, discarding these farms (ani-
mals) may not be acceptable because this information
is needed for on-farm selection programs (Carabaño et
al., 2004).

Defining the optimum CG continues to be a controver-
sial issue. If a CG spans a long period of time, the
accuracy of the evaluations will be greater because of
the larger number of contemporaries in the same group.
However, assigning records from animals that are not
subject to the same management and environmental
conditions to the same CG can introduce bias (Crump
et al., 1997; Carabaño et al., 2004). A balance between
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high accuracy and small bias needs to be reached to
optimize the definition of CG (Van Bebber et al., 1997;
Carabaño et al., 2004). Some authors suggested cluster-
ing CG, either joining HTD classes within the herd
(Schmitz et al., 1991; Carabaño et al., 2004), across
herds (Vasconcelos et al., 2006), or a combination of
both (Strabel and Szwaczkowski, 1999). If management
information (e.g., adjusted monthly production means
within a year) is also a required output of the evaluation
process, the month classes within year and herd should
be maintained, and clustering should be performed
among herds with similar environments, keeping the
test-date structure unchanged (Vasconcelos et al.,
2006).

The ongoing genetic evaluations in Portugal have fol-
lowed this latter approach. However, the optimal mini-
mum number of observations per CG that maximizes
the improvement of accuracy has never been tested.
Furthermore, the criteria used to define management
similarities among herds have been based only on the
phenotypic daily mean (milk, fat, and protein) and stan-
dard deviation at first lactation. Additionally, the clus-
tering process was only stopped at the tree level, where
all formed clusters had, simultaneously, the minimum
predefined number of observations per level of fixed
effects. This resulted in very large clusters because,
although some of the clusters had already fulfilled the
clustering criteria at a lower tree level, they all de-
pended on the other clusters that still needed more
observations in some CG. The major implication of this
approach was that the final number of herds forming
a cluster depended only on the tree organization (de-
fined by the distance matrix), making it impossible to
maximize the number of comparison herd groups.

The aim of the present work was to study the conse-
quences of clustering herds in dairy cattle genetic evalu-
ations by varying the minimal number of observations
per CG, using either all herds in the data set as poten-
tial candidates or only herds without the minimum
number of observations in any CG. For consistency,
HTD effects were assumed fixed in all analytical mod-
els. Principal components (PC) analysis was also used
to refine the definition of which descriptors of the pro-
duction environments should be used to evaluate simi-
larities among herds. To improve the control of the
clustering process, additional parameters were intro-
duced to minimize the number of herds per cluster (in-
creasing the total number of CG).

MATERIALS AND METHODS

Data

The data were provided by the Portuguese Dairy Cat-
tle Breeders Association and consisted of TD milk yields



HERD CLUSTERS IN GENETIC EVALUATIONS 379

Table 1. Eigenvalues (λi) and proportion of the variance (PV) ac-
counted for by the first 5 principal components (PC), based on 14
descriptive variables to measure herd production environments

Principal
component λi PV Cumulative PV

PC1 8.0147 0.5725 0.5725
PC2 1.3863 0.0990 0.6715
PC3 1.1798 0.0843 0.7558
PC4 0.9236 0.0660 0.8217
PC5 0.7548 0.0539 0.8751

of Portuguese Holstein cows recorded from June 1994
through March 2006. Monthly records were from super-
vised recording plans (morning and afternoon milking
according to standard A4 of the International Commit-
tee for Animal Recording) from cows in the first 3 parit-
ies. Lactations were required to have at least 2 TD
records. The TD records were validated when the first
reported TD did not exceed 75 DIM, and the time inter-
val between consecutive TD was between 26 and 33 d for
the interval from 5 to 305 DIM. Further edits followed
International Committee for Animal Recording (1995)
rules for dairy cow TD recording. After editing, the data
set comprised 3,988,993 TD records of 238,271 cows in
1,330 herds.

Descriptive Variables

Fourteen descriptive variables were considered as po-
tential indicators of production environments for each
herd and were used in the PC analysis to measure their
importance as sources of variation among herds: herd
size (HS)—the number of cows calving in the herd dur-
ing the study period; average age at first calving; peak
yield (PY)—average of the maximum TD yield of cows
in the herd; peak yield variability—standard deviation
of PY; production level (PL)—average daily milk yield;
and production variability—standard deviation of PL
in the herd. The last 4 variables (PY, peak yield vari-
ability, PL, and production variability) were calculated
for all 3 lactations in each herd. Not all herds had
production information for all 3 lactations (less than
0.7%). In these cases, missing values (required for PC
analysis) were estimated by linear regression within
herd.

PC and Cluster Analysis

Given these descriptive variables, 14 PC were com-
puted based on the analysis of the correlation matrix
(PROC PRINCOMP, SAS Institute, 1989). The first 5
PC accounted for 88% of the total variance (Table 1)
and were used as input variables for the subsequent
cluster analyses.
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The method used to find environmental similarities
between pairs of herds was Ward’s minimum variance
(PROC CLUSTER, SAS Institute, 1989). Based on the
distance matrix, 2 different approaches (A and B) were
applied to group the herds. For each approach, 4 data
sets were built having at least 3, 5, 10, and 15 observa-
tions per CG (A3, A5, A10, A15, B3, B5, B10, and B15). For
the A data sets, all herds, with or without the required
number of observations per CG, were used in the clus-
tering process. For the B data sets, only herds without
the minimum number of observations were candidates
to form clusters. This allowed more herds to keep their
original structure. Herds were clustered according to
the following criteria:

1. Herds were sorted according to distances provided
by PROC CLUSTER (SAS Institute, 1989) so that
adjacent herds in the list represented the closest
ones in terms of similarities in management.

2. In the A approach, cluster formation had to start
with a herd without the minimum number of obser-
vations in at least one CG, which was not required
for the B approach.

3. Herds were joined following the branches of the
tree, reflecting the shortest distance between them.

4. If there was more than one herd at the same dis-
tance, priority to join the cluster was given to the
one with the smaller HS. This criterion permitted
the formation of more clusters.

5. After each agglomeration (herd-herd or herd-clus-
ter), the program recounted all observations at
each CG and stopped the process for that specific
cluster if all CG had the required minimum
number.

6. If not, the clustering process continued, first by
checking if there were herds available at lower lev-
els in the tree, and then by going up to the next
parent node and starting to look for candidates on
the other descending branch.

This part of the clustering process was performed by
using specific software developed by the authors.

Model

The analytical autoregressive TD animal model was

yijkLmn = HTDi + Age(H)j + DIM(H)k(L)

+ an + pm(L) + tn(mL) + eijkLmn,

where yijkLmn is the vector of TD yield, HTDi is the
vector of the fixed effect of herd test date, Age(H)j is
the vector of the fixed effect of age at calving nested
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Table 2. (Co)variance components (kg2) and genetic parameters for
daily milk yield of Portuguese Holstein cattle

Parameter Component

Genetic variance 7.428
Error variance 2.966
LTE1 variance <0.001
LTE autocorrelation <0.001
STE2 variance (Lact 1) 11.004
STE autocorrelation (Lact 1) 0.819
STE variance (Lact 2) 22.231
STE autocorrelation (Lact 2) 0.831
STE variance (Lact 3) 26.044
STE autocorrelation (Lact 3) 0.816
Heritability (Lact 1) 0.347
Heritability (Lact 2) 0.228
Heritability (Lact 3) 0.204

1LTE = long-term environmental effect, accounting for the autocor-
relation generated by the cow across lactations.

2STE = short-term environmental effect, accounting for the autocor-
relations attributable to the repeating effect of cow between test days
for each lactation.

within herd (H), DIM(H)k(L) is the vector of the fixed
effect of DIM nested within herd and lactation number
(L), an is the vector of the random additive genetic effect
of the animal, pm(L) is the vector of the random long-
term environmental effect accounting for the correla-
tions generated by the cow across lactations, tn(mL) is
the vector of the random short-term environmental ef-
fect accounting for the correlations attributable to the
cow between TD within the same lactation, and e is
the vector of the random residual effect. The effects
of p and t are fitted with first-order autocorrelation
structures (Carvalheira et al., 1998, 2002). The same
(co)variance components and autocorrelations were
used in all evaluations (Table 2).

Comparison of Clustering Procedures

Results from all data sets were compared with the
current clustering procedure used in the Portuguese
genetic evaluations (data set C), where only herds with
at least one CG with less than 3 observations were
candidates to form new clusters. Management similari-
ties among herds were based only on the phenotypic
daily mean and standard deviation at first lactation.

Comparisons were based on differences and correla-
tions among EBV, ranking, PEV, and accuracies of pre-
diction (ACC), with the latter 2 computed only for sires
with 10 or more daughters (1,962 sires). Prediction er-
ror variance corresponds to exact estimators extracted
from the diagonal of the inverse of the coefficient ma-
trix, and the ACC was obtained as

ACCi = √1 − PEVi

σ̂2
a (1 + Fi)

,
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where PEVi and Fi are, respectively, the prediction er-
ror variance and the inbreeding coefficient for sire i,
and σ̂2

a is the estimated additive genetic variance (Table
2). Between- and within-CG variances were also used
to compare alternative definitions of herd groups. These
variance components were obtained by using the model

y*
ij = CGi + eij,

where y*
ij is the vector of observation corrected by the

corresponding BLUE (best linear unbiased estimator)
and BLUP solutions for other than the CG effects (Cara-
baño et al., 2004). Corresponding coefficients of deter-
mination were also calculated and used as measures of
goodness of fit.

RESULTS AND DISCUSSION

The importance of the production variables and their
variance in describing herd environmental variability
was clearly represented in the first 3 PC, whereas the
fourth and fifth PC showed greater loads of the manage-
ment factors, such as HS and age at first calving. These
findings are in agreement with several studies (Zwald
et al., 2003; Windig et al., 2005) in which milk yield
descriptors were, in general, the most important envi-
ronmental variables. As expected, the final number of
comparison herd groups decreased with the increase in
the minimum number of observations required per CG.
The criteria used to form data sets for group B also
contributed to increasing the relative final number of
herd groups and the total number of CG for the analysis
(Table 3). Although data set C had a high total number
of CG, the number of clusters was only 14 (with a mean
number of 37.6 ± 19.7 herds per cluster) compared with
74 clusters in B3 (7.1 ± 8.4 herds per cluster). Consider-
ing that one of the objectives of this study was to retain
the HTD structure to the extent possible (year-months
within each herd), data sets A3 and B3 were the ones
that best preserved the original database structure,
especially data set B3, in which herd groups were max-
imized, resulting in the data set with the largest num-
ber of CG (Table 3).

Table 4 has the correlations for EBV, rank, ACC,
and PEV among data set C and all other data sets.
Estimated breeding value correlations were generally
high, ranging from 0.85 to 0.97. The rank correlation
followed the same pattern, with data set B3 having the
stronger relationship with data set C. The same types
of relationships were found within sex (0.98 for males
and 0.97 for females for data set B3). High EBV and
rank correlations were also reported in other studies
evaluating the effect of size of CG (Reents et al., 1995;
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Table 3. Percentage of herds clustered, corresponding to the total number of herd groups (including clusters)
and the contemporary group (CG) structure for the data sets

Average (min; max) observations in CG
Data Herds Total herd
set1 clustered,2 % groups, n CG, n Full data set Only in clusters

A3 59.7 761 93,248 42.8 (3; 863) 43.3 (3; 364)
A5 80.2 536 67,739 59.9 (5; 863) 64.9 (5; 782)
A10 97.4 191 25,987 153.5 (10; 1134) 162.0 (10; 1134)
A15 99.9 80 11,269 354.0 (17; 2180) 557.8 (17; 2180)
B3 39.6 877 100,699 39.6 (3; 863) 64.0 (3; 668)
B5 57.4 665 80,929 49.3 (5; 963) 93.8 (5; 963)
B10 87.1 273 35,590 112.1 (10; 1924) 183.1 (10: 1924)
B15 96.8 110 14,563 273.9 (15; 897) 374.1 (17; 897)
C 39.6 813 93,815 42.5 (3; 963) 289.8 (4; 963)

1In data sets A and B, management similarities among herds were based on the distance matrix using
5 principal components obtained from 14 descriptive variables, and CG had to have at least 3, 5, 10, and
15 observations. In data set A, all herds were candidates to form clusters, whereas in data set B, only those
without the minimum number of observations in any CG were used in the clustering process. In data set
C, only herds with less than 3 observations per CG were candidates to form new clusters, and management
similarities among herds were based only on the phenotypic daily mean and SD at first lactation.

2Percentages from a total of 1,330 herds.

Carabaño et al., 2004). Varying the size of the CG from
3 to 15 observations by using the definitions of manage-
ment similarity in the present study had only a minor
effect on EBV and ranking of the animals. This fact
may facilitate the implementation of new clustering
approaches, especially those that provide a better parti-
tioning of the CG for herd management purposes. With
the exception of data sets A3 and A5, the ACC and PEV
correlations for the selected sires were also high and
of similar magnitude. The high correlation coefficients
found in this study indicate that only a slight change
in the rank of sires and cows may be expected (especially
between data sets C and B3).

Table 4. Correlation coefficients for EBV, rank, accuracy of prediction
(ACC), and prediction error variance (PEV) of data set C1 with the
other 8 data sets studied

Data set2 EBV Rank ACC3 PEV3

A3 0.97 0.96 0.56 0.50
A5 0.95 0.94 0.65 0.58
A10 0.89 0.88 0.86 0.84
A15 0.85 0.84 0.87 0.84
B3 0.97 0.97 0.85 0.82
B5 0.96 0.95 0.85 0.83
B10 0.91 0.90 0.77 0.73
B15 0.88 0.86 0.87 0.84

1In data set C, only herds with less than 3 observations per contem-
porary group (CG) were candidates to form new clusters, and manage-
ment similarities among herds were based only on the phenotypic
daily mean and SD at first lactation.

2In data sets A and B, management similarities among herds were
based on the distance matrix using 5 principal components obtained
from 14 descriptive variables, and CG had to have at least 3, 5, 10,
and 15 observations. In data set A, all herds were candidates to form
clusters, whereas in data set B, only those without the minimum
number of observations in any CG were used in the clustering process.

3ACC and PEV refer only to males with 10 or more daughters.
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The high percentage of elite animals (top 100) in com-
mon between C and the other data sets (Table 5) was
related to the high correlations obtained in this study.
Again, data set B3 was the one showing more similarit-
ies with data set C, indicating that this clustering meth-
odology will be the one with less impact in reranking
sires and cows in future evaluations.

Response to selection during the last decade was also
compared in this study (Figure 1). Except for males in
A15, trends were very similar for both sexes, confirming
that only minor changes are to be expected if the new
clustering methods are to be adopted.

The average PEV and ACC of data set C was signifi-
cantly different (P < 0.05, data not shown) from the

Table 5. Percentage of animals in common of the top 100 elite animals
among data set C1 and all the other 8 data sets studied (sires with
10 or more daughters)

Data set2 Sires Cows

A3 84 82
A5 77 57
A10 56 39
A15 54 35
B3 89 86
B5 84 54
B10 66 42
B15 58 38

1In data set C, only herds with less than 3 observations per contem-
porary group (CG) were candidates to form new clusters, and manage-
ment similarities among herds were based only on the phenotypic
daily mean and SD at first lactation.

2In data sets A and B, management similarities among herds were
based on the distance matrix using 5 principal components obtained
from 14 descriptive variables, and CG had to have at least 3, 5, 10,
and 15 observations. In data set A, all herds were candidates to form
clusters, whereas in data set B, only those without the minimum
number of observations in any CG were used in the clustering process.
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Figure 1. Milk genetic progress for sires (A) with 10 or more daughters and dams (B) by year of birth in data sets C, B3, A3, and A15.
In data set C, only herds with less than 3 observations per contemporary group (CG) were candidates to form new clusters, and management
similarities among herds were based only on the phenotypic daily mean and SD at first lactation. In data sets A and B, management
similarities among herds were based on the distance matrix using 5 principal components obtained from 14 descriptive variables. The CG
had to have at least 3 (B3 and A3) or 15 (A15) observations. In A3 and A15, all herds were candidates to form clusters, whereas in B3, only
those without at least 3 observations in any CG were used in the clustering process.

Journal of Dairy Science Vol. 91 No. 1, 2008
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Table 6. Between (σ2
b) and within (σ2

w) contemporary group (CG)
variances (kg2) for the adjusted test days and the coefficients of deter-
mination (R2) for the 9 data sets

Data set1 σ2
b σ2

w R2

A3 26.546 1.381 0.9517
A5 27.128 1.415 0.9513
A10 23.482 1.508 0.9400
A15 22.476 1.549 0.9357
B3 25.441 1.047 0.9615
B5 25.091 1.397 0.9483
B10 26.307 1.475 0.9474
B15 20.188 1.531 0.9298
C 30.499 1.391 0.9574

1In data set C, only herds with less than 3 observations per CG
were candidates to form new clusters, and management similarities
among herds were based only on the phenotypic daily mean and SD
at first lactation. In data sets A and B, management similarities
among herds were based on the distance matrix using 5 principal
components obtained from 14 descriptive variables, and CG had to
have at least 3, 5, 10, and 15 observations. In data set A, all herds
were candidates to form clusters, whereas in B, only those without
the minimum number of observations in any CG were used in the
clustering process.

PEV and ACC of the other data sets. The difference
was minimal, and its significance may be related to
the large number of degrees of freedom used in the
comparisons. Except for A3 and A5, the PEV (ACC) of
C was larger (smaller) than for the other data sets. The
variance components used in the analytical model were
fixed for all data sets, implying that the differences in
ACC were caused by the differences in PEV, influenced
by the size of the CG and the data structure (Carabaño
et al., 2004). Schmitz et al. (1991) concluded that ACC
of a sire evaluation is more dependent on the number of
observations per CG than on the procedure for grouping
them. Ugarte et al. (1992) found that increasing the
size of CG decreased the PEV in all models studied. In
the present study, clustering herds to increase the size
of CG also led to smaller PEV (higher ACC) by increas-
ing the representation of a particular sire in a particu-
lar CG.

In the present study, the within-CG variance for the
adjusted TD from data set C was larger than the one
obtained for data set B3 (Table 6). A better fit of the CG
should minimize the within-CG variance and maximize
the variance among CG levels. Even though the differ-
ence is small, the clustering methodology used in data
set B3 provided a larger R2, which may also be interpre-
ted as a measure of a better fit for the data (Table 6).

In future research, we will study the impact that
herds changing clusters between consecutive evalua-
tions might have in selection programs. The conse-
quences of considering the systematic environmental
effects as fixed, random, or both, with or without a
covariance structure, will also be investigated.
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CONCLUSIONS

Using PC analysis to reduce the number of descrip-
tive environmental variables to define management
similarities was a viable approach to cluster herds with
insufficient contemporaries per level of fixed effects in
the analytical model. Management similarities among
herds were based on the distance (correlation) matrix,
using 5 PC obtained from 14 descriptive variables. A
larger number of clusters permits more comparison
groups and was one of the objectives of this study, aim-
ing for the best possible contrast among daughters,
which would result in faster genetic progress per year.

Among all clustering strategies studied, data set B3
(CG had to have at least 3 records, and clustering was
only among herds without the minimum number of
observations in any CG) was the one giving the better
fit for the data with smaller changes in the original
herd structure of the database. The smaller within-CG
variance and the larger R2 associated with consistently
higher correlations among the parameters studied sug-
gest that this clustering procedure may be the choice
for future dairy cattle genetic analysis in Portugal.
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