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It can be argued that the identification of soundmathematical models is the ultimate goal of any scientific endeavour. On the other
hand, particularly in the investigation of complex systems and nonlinear phenomena, discriminating between alternative models
can be a very challenging task. Quite sophisticated model selection criteria are available but their deployment in practice can be
problematic. In this work, the Akaike Information Criterion is reformulated with the help of purely information theoretic
quantities, namely, the Gibbs-Shannon entropy and the Mutual Information. Systematic numerical tests have proven the im-
proved performances of the proposed upgrades, including increased robustness against noise and the presence of outliers. $e
same modifications can be implemented to rewrite also Bayesian statistical criteria, such as the Schwartz indicator, in terms of
information-theoretic quantities, proving the generality of the approach and the validity of the underlying assumptions.

1. Introduction to Nonfrequentist Model
Selection Criteria

$e promised land of modern scientific enterprises is often
the formulation of robust and generally applicable mathe-
matical models [1, 2]. $e ultimate validation of any model
resides in the comparison with the results of experiments or
observations. In the last decades, enormous quantities of
data have become available in many fields of science and
engineering. $e statistical inference has therefore pro-
gressively moved to centre stage. $e older frequentist
techniques, based on traditional significance level criteria,
have been complemented by a series of Bayesian and in-
formation-theoretic criteria, in many respects more suited to
managing large amounts of information.

One of the most popular model selection criteria (MSC)
is the Akaike Information Criterion (AIC) [3]. $e AIC can

be derived from the Kullback–Leibler divergence and can be
interpreted as the loss of information associated with the
adoption of a model different from the exact one, generating
the data. $e basic idea underlying the AIC criterion resides
indeed in the consideration that the less information amodel
loses, the higher its quality. $e theoretical derivation of the
AIC gives the unbiased form of the criterion [4].

AIC � −2 ln(L) + 2k, (1)

where L is the likelihood of the data given the model and k is
the number of estimated parameters in the model. $e AIC
is a metric that is minimised by the best model as a com-
promise between the goodness of fit (the first term) and
complexity (the second term).

$e general formulation of the AIC is not always easy to
apply in practice as can be appreciated by a simple inspection
of (1). First, in many instances, it can be impossible to
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reliably calculate the likelihood. Moreover, it is well known
that the number of parameters is a poor quantifier of a model
complexity and it is not inherently an information-theoretic
indicator. $e more practical expression of the AIC, very
often the one used in practice, is even more distant from its
original information theoretic origin, as discussed in the
next section.

$e first quantity, proposed to improve the AIC, is the
Gibbs–Shannon entropy H

H � − 􏽘
i

pilog pi. (2)

$e higher the value of H, the higher the uniformity of
the corresponding probability distribution function (whose
values are indicated with pi). $e Gibbs- Shannon entropy
can improve significantly the quantification of the model
complexity, as discussed in detail in Section 2.2.

$e second quantity, used in the rest of the work, is the
mutual information, MI.

MI � − 􏽘
x

􏽘
y

pxy ln
Pxy

PxPy

􏼠 􏼡, (3)

where Px,y is the joint pdf of the random variables X and Y.
Mutual Information can play a fundamental role in deter-
mining the goodness of fit of the models, as discussed in
Section 2.1.

With regard to the organization of the paper, the next
section introduces the rationale and details of the proposed
information-theoretic upgrades of the Akaike Information
Criterion. Section 3 is devoted to a simple but challenging
didactic case, meant to illustrate the effects of the modifi-
cations with an easy-to-grasp example. $e family of
functions and the types of noise statistics, implemented to
perform a series of systematic tests, are summarised in
Section 4. $e results of the aforementioned tests are ex-
emplified in Section 5 with the help of some representative
cases. $e extension of the approach to the Bayesian Se-
lection criterion is covered in Section 6 before the conclu-
sions and lines of future developments are discussed in the
final section of the paper.

2. Model Selection Formulated in terms of
Information Theoretic Quantities

Among the many indicators, for identifying the “best
model” among a set of candidates, the Akaike Information
Criterion AIC can be conceived originally as a pure in-
formation theoretic criterion. Unfortunately, the original
formulation of the AIC criterion is typically problematic
to implement in practice, particularly in applications
involving complex systems and nonlinear phenomena.
Both terms in the AIC present significant issues [5–7]. To
bypass the practical difficulties of calculating the likeli-
hood, the strong assumption that the data are identically
distributed and independently sampled from a normal
distribution is the most commonly invoked. If this tra-
ditionally called iid hypothesis is valid, it can be dem-
onstrated that the AIC can be written (up to an additive

immaterial constant depending only on the number of
entries in the database) as follows:

AIC � n · ln(MSE) + 2k. (4)

In (4), formally derived in [4], the Mean Squared Error
(MSE) is calculated in terms of the residuals, the differences
between the data, and the estimates of the models; in its turn
n indicates the number of entries in the database.

(4) is certainly the most widely used form of AIC. On the
other hand, as can be easily appreciated by inspection, the
criterion is now expressed in terms of quantities, which are
not information theoretic anymore. Moreover, all the sta-
tistical information content, originally in the likelihood, is
reduced to the mere MSE of the residuals. $e first obvious
question, which comes to mind, is whether some additional
statistical information about the distribution of the residuals
could be taken into account, to improve the discriminatory
capability of the criterion. $e practical relevance of this
issue is quite significant also because, in many applications,
the assumptions behind (4) are clearly violated. In real life,
indeed, the statistics of the noise can have a non-Gaussian
distribution, memory effects can be important, and a sig-
nificant number of outliers can be unavoidable. How to
improve the model selection criteria in this respect is the
subject of Section 2.1.

$e second term in (4) is also problematic because it is
well known that the number of parameters is a quite poor
indicator of the complexity of a model. More sophisticated
quantifiers exist, such as the VC dimension [8] and the
Rademacher dimension [9], but they are often impossible to
calculate for most practical functions. An alternative in-
formation theoretic and computationally simple way to
calculate a model complexity is the subject of Section 2.2.

2.1. Expressing the Goodness of Fit in terms of Mutual
Information. $e main idea informing one of the AIC
upgrades, proposed in this work, is based on the observation
that the better a model, the more similar the residuals to the
noise affecting the measurements. In the case of a perfect
model, the residuals should present exactly the same dis-
tribution as the noise. Assuming that the noise is not cor-
related with the measurements, absolutely legitimate in most
practical applications, this consideration can be quantified
mathematically by calculating the mutual information be-
tween the model predictions and the residuals, MIMRes.

MIMRes � MI ymod, yres( 􏼁. (5)

$e AIC can therefore be rewritten as follows:

AICMI � 2k + n ln MSE 1 + MIMRes( 􏼁( 􏼁. (6)

Conceptually, (6) is to be preferred to (4) for various
reasons. First, it formulates the criterion in terms of an
information theoretic quantity, the mutual information.
Moreover, it retains much more statistical information
about the model and the residuals. At the same time,MIMRes
takes into account also nonlinear correlations and does not
make any “a priori” assumption about the statistics of the

2 Complexity



noise or the presence of outliers. Consequently, as shown by
numerical tests, AICMI is a much more general and sensitive
model selection criterion than the original AIC.

2.2. Expressing the Complexity in terms of the Shannon
Entropy. $e other weakness in the original definition of
AIC is certainly the quantification of complexity. Indeed, the
simple number of parameters in a model is a very poor
indicator of its flexibility and in particular of its potential to
overfit (see Section 3). A possible alternative relies on the
traditional idea that complexity is the middle ground be-
tween randomness and determinism. According to this view,
complete randomness and perfect determinism are con-
sidered less complex than a combination of the two. $is
approach to complexity has a long pedigree and can be
traced back to the interpretation of information as uncer-
tainty, the concept at the basis of information theory [10]. A
possible way of expressing this idea in mathematical terms is
the following complexity measure C[X]:

C[X] � H
α
[X]D

β
[X], (7)

where H is the usual Shannon entropy and D is the distance
from a uniform distribution.

D[X] � 􏽘

N

1
􏽘

N

1
pi −

1
n

􏼒 􏼓, (8)

where with the usual notation, n is the number of entries in
the database. $e distance D reduces the estimated com-
plexity of models, whose predictions are uniform. $e en-
tropy reduces the estimated complexity of models, whose
outputs are concentrated on a few well-defined values.
Conceptually, the implementation of this quantification of
complexity is quite simple. $e pdf of the model predictions
can be inserted in (7) to obtain a simple indicator, imple-
menting the aforementioned information theoretic inter-
pretation of complexity.

$e most delicate aspect of (7) is the choice of the ex-
ponents α and β because they contribute significantly to
determining the trade-off between entropy and distance. To
this end, the increments of the model predictions have been
calculated as follows:

Modeldiff � ymodel,i+1 − ymodel,i􏼐 􏼑. (9)

$e moving averages (Mov), of the mean and standard
deviation of the squared increments, are good indicators of
the flexibility of a model and therefore of its potential to
overfit. $e normalized versions of these quantities are
defined in

MF1 �
􏽐 MovST D Modeldi ff􏼐 􏼑

2

n

MF2 �
􏽐 MovMEAN Modeldi ff􏼐 􏼑

2

n
.

(10)

$e ratio of the two averages calculated in (10) is

MF �

����
MF1

MF2

􏽳

. (11)

$e parameter MF increases for functions, which have
stronger variations in the domain of interest and can
therefore be considered more complex. Indeed, these more
nervous functions would have a higher potential of over-
fitting the data, following the noise.$is is the interpretation
of the quantity MF, which is used to determine the expo-
nents α and β.

α � 1 + MF; β � 1 − MF. (12)

Finally, the proposed final versions of the AIC expressed
only in terms of the mentioned information theoretic
quantities read

AICMICx � n ln[MSE(1 + MI)] + n lnCx( 􏼁

� n ln CxMSE(1 + MI)􏼂 􏼃( 􏼁.
(13)

3. A Didactic Example to Illustrate the Main
Characteristics of AICMICX

To illustrate the potential and the meaning of the proposed
upgrades of the AIC, an academic but challenging example,
already discussed in detail in the literature [11], is described
in this section. To this end, it is assumed that the actual data
is generated with a polynomial function depending on 5
parameters.

yref � 10− 6
x
5

− 8, 10− 3
x
3

+ 3, 10− 2
x
2

+ x − 10. (14)

$e equations, considered as possible candidate models
for the data generated with (14), are reported in Table 1.

A comment about the sinusoidal functions is in place.
$ese functions can be tuned to fit perfectly the data gen-
erated with (14) by increasing their frequency. $is fact can
be appreciated by inspection of the first two plots of Figure 1.
If there is any noise added to the data, the sinusoidal
functions, given their higher flexibility, can fit the data even
better than the original equation generating it.

On the other hand, they depend only on two pa-
rameters, their amplitude and frequency. $erefore, the
traditional version of the AIC would tend to prefer a well-
adjusted sinusoidal model (because it would achieve lower
values of both terms of the indicator). $e proposed
version AICMICx, on the contrary, manages to properly
identify the right model, as shown in Figure 2. $e plots
report the differences between the AIC and AICMICx of the
candidate models and the reference, the equation used to
generate the data.

When these differences are positive, the reference model
is the preferred one; the negative cases indicate that the
criteria would have selected the wrongmodel. From the plots
of Figure 2, it appears quite clearly that the traditional AIC
would have preferred the sinusoids (particularly model 1)
for various numbers of entries, whereas the AICMICx always
identifies the reference model as the right one. $is is
achieved by taking into account the distributions of the
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Table 1: $e four candidate models to fit the data generated by (14).

# Models
1 17 sin(210x)

2 17 sin(209.5x)

3 −0.08x2 + 1.47x − 10.38
4 0.75x − 10
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Figure 1: Black: the original data generated with (14). Red: the models of Table 1. From top left to bottom right models from 1 to 4.
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Figure 2: Comparison of the discriminating power of the traditional AIC and the proposed AICMICx. On the (y) axis the difference between
the indicators for the various models and the reference one used to generate the data, is reported. On the (x) axis a scan in the number of
entries.
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residuals and by better estimating the complexity of the
models. $e details about the comparison, between the
traditional AIC and the new version proposed in this paper,
are fully documented in Appendix A for the specific example
reported in this section.

4. The Main Functional Classes and Noise
Statistics for Practical Applications

To assess the performance of the alternative AIC model
selection criterion proposed in Section 2, a series of sys-
tematic numerical tests have been performed. $e analysis is
focussed mainly on four classes of models that cover the
most widely used in practice. $ey are the classes of poly-
nomials, power laws, power laws multiplied by a squashing
term, and exponential functions. In the rest of the paper,
only the results for bidimensional functions (of the form
z� f(x, y)) are discussed, because they are susceptible of clear
visualization, which helps illustrating the properties of the
criterion. $e extension to a larger number of variables is
straightforward and does not pose any conceptual difficulty.
$erefore, the considerations and conclusions reported have
to be assumed valid also in higher dimensions. For the
reader’s convenience, the mathematical form of the afore-
mentioned models is reported in the left column of Table 2.

Significant attention has been devoted to noise statistics.
$ree of the most relevant distribution functions have been
tested: Gaussian, uniform, and multi-Gaussian [12]. Again
for the reader’s convenience, the mathematical formulation
of these types of noise is summarised in the right column of
Table 2, together with the parameter values valid for the runs
reported in the rest of the paper. Since in practice very often
the presence of outliers in the data cannot be excluded, the
robustness of the proposed upgrade of the AIC in this re-
spect has also been verified. $is has been achieved by
randomly adding to the synthetic data values sampled from a
Gaussian distribution of small variance but nonzero mean
(see the entry called Asymmetric noise in Table 2 for a
precise mathematical definition).

5. Representative Results of Numerical Tests

As mentioned, a systematic series of tests with synthetic data
has been performed to assess the competitive advantage of
the proposed version of the AIC. All the combinations of
cases summarised in Section 4 have been investigated. $e
new version AICMICx has always proved to have better
discriminatory capabilities than the traditional AIC. In
practice, this means that AICMICx at least provides better
separation between the right model (the one used to generate
the data) and its wrong competitors. $is has proved to
occur for any type of function, noise statistics, and levels of
outliers. In general, the more severe the conditions, the
higher the level of noise or outliers, and the better the
AICMICx performance compared to the traditional AIC. In
some cases, as the one already discussed in Section 3, only
the AICMICx can converge on the right model.

In the rest of this section, some relevant examples of the
performed tests are reported. $ey have to be considered

absolutely representative of the vast majority of systematic
investigations performed.

In the first case discussed in the following, the model
generating the data consists of a power law multiplied by
a squashing term. $e importance and popularity of
power laws are difficult to overstate. Self-similarity can
result in many quantities presenting a power law trend.
Power laws are also particularly important for the in-
vestigation of scalings. On the other hand, power law
monomials can be too rigid and the multiplication by a
squashing factor can provide some additional flexibility.
$e function implemented to generate the synthetic data
is reported in the last row of Table 3. $e other rows of the
same table report the alternative models. $e synthetic
data generated with the reference model of Table 3 is
shown in Figure 3, together with the functions consti-
tuting the alternative models. Two different levels of
Gaussian additive noise are shown; corresponding to a
standard deviation of 15% and 30% of the synthetic data
averaged amplitude. As can be derived by simple in-
spection of the plots, AICMICx not only increases the
separation between the models, compared to the tradi-
tional AIC, but it also allows identifying the equation
generating the data. Indeed whereas, for some numbers of
entries and 30% of added noise, the AIC of the candidate
models can be lower than the reference one, the AICMICx
always identifies the model generating the data as the
best; this can be seen by noticing that the values of the
AICMICx differences, with respect to the best model, are
always positive.

$e discriminatory power of AICMICx is even higher in
the case of high noise. $is fact is exemplified by the fol-
lowing example, in which the generating model belongs to
the class of exponential functions.$e alternative models are
reported in Table 4, whose last row reports the equation used
to generate the data. In addition to Gaussian noise, with a
standard deviation of 30% and 60% of the synthetic data
averaged amplitude, some concentrated high noise has also
been added, according to the relations specified in the last
row of Table 2. $e better performance of AICMICx com-
pared to the traditional AIC can be easily recognised by

Table 2: $e main families of functions tested and the statistics of
the additive noise.

Families of functions Additive noise applied
Polynomials
y � a0x

b0 + a1x
b1 + anxbn

Uniform Noise
μ � ± 10 until ± 50

Power Laws
y � a0x

b0 , xb1 , xbn

Traditional Gaussian Noise
μ � 0 range of

σ � ± 10 until ± 50

Power Laws with Squashing term
y � a0x

b0 , xb1 , xb2 1
1+exp(−anxbn )

Multi-Gaussian Noise
μi � 0 range of

σi � ± 10 until ± 50∀i � 1..n

Exponentials
y � a0x

b0 exp(anxbn )

Asymmetric Noise
N1: μ1 � 0 and σ1 � 10;

N2: μ2 ≠ 0 and σ2 � 30; with
μ2 � 2(σ1 + σ2)/100, f(x)

Ratio between
N1,N2⇒0.75 until 0.95

Complexity 5



inspection of the plots in Figure 4. Indeed, the separation
between the alternative models and the right one is much
larger for the AICMICx than for the traditional AIC (the

reader should please consider also the different scales of the
plots in Figure 4).

6. Extension to Bayesian Model Selection

It is worth noting that the same modifications proposed for
the AIC can be applied also to the Bayesian information
criterion (BIC) [13]. BIC is based on Bayesian theory and has
been designed to maximize the posterior probability of a
model given the data. BIC is again a cost function and
therefore it is also an indicator to be minimised. $e BIC’s
most general form is

Table 3: Power law plus a squashing term.

# Models k
1 1.68104 sin(x1/x4.18

2 ) 4
2 3x2 exp(−x9.48

3 ) 4
3 17.87(x1/x0.45

2 )0.47 4
4 3.5x0.4

1 x0.8
2 3

ref 2x0.6
1 x1.1

2 1/1 + exp(−2x1.5
3 ) 6

$e value is shown in bold because it is the reference model.
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in black the synthetic data generated with the reference equation of Table 2. $e coloured curves are the various candidate models and in
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Table 4: Power law plus a squashing term.

# Models k
1 0.4x0.2exp(x) 4
2 0.8 exp(x) − 0.4x2) 5
3 3x2/1 + exp(−0.1x) 5
4 0.5x3 + 2x 4
ref 0.6x exp(x0.6) 4
$e value is shown in bold because it is the reference model.
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BIC � −2 ln(L) + k ln(n), (15)

where again L is the likelihood of the data given the
model, k is the number of estimated parameters in the
model, and n is the number of entries in the database. BIC

has the same structural form as the AIC and is affected by
the same difficulties in practical applications, in partic-
ular the challenges posed by the calculation of the
likelihood and the quantification of the model
complexity.
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Assumptions, similar to the ones leading to (4), allow
expressing the BIC criterion as follows:

BIC � n · ln σ2(ϵ)􏼐 􏼑 + k · ln(n). (16)

Even if the conceptual origins of BIC are different,
the proposed changes have the same effects, namely,
they improve BIC’s discriminatory power by including more
statistical information about the residuals and by better
quantifying the models’ complexity. In full analogy to (13),
the final upgraded version of the BIC criterion is

BICMICx � n ln[MSE(1 + MI)] + Cx ln(n). (17)

$e tests of the AIC have been performed also for the
BIC and they produce basically the same results. $e dis-
criminatory capability of BICMICx is clearly superior to the
original version of the indicator, as can be seen in the plots of
Appendix B. Of course, given the fact that BIC is based on
Bayesian statistics, the argument that the implemented
upgrades improve the coherence, with information-theo-
retic definitions and assumptions, cannot be made. On the
other hand, the fact that the proposed modifications im-
prove the quality also of a Bayesian type of selection criterion
increases the confidence in the validity of the ideas, which
have led to them.
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Figure 6: Plots of the mutual information between the models and the residuals for the models of Table 1 in Section 3.
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7. Conclusions

$e Akaike Information Criterion was conceived to mini-
mise the out-of-sample error and it is based on information
theory. Statistical models are indeed developed to represent
the process that generated the data, and the AIC estimates
the relative amount of information lost by a given model. On
this basis, it is assumed that the better a model, the less
information it loses. Unfortunately, the deployment of AIC
is problematic because its practical versions are affected by
significant limitations. Indeed the most widely used version
of AIC is valid under the assumptions that the data are
affected by Gaussian, zero-sum additive noise. $ese hy-
potheses have to be accepted because, in most practical
applications, it is often very difficult, if not impossible, to
compute the likelihood of the data given the model. If the
processes generating the data do not verify these assump-
tions, the traditional versions of the AIC can become poorly
effective or even misleading.

On the other hand, other information theoretic quan-
tities can be implemented to improve the discrimination
potential of the criterion. In particular, the mutual

information between the model estimates and the residuals
can help reward the goodness of fit. $e entropy in its turn
can be used to quantify the model complexity. With these
upgrades, the proposed version of the AIC has always proved
to have much better convergence properties than the tra-
ditional version in all respects, including robustness against
noise and zero-sum outliers. $is has occurred in all the
numerical tests performed, some of which consist of very
challenging selection tasks, given the fact that some can-
didate models assume values very similar to the right one in
the range covered by the data. $e proposed improvements
have an equally positive impact on the other criteria of the
AIC family, such as TIC and AICc [4]. $e extension of the
same concepts to the Bayesian information criterion proves
the soundness of the basic rationale behind the proposed
modifications. $e good performance in presence of non-
normal noise distributions is particularly encouraging be-
cause model assessment in such situations has not yet re-
ceived a lot of attention in the literature. Indeed, only a few
publications have addressed the fact that many existing
model selection criteria such as the BIC and Cp may not be
suitable for generalized linear model regression, in which the
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Figure 10: Top two plots: comparison of BIC and BICMICx for the case of a power law monomial multiplied by a squashing for 15% of
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conditional mean and variance of the response are depen-
dent [14]. Synergies with other formulations of the com-
plexity term would also be very interesting from the
methodological point of view [15].

Given the quite positive results obtained with synthetic
data, proving their better discriminatory capability, the
proposed new versions of the selection criteria are expected
to become useful in various fields. $ey are already being
deployed for the investigation of complex systems, ranging
from high-temperature plasmas [16–23] to remote sensing
of the atmosphere and radar [24–26]. Another promising
application seems to be in support of the regularization of
recent tomographic inversion methods [27–29]. In these
fields, Dimensional Analysis (DA) is a methodology widely
used to identify key variables based on physical dimensions.
Even if it has been granted some attention recently, in most
literature DA is treated as merely a preprocessing tool,
creating various statistical problems [30]. $e upgrades of
the criteria proposed in this work could hopefully help in
devising an appropriate statistical methodology that inte-
grates DA and model selection.

Appendix

A. Calculation of the AICMICx and BICMICx
Quantities of Section 3

$e Figures 5–Figure 9 in this Appendix document all the
quantities required to calculate AICMICx and BICMICx for the
didactic case of Section 3, involving polynomial and sinu-
soidal models.

B.PerformanceDetails of theBICandBICMICx
Quantities of Section 5

$is Appendix documents the performance of BICMICx for
the numerical cases described in Section 5: power laws
multiplied by a squashing term and exponentials. Figures 10
and 11 show the comparison of BIC and BICMICx.
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