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Abstract. We apply object-oriented software design patterns to develop code for scientific software involving sparse matrices.
Design patterns arise when multiple independent developments produce similar designs which converge onto a generic solution.
We demonstrate how to use design patterns to implement an interface for sparse matrix computations on NVIDIA GPUs starting
from PSBLAS, an existing sparse matrix library, and from existing sets of GPU kernels for sparse matrices. We also compare
the throughput of the PSBLAS sparse matrix—vector multiplication on two platforms exploiting the GPU with that obtained by
a CPU-only PSBLAS implementation. Our experiments exhibit encouraging results regarding the comparison between CPU and
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7750, and up to 10.15 on NVIDIA Tesla C2050 with respect to Intel Xeon X5650.
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Glossary derived type A user-defined Fortran type. Fortran

user-defined types are by default extensible.

aggregation A “has a” or “whole/part” relationship design pattern A common solution to a recurring

between classes wherein an instance of the class
representing the “whole” encapsulates (has) one
or more instances of the class representing the
part(s). Fortran supports aggregation via the
components of derived types.

class An extensible type that encapsulates data and
procedures for operating on those data. Fortran
supports classes via extensible derived types. An
instance of an extensible derived type can be de-
clared with the keyword “class” if it is a subpro-
gram dummy argument or if it has either allocat-
able or pointer attribute.

composition A special case of aggregation wherein
the lifetimes (from construction to destruction)
of the whole and part coincide.

LA preliminary version of this paper has been presented at the
HPSS workshop in the EuroPar 2011 conference [4].
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problem in software design.

dynamic polymorphism A run-time technology in

which the compiler resolves the invocation of a
type-bound procedure name into one of many
actual procedure names based on the dynamic
type of the object on which the procedure is in-
voked. The dynamic type may be either the type
named in the declaration of the object or any
type that extends the named type.

encapsulation Bundling data of various intrinsic or

programmer-defined types together with proce-
dures for operating on those data. Fortran sup-
ports encapsulation via the definition of derived-
type components and type-bound procedure.

information hiding Limiting access to data or pro-

cedures. Fortran supports information hiding
through the “private” attribute, the application of
which limits the accessibility of data and proce-
dures to code in the same module where the data
or procedures are defined.
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inheritance An special case of composition which a
child class supports procedure invocations as its
parent class either by delegating calls to the par-
ent’s implementations of those procedures or by
overriding the parents’ procedures. Inheritance
often referred to as an “is a” relationship or as
subclassing. OOP languages support inheritance
by automating the insertion of the parent into the
child and by automating the procedural delega-
tions. Fortran supports inheritance via type ex-
tension.

instantiate To construct an object as an instance of a
class. This typically involves allocating any re-
sources the object requires (e.g., memory) and
initializing the object’s data. A mechanism for
designating that one derived type extends an-
other and thereby inherits the components and
type-bound procedures of the latter type.

object-oriented design Schematic descriptions of
software structure and behavior stressing the re-
lationships between data structures and between
data structures and the procedures for operating
on the data structures.

object-oriented programming A computer program
construction philosophy wherein the program-
mer couples discrete packages of data with a set
of procedures for manipulating those data, em-
phasizing four basic principles: encapsulation,
information-hiding, polymorphism and inheri-
tance.

polymorphism The ability for one named class or one
named procedure to reference many different
classes or procedures at runtime.

software design A schematic description of the orga-
nization and behavior of a computer program.

static polymorphism A compile-time technology in
which the compiler resolves the invocation of a
generic procedure name into one of many actual
procedure names based on the type, kind, and
rank of the procedure’s arguments at the point of
invocation.

type extension A mechanism for designating that one
derived type extends another and thereby inher-
its the components and type-bound procedures
of the latter type.

warp A group of threads in a CUDA-enabled device,
treated as a unit by the scheduler.

Acronyms
2D Two-Dimensional.
ADSM Asymmetric Distributed Shared Mem-
ory.

COO COOrdinate.

CPU Central Processing Unit.

CSC Compressed Sparse Columns.

CSR Compressed Storage by Rows.

CUDA Compute Unified Device Architecture.

ECC Error-Correcting Code.

ELL ELLpack.

FLAME  the Formal Linear Algebra Methods
Environment.

GFLOPS  Giga (billions) of Floating-point Oper-

ations Per Second, or GigaFLOPS.

GPGPU General-Purpose Graphics Processing
Unit.

GPU Graphics Processing Unit.

JAD JAgged Diagonals.

LOC Lines Of Code.

00D Object-Oriented Design.

(0[0) Object-Oriented Programming.

PDE Partial Differential Equation.

PETSc the Portable Extensible Toolkit for Sci-
entific Computation.

PSBLAS  Parallel Sparse Basic Linear Algebra
Subroutines.

RAM Random-Access Memory.

SIMD Single-Instruction, Multiple-Data.

SIMT Single-Instruction, Multiple-Threads.

SpMV Sparse Matrix—Vector multiplication.

UML Unified Modeling Language.

1. Introduction

Computational scientists concern themselves chiefly
with producing science, even when a significant per-
centage of their time goes to engineering software. The
majority of professional software engineers, by con-
trast, concern themselves with non-scientific software.
In this paper, we demonstrate the fruitful results of
bringing these two fields together by applying a branch
of modern software engineering design to the devel-
opment of scientific programs. We cover how to han-
dle certain kinds of design requirements, and illustrate
what can be done by consciously applying certain de-
sign techniques. Specifically, we discuss the benefits
accrued by the application of the widely used software
engineering concept of design patterns [18] in the con-
text of scientific computation on sparse matrices. In the
Object-Oriented Design (OOD) of software, the term
“design pattern” denotes an accepted best practice in
the form of a common solution to a software design
problem that recurs in a given context.
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Sparse matrices and related computations are one of
the centerpieces of scientific computing: most math-
ematical models based on the discretization of Par-
tial Differential Equations (PDEs) require the so-
lution of linear systems with a coefficient matrix
that is large and sparse. An immense amount of
research has been devoted over the years to the
efficient implementation of sparse matrix computa-
tions on high performance computers. A number of
projects provide frameworks and libraries for con-
structing and using sparse (and dense) matrices and
vectors, as well as provide solver libraries for lin-
ear, nonlinear, time-dependent, and eigenvalue prob-
lems. Among these projects are Trilinos [23], the
Portable Extensible Toolkit for Scientific Computation
(PETSc) [2], the Formal Linear Algebra Methods En-
vironment (FLAME) [9] and Parallel Sparse Basic Lin-
ear Algebra Subroutines (PSBLAS) [12,17].

Trilinos from Sandia National Laboratories focuses
on the development of algorithms and enabling tech-
nologies within an object-oriented software framework
for the solution of large-scale, complex multi-physics
engineering and scientific problems. Trilinos is a col-
lection of packages and allows package developers to
focus only on things that are unique to their pack-
age. Many of the algorithms in PETSc and Trilinos
can be interchanged via abstract interfaces without im-
pacting the application code. Both projects employ
the Message Passing Interface (MPI) to exploit paral-
lel, distributed-memory computers, and both provide
sparse matrix solvers for linear, nonlinear and eigen-
value problems. They differ in implementation lan-
guage: PETSc is written in C, whereas Trilinos is
written in C++. Language differences ultimately in-
fluence the programming paradigm and architectural
style, with C supporting procedural programming and
C++ explicitly enabling an Object-Oriented Program-
ming (OOP) style that facilitates the adoption of the
architectural design patterns that comprise the focus of
the current paper.

The PSBLAS library supports parallel, sparse ap-
plications and facilitates the porting of complex com-
putations on multicomputers. PSBLAS includes rou-
tines for multiplying sparse matrices by dense matri-
ces, solving sparse triangular systems, and preprocess-
ing sparse matrices; the library is mostly implemented
in Fortran 95, with some additions of Fortran 77 and C.
A Fortran 2003 version is currently under develop-
ment, and forms the basis for the examples in this pa-
per because of the language support that we describe
below (see also [16]).

The Formal Linear Algebra Matrix Environment
(FLAME) project encompasses the 1ibflame library

for developing parallel, dense linear algebra codes;
a notation for expressing algorithms; a methodology
for systematic derivation of algorithms; application
programming interfaces (APIs) for representing the al-
gorithms in code; and tools for mechanical derivation,
implementation and analysis of algorithms and imple-
mentations.

Sparse matrices are widely used in scientific com-
putations; most physical problems modeled by PDEs
are solved via discretizations that transform the origi-
nal equations into a linear system and/or an eigenvalue
problem with a sparse coefficient matrix. The tradi-
tional definition of a sparse matrix, usually attributed
to Wilkinson [13], is that there are so many zeros that
it pays off to devise a representation that does not store
them explicitly. This means abandoning the language’s
native array type along with the underlying assumption
that one can use the default language rules to infer the
indices (3, ) associated with an element a;; from the
element’s position in memory and vice versa. Most vi-
able replacements for these assumptions involve stor-
ing the indices explicitly;> despite the resulting over-
head, in the vast majority of applications the scheme
pays off nicely due to the small number of nonzero el-
ements per row.

Variations on this concept abound in the COOrdinate
(COO), Compressed Storage by Rows (CSR), Com-
pressed Sparse Columns (CSC), ELLpack (ELL),
JAgged Diagonals (JAD), and other formats (a histori-
cal perspective of various sparse storage formats can be
found in [6,14]). Each storage format offers different
efficiencies with respect to the mathematical operator
or data transformation to be implemented (both typi-
cally map into an object “method”), and the underlying
platform (including the hardware architecture and the
compiler).

Most matrices coming from discretized PDEs are in-
deed sparse, because the nonzeros in each matrix row
will depend on the local topology of the discretization
stencil, involving a very small number of neighbors,
independently of the overall size and shape of the com-
putational domain.

This paper demonstrates how well-known software
engineering design patterns can be used to implement
an interface for sparse matrix computations on Graph-
ics Processing Units (GPUs) starting from an existing,
non-GPU-enabled library. Specifically, we focus on
some known design patterns (State, Mediator, Builder

2In some very specific cases, it is possible to have a reduced ex-
plicit storage of indices; an example is the storage by diagonals.
These storage formats are usually not generally applicable, but they
are easily supported in our framework.
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and Prototype), leveraging the newly available OOP
constructs of Fortran 2003 in scientific applications.

We present what we believe to be the first pub-
lished demonstration of these patterns in Fortran 2003,
and we discuss the application of these patterns to
sparse matrix computations within the PSBLAS li-
brary. We then discuss how to employ the considered
techniques to interface the existing PSBLAS library
with a plug-in in the Compute Unified Device Archi-
tecture (CUDA) C language that implements the com-
putational kernels on the NVIDIA GPUs. Our reported
experience demonstrates that the application of design
patterns facilitated a significant reduction in the devel-
opment effort in the presented context; we also present
some experimental performance results on different
NVIDIA platforms demonstrating the throughput im-
provement achieved by implementing the PSBLAS
interface for sparse matrix computations on GPUs.
The software described in this paper is available at
http://www.ce.uniroma2.it/psblas.

The PSBLAS library provides by default three stor-
age formats, namely COO, CSR and CSC, for real and
complex data, in both single and double precision. The
work described in this paper revolves around the ELG
storage format for the GPU, which is itself an exten-
sion of the ELLpack storage format, bringing the num-
ber to five; to these we also add interfaces to the CSR
and HYB storage format provided in the NVIDIA cuS-
PARSE [31] library, for a total of seven storage for-
mats. Note however that in this paper we are focusing
on the interfacing of the storage formats, not on a de-
tailed comparison of their relative efficiencies, which
will be examined in future work.

Extending numerical libraries to integrate GPUs is
a growing trend. The current paper describes the ex-
tension of PSBLAS to integrate GPUs. Likewise, the
other aforementioned numerical libraries and frame-
works have recently been extended to harness the GPU
power. For example, PETSc [29] recently added GPU
support. Specifically, PETSc recently introduced a new
subclass of the vector class. This new subclass per-
forms its operations on NVIDIA GPUs. PETSc also
now contains a new sparse-matrix subclass that per-
forms matrix—vector products on the GPU. Develop-
ers use these new subclasses transparently from exist-
ing PETSc application codes, whereas the implemen-
tation of linear algebra is done with the Thrust [32] and
CUSP [30] libraries from NVIDIA. The core idea driv-
ing the PETSc implementation is the separation of the
PETSc control logic from the computational kernels.

Trilinos is also on the path towards executing on
scalable, manycore systems by providing basic compu-

tational capabilities on NVIDIA GPUs. The new Trili-
nos linear algebra package Tpetra uses the Thrust [32]
and cuSPARSE [31] libraries from NVIDIA to support
execution on GPUs.

The FLAME project automatically generates a large
set of possible implementations. When a new architec-
ture becomes available, an appropriate implementation
is selected. For this purpose, FLAME establishes a sep-
aration of concerns between the code and the target ar-
chitecture by coding the dense linear algebra library at
a higher level of abstraction and leaving the computa-
tions and data movement in the hands of the runtime
system [25]. However, FLAME addresses the issue of
how to write the inner kernels on the new architec-
ture (e.g., the GPU), whereas the current paper focuses
more on creating a convenient and practical interface
that plugs the inner kernels into the main framework
after they have been developed.

The rest of the paper is organized as follows: Sec-
tion 2 describes several design patterns; Section 3 pro-
vides some background on GPUs and presents the in-
terfaces for sparse-matrix computations on GPUs start-
ing with the PSBLAS library and focusing on matrix—
vector multiplication with code examples; Section 4
demonstrates the utility and performance benefits ac-
crued by use of the presented patterns; and Section 5
concludes the paper and gives hints for future work.

2. Design patterns

Many professionals will confirm that, when con-
fronted with design patterns, their colleagues will of-
ten have a “recognition” moment in which they declare
they have been doing things “the right way” all along,
without knowing their fancy names.

OOD patterns have gained popularity in software
design since the 1995 publication of the highly influen-
tial text Design Patterns: Elements of Reusable Object-
Oriented Software [18] by Gamma et al., who are of-
ten referred to as the “Gang of Four” (GoF). Apply-
ing design patterns in a conscious way can be highly
beneficial. Benefits stemming from an appropriate use
of patterns include the improvement of the structure
of the software and the readability of the code, the re-
duction of the programming costs, resulting in appli-
cations with better extensibility, flexibility and main-
tainability. Evidence from the literature suggests that
these benefits have been reaped in the context of scien-
tific applications only in the past decade, e.g., [10,19,
27] and most of the works on design patterns for scien-
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tific software employed C++, Java or Fortran 95, the
last of which requires emulating object-oriented pro-
gramming (OOP) because of the lack of some object-
oriented features, such as inheritance and polymor-
phism. The recent surge of interest [28,34,35] is due in
part to the arrival of compilers that support the OOP
constructs in Fortran 2003, the only programming lan-
guage with an international standards body for whom
scientific programmers comprise the target audience.
With this paper, we discuss implementations of design
patterns that were first described in [18] and have been
not previously demonstrated in Fortran 2003; the re-
lated paper [16] also discusses the usage of design pat-
terns, but is focused on the software library itself.

Given the sizeable number of Fortran programs de-
veloped before widespread compiler support for For-
tran 2003, most Fortran programmers do not yet em-
ploy OOP. Likewise, most programmers who employ
OOP do not write in Fortran. For the reader unfamil-
iar with OOP in Fortran, we summarize here how the
main concepts of OOP map to Fortran language fea-
tures. OOP rests on four pillars: encapsulation, infor-
mation hiding, inheritance and polymorphism. Addi-
tionally, Fortran supports two types of data-structure
relationships that frequently arise in OOP: aggregation
and composition.

Fortran’s primary mechanism for data encapsulation
involves defining components inside derived types and
type-bound procedures that manipulate those compo-
nents. Components in turn may be of derived type or of
language-provided, intrinsic type. When a component
is of derived type, the relationship between the contain-
ing type and the contained type is aggregation. Com-
position is the specific case of aggregation in which
the aggregating object and the aggregated object have
coincident lifetimes: constructing an object of the ag-
gregating type implies simultaneously constructing the
corresponding aggregated object; likewise, destroying
an object of the aggregating type implies the immedi-
ate destruction of its aggregated component(s).

Inheritance is the specific case of aggregation in
which the aggregating object (the “child”) supports the
type-bound procedures defined in the aggregated ob-
ject (the “parent”). Fortran supports inheritance via the
language’s type extension mechanism. A Fortran com-
piler automatically places a component of the parent
type inside the child type. The compiler further facili-
tates invocations of the parents’ type-bound procedures
on the child by automatically delegating such invoca-
tions to the type-bound procedures defined in the par-
ent (unless the programmer overrides this automatic
behavior).

Type extension also implies one form of dynamic
polymorphism. When one invokes a type-bound proce-
dure on an object in Fortran, the compiler passes that
object to the procedure as the “passed-object dummy
argument” by default. All passed-object dummy argu-
ments must be declared with the keyword class in-
stead of the usual type. The class declaration al-
lows for the actual argument passed to be an object of
the declared type or of any type that extends the de-
clared type. Thus, the type of the declared object can
vary from one invocation to the next. In this article, we
treat the common OOP term “class” as synonymous
with “extensible derived type”. Most Fortran derived
types, including all derived types discussed in this ar-
ticle, are extensible. Other forms of dynamic polymor-
phism exist in the language as well.

For OOP purposes, the Fortran module feature pro-
vides the most important mechanism for hiding infor-
mation. A module determines the scope within which
an entity is visible to other parts of the program. Giv-
ing an entity the private attribute hides it from pro-
gram lines outside the module that contains the entity.
Giving an entity the public attribute makes it visible
to program lines outside the given module. Both data
and procedures can be declared public orprivate.

Lastly, many forms of static polymorphism in For-
tran predate Fortran 2003. For example, a programmer
may overload function names, enabling the compiler to
determine which specific function to invoke based on
the type, kind and rank of the actual arguments passed
at the point of invocation.

A final OOP concept plays a central role in many
design patterns: interfaces. Although Fortran lacks an
interface feature in the sense defined by OOP, a pro-
grammer can model interfaces via abstract classes. The
Fortran keyword abstract employed in a class def-
inition indicates that no instance of the class may be
constructed. However, the name of the abstract class
may be used in declaring an object whose dynamic
type may be any non-abstract class that extends the ab-
stract class. In that sense, the abstract class serves as
an interface to the non-abstract classes that extend the
abstract class. Program lines may therefore be written
that depend only on the interface (the abstract class)
with no direct reference to the implementation (the
non-abstract class).

Figure 1 demonstrates modern-Fortran OOP. In that
figure, a non-abstract, cartesian_vector class
extends an abstract vector class and aggregates a
units class. The vector class demonstrates one
more OOP principle: an abstract method, or “de-
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1 module vector_interface ! "Module” defines scope and ensures type safety of procedure arguments.

2 implicit none Prevent implicit typing of undeclared variables and procedures.

3 private Hide everything by default.

4 public :: vector ! Expose vector class and public type—bound procedures (methods).
5 type, abstract :: vector ! Abstract class

6 contains

7 procedure(length_interface), deferred :: length ! Deferred binding.

8 end type

9 abstract interface ! Specify requirements for child class implementations of deferred binding.

10 function length_interface (this) result(v)

11 import vector ! Bring the "vector” name into the abstract interface scope.

12 class(vector), intent(in) :: this ! The “intent(in)” attribute prevents modifying
13 end function ! the actual argument passed to the procedure.

14 end interface

15 end module

16 module cartesian_vector-class

17 use vector.interface , only : vector ! Import only the vector class and its public methods.
18 implicit none

19 private

20 public :: cartesian.vector
21 type units ! Non—abstract class.
22 integer :: MeterExponent,KilogramExponent ,SecondExponent

23 end type

24  type, extends(vector) :: cartesian.vector ! Child inherits from parent vector class.
25 private ! Hide child class components.

26 real , dimension(:), allocatable :: x ! Encapsulation .

27 type(units) :: mks ! Aggregation (composition).

28 contains

29 procedure :: length ! Method.

30 end type

31 interface cartesian_vector ! Generic name for referencing one or more procedures that
32 module procedure new_vector ! must be distinguishable by their arguments’ type, kind,

33 end interface and rank. (Static polymorphism.)

34 contains

35 real function length(this)

36 class(cartesian_vector), intent(in) :: this !/ Dynamic Polymorphism.
37 length = norm2(this%x)

38 end function

39 type(cartesian.vector) function new.vector(array ,m,k,s) ! Instantiate and return new object.

40 real , dimension(:), intent(in) :: array

41 integer , intent(in) :: m,k,s

42 new_vector%x = array ! Initialize new object’s components.
43 new._vector%mks%MeterExponent = m

44 new._vector%mks%KilogramExponent = k

45 new.vectorf%mks%SecondExponent = s

46 end function

47 end module

48 program main

49 use cartesian.vector.class , only : cartesian.vector ! Import class into main program scope.

50  implicit none

51  type(cartesian.vector) :: velocity ! Declare object class.

52 velocity = cartesian_vector ([3..4.,0.] ,m=1,k=0,s=—1) ! Instantiation.

53 print*,”Speed=",velocity%length () ! Invoke length method on cartesian_vector object (velocity).

54 end program

Fig. 1. Demonstration of OOP in modern Fortran.
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ferred binding” to use Fortran terminology (length
at line 7 in Fig. 1). A deferred binding lacks an im-
plementation but imposes a requirement that any non-
abstract child class must implement a procedure cor-
responding to a specified abstract interface
(length_interface at lines 9-14 in Fig. 1). The
comments in Fig. 1 mark the Fortran implementation
of various OOP terms. The Glossary at the beginning
of this paper summarizes several of the important con-
cepts and acronyms at the intersection of OOP and
modern Fortran. For a more in-depth presentation of
OOP in modern Fortran with more extensive coding
examples, see [35].

2.1. “State”

The State pattern in OOD is a behavioral pattern that
involves encapsulating an object’s state behind an in-
terface in order to facilitate varying the object’s type
at runtime. Figure 2 shows a UML class diagram of
the State pattern, including the class relationships and
the public methods. The methods described in an OOD
typically map to the type-bound procedures in Fortran
OOP.

Let us consider the problem of switching among dif-
ferent storage formats for a given object. Before the
dawn of OOP, a common solution involved defining
a data structure containing integer values that drive
the interpretation and dispatching of the various oper-

State — Context

4 aggregates

+ handle () + request ()

-

I syuowardun }

| |
ConcreteStateA ConcreteStateB

+ handle () + handle ()

Fig. 2. Unified Modeling Language (UML) class diagram for the
State pattern: classes (boxes) and relationships (connecting lines),
including abstract classes (bold italics) and relationship adornments
(line labels) with solid arrowheads indicating the relationship direc-
tion. Line endings indicate the relationship type: inheritance (open
triangle) and aggregation (open diamond). Class boxes include:
name (fop), attributes (middle) and methods (bottom). Leading signs
indicate visibility: public (+) or private (—). Non-bold italics de-
notes an abstract method. We omit private attributes.

ations on the data. This older route complicates soft-
ware maintenance by requiring the rewriting and re-
compiling of previously working code every time one
incorporates a new storage format. A more modern,
object-oriented strategy builds the dispatching infor-
mation into a type system, thereby enabling the com-
piler to perform the switching. However, most OOP
languages do not allow for a given object to change
its type dynamically (except for the less common, dy-
namically typed languages). This poses the dilemma of
how to reference the object and yet allow for the type
being referenced to vary.

The solution lies in adding a layer of indirection by
encapsulating the object inside another object serving
only as an interface that provides a handle to the ob-
ject in a given context. All code in the desired con-
text references the handle but never directly refer-
ences the actual object. This solution enables the com-
piler to delay until runtime the determination of the
actual object type (what Fortran calls the “dynamic
type”). The sample code in Fig. 3 demonstrates the
State pattern in a sparse-matrix context, wherein a
base_sparse_mat type plays the role of “State”
from Fig. 2 and spmat_type serves as the “Context”
also depicted in Fig. 2. The methods of the outer class
delegate all operations to the inner-class methods. The
inner class serves as the actual workhorse.

The State pattern allows easy handling of heteroge-
neous computing platforms: the application program
making use of the computational kernels will see a uni-
form outer data type, but the inner data type can be
easily adjusted according to the specific features of the
processing element that the current process is running
on.

The representation of an index map provides another
example wherein the State pattern offers a natural so-
lution. In parallel programming, we often have the fol-
lowing problem: There exists an index set scanning a
problem space, and this index set is partitioned among
multiple processors. Given this data distribution, we
need to answer questions that hinge upon relating the
“global” indices to their “local” counterparts:

(1) Which processor owns a certain global index, and
to what local index does it correspond?

(2) Which global index is the image of a certain local
one?

Answers to these questions depend on the strategy by
which the index space has been partitioned. Example
strategies include:
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module base_mod module spmat_mod
! The base class for STATE objects ! The class for CONTEXT objects
type :: base_sparse_mat use base_mod
! data components here type :: spmat.type
contains class(base.sparse.mat), allocatable :: a
procedure, pass(a) :: foo = base_foo contains
end type base_sparse_mat procedure, pass(a) :: foo => spmat_foo
contains end type spmat_type
subroutine base_foo(a) contains
class(base_sparse.mat) :: a subroutine spmat-foo(a)
! Actual implementation class (spmat_type) :: a
write(*,%) 'This.the FOOing.of.a._base_.sparse.matrix’ call a%a%foo ()
end subroutine base_foo end subroutine spmat_foo
end module base.mod end module spmat_mod
module coo.mod ! Simple example
! A derived class for STATE objects in COO program try
use base_mod use spmat_mod
type, extends(base_sparse.mat) :: coo.sparse.mat use coo.mod
integer :: nnz=0 !> Number of nonzeros. type(spmat_type) :: a
integer , allocatable :: ia(:) /> Row indices. ! Start with the base STATE
integer , allocatable :: ja(:) /> Column indices. allocate (a%a)
real , allocatable :: val(:) I> Coefficient values. call foobar(a)

! Switch to COO

contains deallocate (a%a)
procedure, pass(a) :: foo => coo.foo allocate (coo-sparse.mat :: a%a)
end type coo.sparse.mat call foobar(a)
contains
subroutine coo_foo(a) contains
class (coo.sparse.mat) :: a ! Workhorse
! Actual implementation subroutine foobar(a)
write(s*,%) 'This-the_-FOOing.of.a.coo_.sparse.matrix-with’ & type(spmat_type) :: a
& a%nnz,’.nonzero.entries’ call a%foo ()
end subroutine coo_foo end subroutine foobar
end module coo.mod end program try

Fig. 3. Sample code using the State pattern.

e serial/replicated distribution, where each process The usefulness of having an object with the ability
owns a full copy and no communication is needed; to switch among different types was recognized long

e block distribution, where each process owns a ago; as early as 1983 we find the following statement
subrange of the indices; in [1], Section 4.12:

e arbitrary assignment, where we have (at least
conceptually) a list specifying for each index its
OWner process.

Often a seemingly simple representation problem
for a set or mapping presents a difficult problem
of data structure choice. Picking one data structure
Encapsulating these variations under a uniform outer for the set makes certain operations easy, but others
shell allows for having a single entry point with no take too much time and it seems that th?,re is no one
need for conditional compilation in the case in which data structure that makes all the operations easy. In
the user is actually running in serial mode. The pat- that case the solgtlon often turns out to be the use
tern also allows for delegating to the internal setup the of two or more different structures for the same set
choice of the most appropriate representation in a given of Mapping.

environment (see Section 2.2). The State pattern handles such situations.
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Another advantage of the State pattern becomes ap-
parent in a message passing parallel context: the vari-
ous processes can have both a uniform outer type (the
Context) as well as an inner type (State) which needs
not be the same everywhere. Hence it becomes very
easy to handle a heterogeneous computing environ-
ment.

2.1.1. “Mediator”

To enable a runtime class switch, it is necessary to
devise a conversion strategy among all of the inner ob-
ject’s allowable dynamic types. The obvious strategy
of writing conversion methods for each possible pair
of dynamic data types scales poorly with growth in the
type system for two reasons:

(1) The number of conversion routines needed grows
as the square of the number of legal data types;

(2) A predefined set of converters cannot cope with
the addition of a new data type variation without
code modifications.

Another behavioral pattern, the Mediator pattern, alle-
viates these problems. Adapted to our particular situa-
tion, the pattern takes on the following meaning:

Route all conversions through a predefined storage
format for which all classes must provide fo and
from conversion methods.

This is equivalent to replacing a network having a fully
connected topology with one having a star topology:
the shortest path between any two nodes is now longer,
but the number of arcs only grows linearly. With this
scheme, the conversion between two different storage
formats can be done in two steps, as shown in the fol-
lowing code example:

subroutine cp_fmt_to_fmt(a,b)

class (base_sparse_mat), intent(in) :: a
class (base_sparse_mat), intent(out) :: b
type(coo_sparse_mat) irotmp

call a%copy_to (tmp)
call b%copy_from (tmp)
end subroutine cp_fmt_to_fmt

Note that the copy method cp_fmt_to_fmt does
not need to know the precise dynamic type of a and b,
and therefore can be used untouched, not even recom-
piled, as new derived (child) classes that extend the
base_sparse_mat base (parent) class.

In our production code this conversion is usually
reimplemented in all classes, i.e., the first argument a
has a more restricted type; this adds a bit of complexity,

but the resulting code base still grows linearly, while
allowing the developer to add “shortcuts” based on the
dynamic type of b for those cases where this is worth
the effort; one common such case is when b has the
same dynamic type as a, and in this situation it obvi-
ously pays off to use a direct copy of each component.

2.2. “Builder” and “Prototype”

This section concerns how certain design patterns
reduce the cost of maintaining and extending a soft-
ware collection.

The development of a software library for sparse-
matrix computations harbors considerable complex-
ity, requiring many tradeoffs among multiple factors.
Upon exerting substantial effort to properly design the
data structures and algorithms according to fit vari-
ous target applications and computing architectures,
the reusability and maintainability of the infrastructure
become obvious priorities. These priorities buttress the
investments against changes in space — ensuring the
ease-of-use by researchers working on different, exist-
ing platforms or applications — and in time — accom-
modating the evolution of the computing landscape.

It would thus be desirable to achieve the following
goals:

e Adding a new storage format to the existing
framework should require minimal effort;

e The existing software framework should require
no change in response to the new storage varia-
tions;

e Existing applications should require no substan-
tial changes in their source code.

Reviewing these requirements from a software de-
signer’s viewpoint, one sees that the State design pat-
tern plays a key role:

e The programmer who adds a new storage format
needs only to add an inner class interfacing to the
new codes;

e The existing solver software framework remains
essentially untouched because it only references
the outer container class;

e The application code needs only to link to the im-
plementation of the new class.

And yet, this is not a complete solution because it
leaves unaddressed a fundamental question: how does
the application instantiate a sparse matrix of a given
storage format?

One can easily discern the inadvisability of having
the application code instantiate directly an instance of
one storage class:
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(1) Direct instantiation in application code would vi-
olate the encapsulation principle by requiring the
user to deal directly with the class components;

(2) Hardwiring the often complex steps of assem-
bling a sparse matrix limits the code’s ability to
adapt to the many various use cases;

(3) In particular, it is impossible to have a “one-shot”
constructor for all but the most trivial cases.

One can interpret the strategy employed in PSBLAS in
terms of two design patterns: Builder and Prototype.

2.2.1. Builder

The Builder pattern in OOD is a creational pattern
that allows for an abstract specification of the steps re-
quired to construct an object. Figure 4 shows a UML
class diagram of the Builder pattern, including the
class relationships and the public methods of the ab-
stract parent. Child classes must provide concrete im-
plementations of these methods (not shown). The dia-
gram hides the private attributes.

The Builder pattern decouples the process of instan-
tiating a storage class from the knowledge of the pre-
cise storage details by specifying a set of steps to be
performed to build such an object relying on methods
that exchange data to/from the internal representation.
A proper design of the data exchange methods has the
additional advantage of allowing the build of the ma-
trix entries to be performed in any order is most con-
venient to the application. Considering for instance a
PDE discretized by finite differences, it is relatively
easy to build a whole row of the matrix at the same
time; by contrast, when employing finite elements, it
is natural to proceed element by element, but each el-
ement contributes to entries in multiple rows, so that

MatrixBuilder Director

—
4 aggregates

+ BuildMatrix ()

+ InitializeToDefault()
+ BuildupCoefficients()
+ AssembleStorage()

+ GetMatrix()

A

+ Construct ()

syuowdduur

ConcreteBuilder

Fig. 4. UML class diagram for the Builder pattern.

asking the user to generate a given row all at once is
almost the same as asking to build the whole matrix.
The strategy devised to build a sparse matrix is thus:

(1) Initialize the elements to some default values;

(2) Add sets of coefficients by calling buildup meth-
ods in a loop;

(3) Assemble the results and bring the object to the
desired final storage status.

Most sparse matrix libraries (including Trilinos,
PETSc and PSBLAS) are organized around these con-
cepts; this is an example of “convergent evolution” to-
wards a reasonable solution that is more or less forced
by the constraints of the application domain.

The application code exchanges data with the library
with simple lists of triples: row index, column index,
and coefficient. This allows for an arbitrary order in the
matrix build phase. During the buildup loop, the library
is free to store the incoming data in whatever internal
format is most convenient. PSBLAS uses COOrdinate
format for this phase, but we could change this default
choice without any impact on the application code.

The only point at which the ultimate, desired output
storage format must be enforced explicitly is during the
assembly step. In PSBLAS, this enforcement occurs at
the inner level by allocating a new object of the desired
class and converting to it from the existing inner ob-
ject. The conversion happens via the aforementioned
Mediator pattern.

A subtle point now arises: the assembly method is
part of the library framework; thus, we would like to
write it just once. However, implementing the Media-
tor necessitates instantiating an object of the target in-
ner class to convert the data from the existing storage.
Hence, the question arises: how can the library code
allocate a new object with a dynamic type known at
runtime but not at compile-time? The Prototype pattern
answers this question.

2.2.2. Prototype

The Prototype design pattern might also be defined
as “copy by example”: when a method needs to in-
stantiate an object whose dynamic type is unknown at
compile time, it does so by referring to another object
as a “source” or a “mold” for the desired object. The
class for the copied object must include a cloning or
molding method by which the desired copy can be ob-
tained: cloning creates a full copy of the source ob-
ject, whereas molding creates an empty copy with only
the correct dynamic type but none of the object’s com-
ponent values. This is essentially the idea of C++
“virtual constructors” (see Section 15.6.2 of [37]), for
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which the user must write a function that calls a con-
structor because actual constructors must know the
class of the object they construct.

What represents a pattern in one language might
be an intrinsic feature of another language. Whereas
the programmer explicitly writes molding methods in
C+-+, the Fortran allocate statement includes an
optional mo1d argument that can be used to copy only
the dynamic type of the argument into the object be-
ing allocated without copying any of the mold object’s
component data. This argument finds use when in-
stantiating what Fortran terms “polymorphic objects”,
which are objects that either have the allocatable
attribute, the pointer attribute, or are procedure
dummy arguments. The dynamic type of pointer or al-
locatable objects must be specified at the time of in-
stantiation by one of several forms of an allocate
statement. The following example demonstrates the
most common way:

class (base_sparse_mat), allocatable : mat_object
allocate (my_storage_format :: mat_object)

where my_storage_format is the name of the de-
sired dynamic type; however, the following alterna-
tives also suffice:

class (base_sparse_mat) :: sourcemat;
allocate (mat_object, source=sourcemat)

or

allocate (mat_object , mold=sourcemat)

where the source= variant clones sourcemat and
mold= copies only its dynamic type into mat_
object. The source or mold argument can be any
variable with a compatible dynamic type. Compatibil-
ity requires that the dynamic type either matches the
declared type (base_sparse_mat) or extends the
declared type. In particular, the source or mold argu-
ment can be a dummy argument passed by the applica-
tion code to the library. Fortran thus embeds the Pro-
totype pattern into the language via the source and
mold arguments to the allocate statement.

In summary, adding a new storage format involves
the following steps:

(1) Define a child class, e.g., new_inner_
matrix, from the parent class and implement
the required methods;

(2) Declare in the application code a variable with
type (new_inner_matrix);

(3) Pass this variable as the “mold” dummy argu-
ment to the assembly routine.

These steps necessitate neither modification nor re-
compilation of the library code.

3. Interfacing sparse-matrix computational
kernels on GPUs with PSBLAS

GPUs have recently gained widespread adoption in
the scientific computing community and are now rou-
tinely used to accelerate a broad range of science and
engineering applications, delivering dramatically im-
proved performance in many cases. They are used to
build the core of the most advanced supercomputers
(according to the June 2012 list of the TOP500 su-
percomputer sites,> three out of the ten top supercom-
puters are GPU-based). Furthermore, cloud-computing
providers are deploying clusters with multiple GPUs
per node and high-speed network interconnections
(e.g., Cluster GPU instances in Amazon EC2) in order
to make them a feasible option for HPC as a Service
(HPCaaS) [15].

In this section, we discuss how our design tech-
niques help in interfacing sparse-matrix computational
kernels on the GPU with the existing PSBLAS library.
Section 3.1 presents some background on the NVIDIA
GPU architecture and its CUDA programming model.
Section 3.2 deals with sparse-matrix computations on
GPUs; specifically, it presents how to plug a GPU-
friendly, sparse-matrix storage format and its associ-
ated computational kernels into PSBLAS using the de-
sign patterns discussed in Section 2. Section 3.3 ana-
lyzes how to employ the considered design patterns to
manage vectors in the GPU version of PSBLAS. Fi-
nally, Section 3.4 describes how the design patterns can
also be used to encapsulate the sparse matrix format
used in the NVIDIA’s cuSPARSE library.

We focus on the usage of design patterns for in-
terfacing new kernels and maintaining an existing
body of software in response to architectural and
programming-model changes. Hence, we do not ana-
lyze in-depth the kernels’ implementations on GPUs,
which is the subject of ongoing, related work to be pub-
lished elsewhere.

3http://www.topSOO.orgllists/ZO 12/06.
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3.1. Overview of NVIDIA GPU architecture and
programming model

The NVIDIA GPU architectural model is based on
a scalable array of multi-threaded, streaming multi-
processors, each composed of a fixed number of scalar
processors, a dual-issue instruction fetch unit, an on-
chip fast memory with a configurable partitioning of
shared memory, an L1 cache plus additional special-
function hardware. The computation is carried on by
threads grouped into blocks. More than one block can
execute on the same multiprocessor, and each block
executes concurrently. Each multiprocessor employs
a Single-Instruction, Multiple-Threads (SIMT) archi-
tecture akin to the Single-Instruction, Multiple-Data
(SIMD) architecture of traditional vector supercomput-
ers. The multiprocessor creates, schedules, and exe-
cutes threads in groups called warps; threads in a warp
start together at the same program address but can ex-
ecute their own instructions and are free to branch in-
dependently. A warp executes one common instruction
at a time; therefore maximum performance is achieved
when all threads in a warp follow the same path.

CUDA is the programming model provided by
NVIDIA for its GPUs; a CUDA program consists of a
host program that runs on the Central Processing Unit
(CPU) host, and a kernel program that executes on the
GPU device. The host program typically sets up the
data and transfers it to and from the GPU, while the
kernel program processes that data. The CUDA pro-
gramming environment specifies a set of facilities to
create, identify, and synchronize the various threads in-
volved in the computation.

A key component of CUDA is the GPU memory hi-
erarchy containing various levels that differ by speed,
size, and scope. The memory on the GPU includes a
global memory area in a shared address space accessi-
ble by the CPU and by all threads; a low-latency mem-
ory called the shared memory, which is local to each
multiprocessor; and a per-thread, private, local mem-
ory not directly available to the programmer.

3.2. Sparse matrix computations on a GPU

The considerable interest in General-Purpose
Graphics Processing Unit (GPGPU) computation
arises from the significant performance benefits pos-
sible. For example, the chapters of [24] present vari-
ous case studies that leverage the GPU power for many
computationally-intense applications belonging to di-
verse application domains, not just to graphics; the

work in [3,5,39] demonstrated how to achieve signifi-
cant percentages of peak single-precision and double-
precision throughput in dense linear algebra kernels. It
is thus natural that GPUs (and their SIMT architecture)
are considered for implementing sparse-matrix com-
putations. In particular, Sparse Matrix—Vector multi-
plication (SpMV) has been the subject of intense re-
search on every generation of high-performance com-
puting platforms because of its role in iterative meth-
ods for solving sparse, linear systems and eigenvalue
problems.

Sparse-matrix computations on GPUs introduce ad-
ditional challenges with respect to their dense counter-
parts because operations on them are typically much
less regular in their data access patterns; recent ef-
forts on sparse GPU codes include Refs [7,8,11] and
the CUDA Sparse Matrix library (cuSPARSE) [31] in-
cluded in CUDA 4.0 and 4.1. Here we will discuss
briefly only the basic issues involved because our fo-
cus is on encapsulation and interfacing rather than on
the inner kernels themselves.

Consider the matrix—vector multiplication y <
aAx + By, where A is large and sparse and x and
y are column vectors; we will need to devise a spe-
cific storage format for the matrix A to implement the
sparse-matrix computations of interest. Starting from
a GPU-friendly format we developed, we will concen-
trate on how to use the design patterns discussed in
Section 2 to plug the new format and the GPU support
code into PSBLAS.

Our GPU-friendly storage format, named ELL-G,
is a variation of the standard ELLpack (or ELL) for-
mat [22]: an M-by-N sparse matrix with at most K
nonzeros per row is stored as dense M-by-K arrays
val and ja holding the nonzero matrix values and the
corresponding column indices, respectively. Also, the
rows in val and ja with fewer than K nonzero ele-
ments are padded with zeros (or some other sentinel,
padding value). ELL thus fits a sparse matrix into a reg-
ular data structure, making it a good candidate for im-
plementing sparse-matrix operations on SIMT archi-
tectures. In the computational kernel, each row of the
sparse matrix is assigned to a thread that performs the
associated (sparse) dot product with the input vector x.
Threads are organized in warps, according to CUDA
programming guidelines, so that each multiprocessor
element on the GPU card handles a group of consecu-
tive rows of the sparse matrix. The storage of the ma-
trix data in a regular, Two-Dimensional (2D) array al-
lows each thread to compute easily where its data (i.e.,
the relevant matrix row) reside in memory given only
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the row index and the size of the 2D array. This con-
trasts with the CSR storage format mentioned in Sec-
tion 3.4, where finding the starting point of a given row
requires that a thread travels through the previous rows
in the data structure. The ELL format makes efficient
use of memory when the maximum number of nonze-
ros per row is close to the average. The usage of ELL
format and its variants on GPUs has been analyzed in,
for example, [38,39].

Our storage format ELL-G takes into account the
memory access patterns of the NVIDIA Tesla archi-
tecture [26], as well as other many-threads perfor-
mance optimization patterns of the CUDA program-
ming model. A critical issue in interfacing with exist-
ing codes is the need to move data from the main mem-
ory to the GPU Random-Access Memory (RAM) and
vice versa. Unfortunately, data movement is very slow
compared to the high bandwidth internal to the GPU,
and this is one of the major challenges in GPU pro-
gramming [21]. In particular, having the matrix data
moved from main memory to the device memory each
time a matrix—vector product is performed would to-
tally destroy any computational advantage of the GPU
platform. Therefore we have to prearrange the matrix
data to reside on the GPU. To add support for NVIDIA
GPUs in PSBLAS, we had to derive from ELL a new
GPU class requiring the following modifications:

e At assembly time, copy the matrix to the GPU
memorys;

e At matrix—vector multiplication time, invoke the
code on the GPU side;

e At deallocation time, release memory on both the
host and device sides.

The class interface for ELL-G is defined as follows (in
the code, we refer to ELL-G as elg because PSBLAS
matrix format names are 3 characters long):

type, extends(base_sparse_mat)
!

! ITPACK/ELL format, extended with IRN and IDIAG.
!

ell_sparse_mat

integer , allocatable
real , allocatable
contains

irn(:), ja(:,:), idiag(:)
val (:,:)

end type ell_sparse_mat

type, extends(ell_sparse_mat) :: elg_sparse_mat
type(c_ptr) :: deviceMat = c_null_ptr
contains

end type elg_sparse_mat

where the Fortran standard provides the c_ptr type to
facilitate handling a C-language pointer in the form of
a native Fortran derived type, and where Fortran also
provides the constant c_null_ptr for assigning the
companion C compiler’snull value toa c_ptr. For-
tran’s C-interoperability feature set requires that com-
pilers make c_ptr and c_null_ptr available via
Fortran’s intrinsic i so_c_binding module. Finally,
the irn component of ell_sparse_mat contains
the actual row size — that is the number of relevant en-
tries in that row (the ELLPACK format has padding) —
and the 1diag component contains the position of the
entry holding each row’s diagonal element.

When converting from the COO format supported
by PSBLAS to the new ELL-G format it would be pos-
sible in principle to reuse the parent type conversion
and then simply copy the relevant data to the GPU.
However, some adjustments may be necessary to the
leading dimensions of the val and ja components,
padding to a size that agrees with the specific features
of the available GPU card. Once the ELL (parent) data
structure is ready, the ELL-G (child) data structure can
invoke its to_gpu method that clones the host mem-
ory layout into the device memory. The implementa-
tion of the to_gpu method involves the invocation of
appropriate library routines in the CUDA environment,
e.g., cudaMalloc (), as well as the computation of
appropriate parameters for the allocation sizes; these
routines, as well as the computational routines, are
written in the CUDA extension of the C language and
are accessed via modern Fortran’s C-interoperability
features.

An elg sparse matrix has an associated control flag
that signals which of the memory copies (host, device
or both) contains an updated version of the matrix data.
This scheme is also used for dense vectors as Sec-
tion 3.3 discusses.

3.3. Vectors on the GPU

Vectors in the library follow the same State design
pattern as matrices. At first sight, this would seem
wasteful: after all, the Fortran language already pro-
vides very good native vector support, in particular
allocatable arrays that are very well-protected
against memory leaks.

The additional layer of indirection provided by State
is nonetheless quite useful: it provides a uniform in-
terface to memory that has been allocated elsewhere,
outside of the control of the language runtime envi-
ronment. The GPU device memory is an example of
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such memory areas:* the memory management is per-
formed by specialized routines in the CUDA runtime
library, and the areas are interfaced via pointers han-
dled through the iso_c_binding facility.

The vectors in the GPU version of PSBLAS have a
dual-allocation scheme similar to that of the sparse ma-
trices; a flag keeps track of whether it is the host copy
or the GPU copy that has been most recently updated.

Keeping track of the updates to vector entries is es-
sential: we want to perform the computations on the
GPU, but we cannot afford the time needed to move
data between the main memory and the GPU mem-
ory because the bandwidth of the interconnection bus
would become the main bottleneck of the computation.
Thus, each and every computational routine in the li-
brary is built according to the following principles:

o If the data type being handled is GPU-enabled,
make sure that its GPU copy is up to date, perform
any arithmetic operation on the GPU, and if the
vector has been altered as a result, mark the main-
memory copy as outdated.

e The main-memory copy is never updated unless
this is requested by the user either

— explicitly by invoking a synchronization
method;

— implicitly by invoking a method that involves
other data items that are not GPU-enabled, e.g.,
by assignment to a normal array.

In this way, data items are put on the GPU memory “on
demand” and remain there as long as “normal” com-
putations are carried out. As an example, the following
call to a matrix—vector product

call psb_spmm(alpha,a,x,beta,y,desc_a,info)

will transparently and automatically be performed on
the GPU whenever all three data inputs a, x and y are
GPU-enabled. If a program makes many such calls se-
quentially, then

e The first kernel invocation will find the data in
main memory, and will copy it to the GPU mem-
ory, thus incurring a significant overhead; the re-
sult is however not copied back, and therefore:

4At least when the compiler does not directly address the GPU
memory as would be possible with the implementation of the
OpenACC standard but is not widely available in compilers at the
time of this writing.

e Subsequent kernel invocations involving the same
vector will find the data on the GPU side so that
they will run at full speed.

For all invocations after the first the only data that will
have to be transferred to/from the main memory will
be the scalars alpha and beta, and the return code
info.

To manage the data transfers between the main
memory and the GPU memory, an alternative would
have been to use an automatic CPU-GPU memory
management model such as the Asymmetric Dis-
tributed Shared Memory (ADSM) model for hetero-
geneous computing architectures proposed in [20].
ADSM allows a CPU direct access to objects in the
GPU physical memory and provides two types of
memory updates that determine when to move data
on and off the GPU. However, ADSM does not allow
the GPU access to main memory. Therefore, although
our solution is PSBLAS-specific, we believe it pro-
vides an efficient manner to transfer data between the
main memory and the GPU memory, avoiding redun-
dant transfers that could be introduced by proposals to
automate the CPU-GPU memory management [33].

We conclude this section by adding some statistics
about the amount of code needed to achieve our so-
lution. The basic framework for the State pattern for
double-precision matrices totals 5238 Lines Of Code
(LOC), of which 661 are shared with single-precision
and complex variants. The total line count includes the
base sparse-matrix type definition, the container class,
and all the shared methods. To these we have to add the
support on the CPU side for the sparse matrix formats
themselves. The corresponding total for the ELLPACK
format is 5816 LOC. The code for the ELL-G inner-
most kernels in our in-house GPU library totals just
230 LOC, but this is purely for the matrix—vector prod-
uct kernel: a C/C++ code would need to provide some
infrastructure around it.

This paper chiefly concerns the incremental new
code needed to bind CUDA into the main framework,
given all the other pieces: on the Fortran side, the elg
format is a class that extends e11. To make elg fully
functional, we need about 2300 LOC. Moreover, many
of the needed files can be cloned and adapted from the
files for the CPU-side e11 format.

3.4. Interfacing to the NVIDIA cuSPARSE library

The techniques described in the previous sections
can also be employed to encapsulate the format used in
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the cuSPARSE library [31], which provides a collec-
tion of basic linear algebra subroutines used for sparse
matrices. One of the cuSPARSE formats for sparse ma-
trices released with CUDA 4.0 is a CSR representa-
tion.> Because CSR is one of the default data formats
of the PSBLAS library, interfacing PSBLAS with cuS-
PARSE can be achieved in a very simple fashion:

e Extend the CSR storage format by adding a copy
of the matrix data on the GPU memory;

e Override the matrix—vector product methods to
invoke the cuSPARSE library routines.

The interface itself is thus straightforward and com-
prises 1030 LOC, many lines of which were “cloned”
and extended from the basic CSR implementation,
which itself needs 2923 LOC in addition to the base
classes. A complete total would include CUDA ker-
nel lines, but NVIDIA does not release the corre-
sponding code publicly. A similar exercise for the
CuSPARSE 4.1 hybrid (HYB) format yields a Fortran
interface comprising about 1030 LOC.

4. Performance results

This section presents performance results gathered
on our GPU-enabled software. We remind the reader
that this papers central focus falls on achieving code
reusability inside an existing framework while keeping
any related performance penalty as small as possible.
Such an effort differs in aim from attempts to obtain
the absolute best performance for our kernels on the
GPU.

4.1. Human performance results

After writing the CUDA kernel code, embedding the
new ELL-G format in the existing PSBLAS library re-
quired a very limited development effort on the or-
der of a couple of days, including debugging. Indeed,
a simplified version of the matrix class has been used
as the basis for a programming exercise in tutorials
on OOP in modern Fortran that two of the authors
have offered at various institutions. In that exercise,
one hour of a student’s work suffices for writing the
minimum code necessary to compute a single matrix—
vector product and to convert the COO storage format
to the ever-useful “rank-2 array” format.

5Plus some additional data only used for triangular matrices.

The overall software design helps keep the in-class
exercise short by encouraging the reuse of existing im-
plementations as templates for deriving new data struc-
tures. If the GPU-side code is a variation on an exist-
ing storage format, students can implement it starting
from the CPU version, which in turn can reuse the ba-
sic storage formats PSBLAS provides by default.

In the same vein, interfacing with the CUDA ver-
sion 4.0 programming environment took only a few
hours. As explained in Section 3.4, this was facilitated
by the cuSPARSE format being essentially the same
as the already existing CSR, making it feasible to ex-
tend the existing class and reuse most of its supporting
code, overriding only the computational kernels.

4.2. Machine performance results

Our computational experiments were run on two
NVIDIA platforms:

e Platform 1: a GeForce GTX 285, with a maxi-
mum throughput of 94.8 Giga (billions) of
Floating-point Operations Per Second, or Gi-
gaFLOPS (GFLOPS) in double precision, at-
tached to an AMD Athlon 7750 Dual-Core CPU
running at 2.7 GHz;

o Platform 2: a Tesla C2050, with a maximum
throughput of 515 GFLOPS in double precision,
attached to an Intel Xeon X5650 CPU.

We report the measured computation rates in Giga (bil-
lions) of Floating-point Operations Per Second, or Gi-
gaFLOPS (GFLOPS), assuming the number of arith-
metic operations per matrix—vector product is to be
approximately 2Ny, ., given NV, nonzero matrix ele-
ments,® and the computation rate is averaged over mul-
tiple runs.

For the experiments, we used a collection of sparse
matrices arising from a three-dimensional convection-
diffusion PDE discretized with centered finite differ-
ences on the unit cube. This scheme gives rise to a
matrix with at most 7 nonzero elements per row: the
matrix size is expressed in terms of the length of the
cube edge, so that the case pdel0 corresponds to a
1000 x 1000 matrix. Table 1 summarizes the matrix
characteristics used in our experiments along with the
matrix size (/N rows) and the number of nonzero ele-
ments (V). For the experiments with the SpMV ker-

%Some storage formats may employ padding with zeros and thus
would perform more floating-point operations than strictly neces-
sary.
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Table 1

Sparse matrices used in the performance experiments
Matrix name N Nn2z

pde05 125 725
pdel0 1000 6400
pde20 8000 53,600
pde30 27,000 183,600
pde40 64,000 438,400
pde50 125,000 860,000
pde60 216,000 1,490,400
pde80 512,000 3,545,600
pde90 729,000 5,054,400
pde100 1,000,000 6,940,000

nel, we set 5 = 0 so thaty <— Az. We report the results
only for double-precision calculations.

Our experiments compare the throughput of SpMV
in PSBLAS exploiting the GPU using our ELL-G stor-
age format with the performance obtained by the stan-
dard PSBLAS library on CPU, considering Platforms 1
and 2. The employed CPUs have multiple cores, but we
only ran in serial mode for the purposes of this com-
parison.

Figure 5 shows the performance improvement on
Platform 1 implementing the PSBLAS interface for
sparse-matrix computations on GPUs when we include
the overhead of transferring the vector data from the
main memory to the GPU device memory. As ex-
plained in Section 3.3, this would correspond to the
first invocation in a sequence, when the vector data is
flagged to indicate that the valid copy is in the host
memory, and thus it constitutes the worst case scenario.
Even in this worst case, the GTX 285 vs AMD matrix—
vector multiplication gives a speedup of up to 3. For
small matrices, the code runs faster on the CPU than
on the GPU due to multiple factors:

e The GPU architecture and programming model
requires a sufficient number of threads and a suf-
ficient workload to fully exploit its hardware ca-
pabilities;

o The overhead of data transfers between main
memory and GPU is more noticeable;

e The CPU computations benefit from the cache
memory, whereas the GPU (at least, the GTX
285) does not show a comparably large effect.

Optimizing for cache reuse on the CPU would also be
interesting but beyond the scope of this paper.

Figure 6 reports the computation rates for the same
operations and data as in Fig. 5 but with the vectors al-
ready in the GPU memory; this is a more realistic situ-

DSpMV (Double precision SParse Matrix-Vector)
Comparison on Platform 1

GFLOPS
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) J Q. ] 0 .
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Sparse matrix
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Fig. 5. Throughput comparison of PSBLAS on GPU (including vec-
tor copy-in overhead) and on CPU (double precision) for Platform 1.
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Fig. 6. Throughput of the SpMV kernel on GPU (without vector
copy-in overhead) for Platform 1.

ation, since in the course of the solution of a linear sys-
tem by an iterative solver, the vector data for all kernel
invocations after the first one is already contained in
the device memory, and there are typically many itera-
tions of the algorithm’s main loop.

Arranging the vectors to be loaded on the GPU de-
vice memory is possible because the vectors undergo
the same build cycle as the matrices; therefore, by em-
ploying the State pattern for vectors, we can have the
data loaded on the device side “on demand”. Accord-
ing to the discussion in Section 3.3, during normal op-
erations, all arithmetic operations are executed on the
GPU, and the updated data is left there; during the ex-
ecution of an iterative solution method, we have mul-
tiple iterations combining matrix—vector products with
dot products and other vector operations. The high-
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Table 2

Throughput and speedup on Platform 1 (AMD
Athlon 7750, GeForce GTX 285)

Matrix name GFLOPS Speedup
CPU GPU
pde05 0414 0.055 0.13
pdel0 0.723 0.481 0.66
pde20 0.794 3.61 4.54
pde30 0.545 7.784 14.28
pde40 0.439  10.380 23.63
pde50 0436 12452 28.54
pde60 0444  13.842 31.18
pde80 0454  15.250 33.63
pde90 0.449  15.354 34.20
pde100 0.443 15.664 35.35

level solver code looks exactly the same for GPU and
CPU execution, but, during the solution process, only
scalars are transferred between the CPU and the GPU;
the solution vector itself is recovered and copied to
host memory only upon exiting the iterative process.

Comparing these results with those in Fig. 5, we can
see just how heavy the data transfer overhead is; hav-
ing the vectors on the GPU enables a performance level
that is essentially identical to that of the inner kernels.
We still observe relatively low performance at small
matrix sizes, but the ratio to the CPU is much more
favourable. Table 2 reports the throughput measured in
GFLOPS and the speedup we achieved on Platform 1
when the vectors are prearranged in the GPU mem-
ory (the throughput data coincide with those in Figs 5
and 6 for the CPU and GPU cases, respectively). The
speedup of the GeForce GTX 285 with respect to the
AMD Athlon 7750 ranges from 0.13 for the smallest
matrix size to 35.35 for the largest matrix size.

Table 3 compares our code’s performance with the
measurements obtained by writing a simple C test pro-
gram that calls directly into the CUDA kernels. Two
observations become apparent:

(1) The Fortran performance rates differ slightly
from Table 2 as they are purposedly obtained by a
different test run, showing the unavoidable noise
introduced by elapsed time measurements.

(2) Although the Fortran layer adds a performance
penalty, as shown in the measurements at small
sizes, this penalty quickly reduces to noise level
for medium to large sizes, the cases for which one
would be more likely to use a GPU.

Figures 7 and 8 show the performance improvement
in terms of computation rates that we obtain on Plat-

Table 3

Throughput and speedup on Platform 1 (AMD
Athlon 7750, GeForce GTX 285)

Matrix name GFLOPS
Fortran C/CUDA

pde05 0.05 0.06
pdel0 0.46 0.52
pde20 3.51 3.88
pde30 7.74 7.99
pde40 10.29 10.58
pdeS0 12.44 12.60
pde60 13.86 13.79
pde80 15.23 15.03
pde90 15.33 15.30
pde100 15.64 15.46
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Comparison on Platform 2
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Fig. 7. Throughput comparison of PSBLAS on GPU (including vec-
tor copy-in overhead) and on CPU (double precision) for Platform 2.
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Fig. 8. Throughput of the SpMV kernel on GPU (without vec-
tor copy-in overhead) for Platform 2 when Error-Correcting Code
(ECC) is either turned on or off.
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Table 4

Throughput and speedup on Platform 2 (Intel Xeon
CPU X5650, Tesla C2050) with ECC turned on

Matrix name GFLOPS Speedup
CPU GPU
pde05 0.561 0.038 0.07
pdel0 1.022 0.329 0.32
pdel6 1.137 1.412 1.24
pde20 1.165 2.550 2.19
pde30 1.182 5.341 4.52
pde40 1.120 7.439 6.64
pde50 1.028 8.753 8.52
pde60 1.037 9.464 9.13
pde80 1.036 10.238 9.88
pde90 1.015 10.277 10.13
pde100 1.021 10.365 10.15

form 2. We observe that the performance of the GPU
card on Platform 2 suffers considerably from having
ECC turned on. ECC can fix single-bit errors and re-
port double-bit errors. ECC protection on the mem-
ory was not available on the older GPU card of Plat-
form 1. With ECC turned on, the GPU’s available user
memory is reduced by 12.5% because ECC bits oc-
cupy a portion of the dedicated memory (e.g., 3 GB to-
tal memory yields 2.625 GB of user-available memory
on the Tesla C2050). To test the hypothesis of perfor-
mance degradation due to ECC, we run the same ex-
periments having previously disabled the ECC support
on the C2050 card (this can be achieved through the
nvidia-smi program but a reboot is needed to get
the setting active). We observe that the speedup of the
Tesla C2050 card with ECC off compared to that with
ECC on ranges from 1.94 for the smallest matrix size
to 1.28 for the largest matrix size.

Table 4 reports the throughput measured in GFLOPS
and the speedup we achieved on Platform 2, always
when the vectors are prearranged in the GPU memory.
The speedup of the Tesla C2050 GPU (having ECC
turned on, which is the default card configuration) with
respect to the Intel Xeon CPU ranges from 0.07 for the
smallest matrix size to 10.15 for the largest matrix size.

5. Conclusions

In this paper, we have discussed how several object-
oriented software design patterns benefit sparse-matrix
computation. We demonstrated how to use these pat-
terns in writing interfaces for sparse-matrix computa-
tions on GPUs starting from the existing, non-GPU-

enabled PSBLAS library [16]. Our experience shows
that this solution provides flexibility and maintainabil-
ity and facilitates the exploitation of GPU computa-
tion with resultant performance benefits. In our ongo-
ing work, we recently added to PSBLAS support for
the hybrid storage format of the cuSPARSE library.
Thanks to the design patterns described in this paper,
we have been able to obtain performance results for
that storage format in less than one working day.

The ideas discussed in this paper were tested in
PSBLAS. Future work will extend the discussed tech-
niques to a multilevel preconditioner package that
builds atop PSBLAS [12]. Additionally, we plan in-
terfaces for ForTrilinos [36], which provides a set of
standards-conforming, portable Fortran interfaces to
Trilinos packages.
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