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Fundamental questions posed in classical genetics since early 20th century are still fundamental
in today post genomic age. What has changed is the availability of huge amount of molecular
genetics information on a broad spectrum of species and a more powerful and rich methodological
approach, particularly that one based on statistical mechanics and dynamical system theory which
is providing unprecedented prediction power. Here we focus on the behavior of basic life forms such
as bacteria and viruses which have small genomes and short generation times. We show that central
issues of the evolutionary theory, i.e. how genotype, phenotype and fitness are related, the effect of
positive and negative natural selection, the specie formation could be described by simple models
which allow predictions and validation using experimental data.

Keywords: Fitness; natural selection; mutation; quasi species.

1. Introduction

Quantitative methods have been applied to evolutionary biology for many years; statistical
physics is increasingly applied to what is nowadays defined soft matter which includes
complex ensembles such as colloids, membranes and biomolecules such as DNA and proteins.
It seems reasonable to extend statistical physics even further to genes and proteins.

Biologists have introduced, using intuitive descriptions, important concepts such as phe-
notype, genotype and fitness which are fundamental to the understanding of heredity, devel-
opment of organisms and species formation. The genotype of an organism is the class to
which that organism belongs as determined by the DNA sequence passed to the organism
by its parent(s). The phenotype of an organism is the class to which that organism belongs
as determined by the behavioral characteristics of the organism, for example its metabolic
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activities and its pattern of shape, development and movement. Natural selection acts on
phenotypes; the propensity of an individual to survive and produce viable offsprings is
termed fitness, and we assume that it is proportional to the average number of offsprings
reaching the reproductive age for a given phenotype, and for a given time interval (one
generation).

It is noteworthy that the spreading of infectious diseases, caused by bacteria, viruses
or other pathogens, could be approached from an ecological perspective. Following this
ecological framework, viruses and bacteria represent the most interesting laboratory of
evolution to study the relationship between the genotype (molecular sequences which are
affected by mutations) and phenotype (molecular structure, affected by selection). Viruses
and bacteria have general very compact genomes, large population sizes, rapid reproductive
rates, and, above all, high rates of mutation and recombination, so we do not need to wait
very long time before observing the effects of selection pressures.

For simplicity, the phenotype of bacteria could be thought as an input-output devices
where the “computational unit” is given by complex genetic and biochemical regulatory
networks, i.e., the set of relationships that involve genes (which are portions of genotype)
and proteins regulative mechanisms. The main purpose of such network is to process a
subset of possible inputs and produce all outputs in the required ratios that, for instance,
form the biomass of the cell.

Following a similar synthesis approach, the phenotype of viruses could be thought as
generated by RNA or DNA strings which fold in space in a 3D structure. Of course these
representations may not describe all possible evo-devo (evolution-development) dynamics
in populating the phenotype space and particularly they do not describe completely the
discontinuities of the relationship between genotype and phenotype mapping. Although we
focus on bacteria and viruses, the complexity of sexual reproduction, which is characteristic
of higher eukaryotes, could in principle be taken into account by simulating its effects on
genotypes space, i.e., by considering the arising of large jumps (differences) in genotype
space due to the recombination (which has a sort of combinatorial law) of the parental
genotypes to generate the offspring genotypes.

The genetic and metabolic networks representation of bacteria and eukaryotes suggest
the presence of epistasis, i.e., the nonlinear (nonadditive) interactions between genes. Note
that the epistasis of genes affecting important fitness-related functions such as those involved
in reproduction and survival, largely influences the evolutionary predictions. Recent results
show that relatively simple fitness landscape models may be sufficient to quantitatively
capture the complex nature of gene interactions and could represent a valid alternative for
the more complex and specific metabolic network models.

Following this result, in this work we will develop models at the level of fitness landscape
disregarding the regulatory networks, i.e., considering one gene at each time and the bulk
of its relationship as a constant environment [1].

In the next section we introduce the necessary biology and the related mathematical
description which will be used in the rest of the paper. In particular we introduce a measure
of distance between genomes, and a mathematical description of genotype changes due to
mutation and selection operators. We extend the discussion to include positive selection
at different DNA sites as a meaningful statistical estimator of the mutation-selection cou-
pled dynamics. We then show that the concept of fitness landscape naturally emerges from

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Il

lin
oi

s 
C

hi
ca

go
] 

at
 1

0:
58

 1
3 

N
ov

em
be

r 
20

14
 



August 27, 2011 11:25 WSPC/1402-9251 259-JNMP S1402925111001532

How the Mutational-Selection Interplay Organizes the Fitness Landscape 267

modeling evolution as a reaction-diffusion process. Section 6 makes use of Hiv biology to
describe interesting quasi species theoretical issues such error threshold and Muller ratchet.
Finally we highlight how the genomic available data could be used to fit even “light” statis-
tical mechanics models and hopefully could result important in the analysis of pathogenic
viruses and bacteria.

2. Modeling Blocks

From a mathematical point of view, the problem of modeling the evolution of haploid indi-
viduals is the following. Let us suppose that we can represent the genome g of an individual
as a string of symbols. For simplicity, we use fixed-length strings of L Boolean symbols
g = (g1, . . . , gL), gi ∈ {0, 1} or gi ∈ {−1, 1} All possible genomes can be mapped to the cor-
ners of a L-dimensional hypercube, see Fig. 1(a). Mutations corresponds to displacements
on this hypercube.

Individuals are selected according to their phenotype u, which is a set of quantitative
characters with which the individual interacts (and affects) the environment. A simplifi-
cation that ease the treatment of the subject consists in assuming that the phenotype is
just a function of the genotype: u = u(g). This correspondence is generally quite complex,
as indicated in Fig. 1(b). Each “gene” affects many phenotypic traits, and the genes that
contribute to a phenotypic trait in general act in a nonlinear way. The phenotype of an
individual can be thought as a relatively stable state of the metabolic network. For small
variations around the stable state corresponding to an individual, we can assume that the
variation of a phenotypic trait depends linearly by the variation of the activity level of
genes. In this case, one can assume to perform a base change from genes to phenotypic
traits and consider the evolution on the phenotypic space.

The survival and reproductive capacity of an individual depends on its phenotype. We
introduce the fitness function A which gives the probability that a given phenotype is able
to give rise to descendants. This function depends on the individual phenotype u, but also
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Fig. 1. (a) The two-dimensional projection of the Boolean hypercube for L = 4. (b) A schematic view of a
metabolic network.
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on the distribution of other phenotypes p(u) in the environment (say: presence of preys,
predators, parasites, etc.). Since A is essentially a probability, independent factors should
affect it in a multiplicative way. So, it is convenient to write A = exp(H) (H is sometimes
called the log-fitness), where H depends linearly on independent (nonepistatic) phenotypic
traits.

A minimum example of the mapping between genotype and phenotype is given by a
gene and the protein it codes; the phenotype is embedded in the correct folding of the
amino acid chain into a 3-dimensional shape and its correct interactions with other proteins
to form a metabolic network. Most of random mutations are simply unviable, so we can
assume that most of genotypic space is “unobservable”, in the sense that it corresponds to
unviable phenotypes.

The evolution process occurs on the “backbone” that correspond to viable phenotypes,
under the fitness selection which depends on the present population. In the case in which
the rest of the population can be considered constant, the evolution from an individual’s
point of view corresponds to a stochastic walk (due to mutations) driven by selection,
which is now just a function of the phenotype (or of the genotype, given our assumptions).
The picture resembles that of a stochastic motion on a potential, which is termed “fitness
landscape”. Another view of the evolution is that of a reaction-diffusion pattern: reaction
due to fitness and diffusion due to mutations.

One of the most prominent pattern is the concept of species (and that of quasi-species): a
group of phenotypically and genotypically related individuals. It is possible to obtain, from
very simple models some of which are presented in the following, that stable quasi-species
occupy the maxima of the fitness landscape, and that their “width” and average fitness
are related to the mutation rate and the curvature of the maximum. Another simple result
concerns the coexistence of quasi-species: they can coexists only if their fitness is the same
(Gause principle [2]). At first it would seems rather implausible that all coesisting species
have exactly the same fitness by chance. Indeed, this is due to the interactions, i.e., epistasis,
to the fact that the fitness A (and H) depends on the distribution of the population.

It is noteworthy that there are analogies between the dynamics between antibodies
(immune response) and viruses and bacteria and the prey-predators dynamics. Predation
or parasitism are able to “equalize” the fitness of their preys: the preys with higher fitness
will grow at first, but this will stimulate their predator population to grow, and this lowers
the preys’ fitness. From the prey’s point of view, predators and parasites are a variable
load that can be exploited for competitive reasons. Since a predator targets (feeds on) a
certain variety of phenotypes, an increase in the number of predators due to the presence of
a certain phenotipe will also increase the predation on neighboring phenotypes. A similar
effect is present among predators due to prey sharing.

This competition may promote speciation in an homogeneous environment. Even if there
is no intersection in the prey preferences, the diffusion due to mutations makes parasites
to attack also neighboring, i.e. similar, phenotypes, therefore acting as a competition term.
In both cases, the competition strength (which could be considered a sort of load) can
be lowered by broadening the phenotype distribution, even is this implies “occupying”
phenotypes corresponding to lower fitness. An example is given by the thalassemia, in
which slightly disadvantageous heterozigous are maintained in the population by malaria
parasites.
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Up to now, we have considered mutations as the biological equivalent of a mathemat-
ical constant diffusion term. However, for most of organisms, the “bare” (instantaneous)
mutation rate is reduced by specialised protein complexes associated to the polymerase
which act as correction molecular machineries. Therefore, the effective mutation rate is just
a phenotype characteristics, which can therefore be selected in order to increase the varia-
tion in the population. An example is given by the hypermutation of antibodies during an
immune response. A much more efficient mechanism developed to increase the variability
of a population without incurring in the load of mutations is recombination.

In general, one observes only neutral variants, or the variations around a “wild type”
phenotype with lower fitness, whose population is maintained only by the constant influx
from the fitter strain. Indeed, the variation observed in the distribution of a given locus
or portion of genome is a good indicator of the selective importance of such a portion.
The term “negative selection” is used to characterize decrease of genetic variability, while
“neutral selection” is used to characterize the variations that do not affect the phenotype.
In recent years, signals of positive selection have been discovered in many genomes, and in
particular in humans. The most powerful mechanism that promotes differentiation is the
prey-predator (or better: parasite-host) interaction [3].

Positive selection can take two forms: directional, in which phenotypes (allele frequen-
cies), are consistently driven (changed) in a given direction, or adirectional in which the
natural selection pressure on the parasite genome simply broadens the allele distribution,
for example to escape the host immune response. The first case is obviously a signature
of a non-stationary function. We shall show in the following that a generic prey-predator
dynamics promotes adirectional selection. It might happen that this pressure towards a
broaden distribution may promote directional selection towards phenotypes with more
variants.

Let us define the distance d(x, y) between two genomes x and y as the minimum number
of point mutations necessary to pass from genome y to genome x (and vice versa), d(x, y) =
L −∑L

i=1 |xi − yi|.
Note that the edit or Levenshtein distance between two strings, which is defined as the

minimum number of edits needed to transform one string into the other, with the allowable
edit operations being insertion, deletion, or substitution of a single character would be more
appropriate but the cost to compute it, which is roughly proportional to the product of the
two string lengths, makes this impractical for large genomes (the human genome is about
3 billion DNA bases).

For simplicity we assume that all single base mutations (base replacement, insertion,
deletion) are equally likely, while in reality they depend on the identity of the symbol and
on its positions on the genome [4–6]. Moreover, the manipulations of genetic material like
DNA replication is subjected to proof-reading and error correction by several complexes, so
that the probability of observing a mutation is quite small. The accuracy of this machinery
is quite high for eukaryotic cells, less for bacteria and very low for the reverse transcription
of RNA viruses.

As a consequence, RNA viruses, such as Hiv, have the highest mutation rates between
103 to 105 per base per generation; bacteria have rates of the order of 108 per base pair
per generation (see also [7, 8] for statistical estimates of sequence variation across some
virus and bacteria species); for human, the average mutation rate was estimated to be
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2.5 × 10−8 mutations per nucleotide site based on a direct comparison of DNA sequences
without function (pseudogenes) [9].

We assume that at most one mutation is possible per site per generation (replication).
We denote with µs the probability of having one point mutation per generation.

The probability to have a point mutation from genotype y to genotype x is given by the
short-range mutation matrix M s(x, y) which is

M s(x|y) =


1 − µs if x=y,
µs

L
if d(x,y)=1,

0 otherwise.

(2.1)

Other mutations correspond to long-range jumps in the genotypic space, such large scale
genome segments duplications and recombinations. A very rough approximation consists in
assuming all mutations are equally probable. Let us denote with µ� the probability per
generation of this kind of mutations. The long-range mutation matrix, M �, is defined as

M �(x|y) =

1 − µ� if x=y,
µ�

2L − 1
otherwise.

(2.2)

In the real world, certain types of mutations are more likely than others (for example
the human protein ABOBEC3G causes G-to-A mutations), and in this case M � becomes
a sparse matrix M̂ �. We introduce a sparseness index s which is the average number of
nonzero off-diagonal elements of M̂ �. The sum of these off-diagonal elements still gives µ�.
In this case M̂ � is a quenched sparse matrix, and M � can be considered the average of the
annealed version.

As illustrated by the small-world effect, the combination of a vanishing long-range muta-
tion rate and higher short-range mutation one may give origin to an effective fully-connected
long-range mutation matrix [10]. Selection is modeled by a fitness function A(u,p), which
in general depends on the phenotype u of a given individual and on the whole distribution
p(u, t) of phenotypes (for example the presence of preys, predators, parasites, etc.).

In a mean-field approximation, in the limit of a vanishing mutation probability (per
generation) and weak selection [11, 12] the evolution of the probability p(x, t) of observing
the genotype x at time t is given by

ṗ = (A − 〈A〉)Mp � (A − 〈A〉)p + ∆p, (2.3)

where 〈A〉 =
∫

dx A(x)p(x, t) is the average fitness, ∆ = M − 1, and 1 is the identity.
Considering only symmetric point mutations, ∆ is the L-dimensional diffusion operator.
One can recognize here the structure of a reaction-diffusion equation: evolution can be
considered as a reaction-diffusion process in sequence space.

For discrete generations, the previous equation can be written as

p′(u) =
1

〈A〉
(

A(u,p)p(u) + µ
∂2A(u,p)p(u)

∂u2

)
, (2.4)

with ∫ ∞

−∞
p(u)du = 1,

∫ ∞

−∞
A(u,p)p(u)du = 〈A〉. (2.5)
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The analysis of the equation, Eq. (2.3) is much simpler if the fitness A does not depend on
the population structure, i.e., A = A(x), where x is the genome. The lineage of an individual
corresponds to a walk on a static landscape, called the fitness landscape. A generic fitness
function may be considered a landscape for short times, in which the species, other than
the ones under investigations, can be considered constant.

In this case the evolution really corresponds to an optimization process: in the case
of infinite population, and for mutations that are able to “connect” any two genomes (in
an arbitrary number of passes — M is an irreducible matrix), the system may reach an
equilibrium state (in the limit of infinite time).

There are a few landscapes that have been studied in details [13]. The simplest one is
the flat landscape, where selection plays no role. It is connected to the concept of neu-
tral evolution. In this landscape, evolution is just a random walk in sequence space, and
one is interested in the probability of fixation of mutations in a finite populations, which
corresponds to the divergence of an isolated bunch of individuals.

For very small probability of mutation, the asymptotic distribution is a quasi-species
grouped around the peak. By increasing the mutation probability (or equivalently the
genome length), this cloud spreads. It may happen that in finite populations no one has the
right phenotype, so that the peak is lost, the so-called error threshold transition. Clearly,
this transition poses the problem of how this peak has been populated for the first time.
The idea is that the absence of population fitness space is actually similar to a Swiss cheese:
paths of flat fitness and “holes” of unviable phenotypes (corresponding essentially to pro-
teins that are unable to fold). The “roughness” of the fitness function is due to the presence
of other species. So for instance a highly specialized predator, i.e. targeting a small ensemble
of phenotypes, may become so tied to its specific prey, that its effective fitness landscape
(for constant prey population) is extremely sharp.

Another consequences of an increased mutation rate, more effective for individu-
als with accurate replication machinery like multicellular ones, is the extinction of the
species without losing their “shape”, the so-called Muller’s ratchet [14–16] or stochastic
escape [17, 18], which, for finite populations, causes the loosing of the fitter strains by
stochastic fluctuations.

Genes that have an additive effect are responsible for how much quantitative traits
contribute to the phenotypes, and this results into a smooth landscape, shaped like the
Fujiyama mount. It is possible to obtain a good approximation for the asymptotic distri-
bution near such a maximum. Such results will be important in characterising the species
competition. On a Fujiyama landscape, no error threshold transition is present [13]. Finally,
one can study the problem of the evolution when the landscape has variable degree of rough-
ness, a problem similar to that of disordered media in statistical mechanics [19, 20].

The evolution may appear as an optimization process. Indeed, if we neglect mutations,
Eq. (2.3) becomes ṗ = (A − 〈A〉)p, which is known as the replicator equation.

Assume that we start from a uniform distribution over the whole phenotypic space, and
that the fitness shows a single, smooth maximum. The phenotypes u with A(u) < 〈A〉 tend
to decrease in frequency, while those with A(u) > 〈A〉 tend to increase their frequency.
Because of this, the average fitness 〈A〉 increases with time (Fisher theorem [21]).

The structure of Eq. (2.3) says that the fitness does not have absolute values. For
a given genome, the survival of individuals depends on their relative fitness: those that
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happen to have a fitness larger than average tend to survive and reproduce, the others tend
to disappear. By doing so, the average fitness, in general, increases, so that a genome that
is good at a certain time will become more common and the relative fitness more similar to
the average one. The effects of this generic tendency depend on the form of the fitness.

3. How Fitness Shapes the Quasispecies

In the presence of a single maximum the asymptotic distribution is given by one quasi-
species centers around the global maximum of the static landscape. The effect of a finite
mutation rate is simply that of broadening the distribution from a delta peak to a bell-
shaped curve.

We are interested in deriving the form of the asymptotic distribution near the maximum.
We take a static fitness A(u) with a smooth, isolated maximum for u = 0 (smooth maximum
approximation). Numerical simulations show that for small mulation rates, the asymptotic
quasispecies has a bell-shape form.

Let us assume that

A(u) � A0(1 − au2), (3.1)

where A0 = A(0).
We can try with a gaussian shape for the asymptotic distribution

p(u) =
1√

2πσ2
exp
(
− u2

2σ2

)
,

for which

〈A〉 = A0

∫
(1 − au2)p(u) du = A0(1 − aσ2).

By substituting it into Eq. 2.4, by assuming aσ2 � 1 and au2 � 1, so that

1 − au2

1 − aσ2
� 1 − au2 + aσ2,

and equating the constant term and the term containing u2, we get

σ2 =
√

µ

a
.

The above approximations correspond to µ � 1/a, i.e., the smoothness of the maximum
is measured in terms of the mutation rate.

We shall see how this result can be used for determining the conditions of coexistence
and of speciation induced by competition.

For completeness, we study here also the case of a sharp maximum, for which A(u) varies
considerably with u. In this case the growth rate of less fit strains has a large contribution
from the mutations of fittest strains, while the reverse flow is negligible, thus

p(u − 1)A(u − 1) � p(u)A(u) � p(u + 1)A(u + 1)
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neglecting last term, and substituting q(u) = A(u)p(u) in Eq. (2.4) we get:

〈A〉
A0

= 1 − 2µ for u = 0 (3.2)

and

q(u) =
µ

(〈A〉A(u) − 1 + 2µ)
q(u − 1) for u > 0 (3.3)

Near u = 0, combining Eq. (3.2), Eq. (3.3) and Eq. (3.1)), we have

q(u) =
µ

(1 − 2µ)au2
q(u − 1).

In this approximation the solution is

q(u) =
(

µ

1 − 2µa

)u 1
(u!)2

,

and

y(u) = A(u)q(u) � 1
A0

(1 + au2)
(

µA0

〈A〉a
)u 1

u!2
.

We have checked the validity of these approximations by solving numerically Eq. (2.4);
the comparisons are shown in Fig. (2). We observe that the smooth maximum approximation
agrees with the numerics for small values of a, when A(u) varies slowly with u, while the
sharp maximum approximation agrees with the numerical results for large values of a, when
small variations of u correspond to large variations of A(u).
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Fig. 2. Average fitness 〈A〉/A0 versus the coefficient a, of the fitness function, Eq. (3.1), for some values of the
mutation rate µ. Legend: simulations corresponds to the numerical solution of Eq. (2.4), smooth maximum
refers to Eq. (3) and sharp maximum to Eq. (3.2).
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4. Coexistence

We investigate here the conditions for which more than one quasi-species can coexist on a
static fitness landscape without competition. Hiv quasi species have been found to change
during anti viral therapies, in early and late stages of hiv infection and in different districts
of the body [22]. Interestingly, we may imagine there are boundaries in which different quasi
species may come in contact or nearby niches with different mutant frequencies. Wild type
strains have the highest fitness in natural conditions but often much lower during different
therapies. The need to minimize drug resistance and reduce treatment-related toxicities has
engendered an interest in induction followed by maintenance regimen, in which a period
of intensified antiretroviral therapy (induction phase) is followed by a lighter long-term
regimen (maintenance phase). These alternance may generate oscillations in frequencies of
quasi species which has not been fully investigated yet. Here we approach the problem as
coexistence of quasi species. Let us assume that the fitness landscape has several distinct
peaks, and that any peak can be approximated by a quadratic function near its maximum.
For small but finite mutation rates, as shown by Eq. (3), the distribution around an isolated
maxima is a bell shaped curve, whose width is given by Eq. (3) and average fitness by Eq. (3).
Let us call thus distribution a quasi-species, and the peak a niche.

If the niches are separated by a distance greater than σ, a superposition of quasi-
species (3) is a solution of Eq. (2.3). Let number the quasi-species with the index k,
p(u) =

∑
k pk(u), where each pk(u) is centered around uk and has average fitness 〈A〉k.

The condition for the coexistence of two quasi-species h and k is 〈A〉h = 〈A〉k (this condi-
tion can be extended to any number of quasi-species). In other terms one can say that in a
stable environment the fitness of all co-existing individuals is the same, independently on
the species.

Since the average fitness (3) of a quasi-species depends on the height A0 and the curva-
ture a of the niche, one can have coexistence of a sharper niche with larger fitness together
with a broader niche with lower fitness, as shown in Fig. 3. It is easy to derive the condition
for coexistence. We assume that the conditions for smooth maximum hold, and that the
maxima are so separated that the asymptotic distribution can be modeled as a sum of two
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Fig. 3. Mutation-induced speciation. A two peaks static fitness landscape, increasing the mutation rate we
pass from a single quasi-species population ((a), µ = 0.12) to the coexistence of two quasi-species ((b),
µ = 0.14).
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nonoverlapping Gaussians (labeled 1 and 2):

p(u) =
γ1√
2πσ2

1

exp
(
−u − ũ1

2σ2
1

)
+

γ2√
2πσ2

2

exp
(
−u − ũ2

2σ2
2

)
,

with γ1 + γ2 = 1.
Due to the nonoverlapping conditions, 〈A〉 = γ1〈A1〉 + γ2〈A2〉 � γ1A1(1 − √

a1µ) +
γ2A2(1 −√

a2µ). By averaging Eq. 2.4 over distribution 1, we get

γ′
1 =

〈A1〉
γ1〈A1〉 + γ2〈A2〉γ1

and the condition for which distribution 2 will disappear is

A1 − A2 > (A1(1 −√
a1µ) − A2(1 −√

a2µ))
√

µ.

We clearly need A1 > A2 and a1 > a2. In this condition, it may happen that by increasing
µ the previous condition will fail. The critical value µc of the mutation rate is

µc =
(

A2 − A1

A2
√

a2 − A1
√

a1

)2

.

This coexistence depends crucially on the mutation rate µ. If µ is too small, the quasi-
species occupying the broader niche disappears; if the mutation rate is too high the reverse
happens. In this case, the difference of fitness establishes the time scale, which can be quite
long. In presence of a fluctuating environment, these time scales can be long enough that the
extinction due to global competition is not relevant. A transient coexistence is illustrated
in Fig. 4. One can design a special form of the landscape that allows the coexistence for a
finite interval of values of µ, but certainly this is not a generic case. This condition is known
in biology under the name of Gause or competitive exclusion principle [2].

As shown in Reference [23], the existence of a degenerate effective fitness is a generic
case in the presence of competition, if the two species can co-adapt before going extinct.
The short-range competition lowers the fitness of the maximum, as shown in Fig. 5.
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Fig. 4. Evolution on a two-peaks static fitness landscape, after 500 (a) and 5000 (b) time steps. For a
transient period of time the two species co-exist, but in the asymptotic limit only the fittest one survives.
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Fig. 5. Static fitness V , effective fitness H , and asymptotic distribution p numerically computed for the
following values of parameters: α = 2, µ = 0.01, V0 = 1.0, b = 0.04, J = 0.6, R = 10, r = 3 and N = 100.

This short-range competition may originate by the presence of preys or predators. Let us
we suppose there exists for instance predators or parasites that evolve so rapidly that they
can be considered at equilibrium, and that each predator may exploit only the resources
in a certain phenotypic range. Examples are for instances viruses that use some receptors,
or the immune system that uses partial match to recognize invaders. The abundance of a
certain phenotype triggers the increase of the related parasites and this is felt by nearby
phenotypes as a short-range competition factor. Similar analysys apply competition due to
the shortage of a given prey phenotype.

5. Positive Selection

We have considered up to now only the “bare” mutation rate, originated for instance by
chemicals or cosmic rays. However, any replicating organism uses a correction mechanism
for reducing this rate. This correction mechanism is coded into the genotype. In the case of
RNA viruses, the main source of errors is the reverse transcription phase, which is influenced
by the host environment. Therefore, in many cases the actual mutation rate is a function
of the genotype, and under the influence of the selection mechanism [24]. In the presence of
predation or parasitism of a faster-evolving species, it may become convenient to increase
the variability of the phenotype.

This phenomenon may be illustrated by a simple model,

p′(x) =
A(x) − rq(x)∑

x′(A(x′) − rq(x′))p(x′)
p(x) − µp

∂δ2p(x)
δx2

,

q′(x) =
p(x)∑

x′(q(x′))p(x′)
q(x) − µq

∂δ2q(x)
δx2

,

(5.1)
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(a) (b)

Fig. 6. (a) Static fitness A and asymptotic distribution of preys p in the absence of predation (µp = 0.01);
(b) Static fitness A, asymptotic distribution of preys p and of predators q, effective fitness of preys A − rq.
Numerical values: A0 = 20, r = 0.2, µq = 0.3, a = 10.

where x is the phenotypic index (x = 0 corresponds to the wild type), p(x) is the distribution
of preys/hosts at time t and q(x) that of predators/parasites. A(x) is the fitness of preys
in the absence of predators, and rq(x) is the load due to the latters. Primes denote the
quantities at the next time step and mutations are modeled as a simple diffusion process.
We consider the case A(x) = A0 exp(−ax2) � A0(1 − ax2) for small x.

The asymptotic state of the system p′ = p and q′ = q (see Fig. 6) in the limit of vanishing
mutation rates is given by a flat distribution

p(x) =


1

2L
for − L < x < L,

0 otherwise.

Consisting of many phenotypes with the same fitness up to a width L (to be computed
below). The distribution of q(x) is linearly related to the fitness A(x) (so that A(x)− rq(x)
is constant). By imposing the normalization condition

∫
q(x) dx = 1 we get

L =
(

3r
4aA0

) 1
3

.

In this way we obtain a broad distribution of prey phenotypes, whose abundance is unrelated
to the fitness, while it is the predator distribution that is strongly correlated to the fitness
of the prey.

In the real world, the effect of increasing mutation rate may be reached by using less-
realible genetic manipulation as the reverse transcriptasi in RNA viruses. However, generic
mutation lowers too much the viability, leading to the mutational meltdown (see Sec. 6). It
is therefore expected the development of positive selection of viable variants by means of
specific mechanisms that favors the mutability of selected portions of the phenotype, such
as the hypermutation mechanism of the immune system.

The process of speciation requires the divergence of the genetic determinants of phe-
notypes; the selected characteristics may be identified by scanning genes for positive
selected amino acids. While negative selection represents the conservation of functional and
structural elements, positive or directional selection confers a fitness benefit to phenotype
changes.
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Positive selection is characterized by the quick emergence in a population of a species of
a new allele with larger fitness advantage than the other alleles in the same population and
has no advantage in the population of other species. Genes that contain positively selected
mutations, yet remain constrained or selectively neutral in other closest species may offer
insight into the significant genetic changes affecting phenotype difference. Positive selection
is often limited to broadening frequencies in a small set of sites of a gene; their identifica-
tion may highlight functionally important protein regions meaningful for the relationships
between ecological and molecular change (for example viral proteins escaping immune sys-
tem response). There are a variety of tests for detecting departures from neutral selection.
One of the most used is Tajima’s test which is based on the distribution of allele frequencies
and/or segregating sites.

A second category of methods, based on Maximum Likelihood and Bayesian inference,
identifies specific sites at which adaptive mutations occur by comparing nonsynonymous
(i.e., amino acid change) to synonymous (i.e., nonchanging the amino acid) substitution
rates with respect to a phylogenetic tree, i.e., taking into account the statistical relation-
ships among sequences, in order to properly weight for multiple comparisons (). Recent
methods consider as evidence for molecular adaptations how conserved, or radically dif-
ferent, nonsynonymous mutations are with respect to some important amino acid chemical
physics properties such as charge and volume. Strongly positively selected genes are involved
in a host’s immune response to pathogens, or in a pathogen’s evasion of this response (they
include the human major histocompatibility complex (MHC)), vision and olfaction, neural
development, and in male reproduction. Such genes are affected by sexual selection or sperm
competition.

There is a strong link between positive selection, fitness and antiviral drug resistance
arised during therapies for most viruses, particularly for Hiv. A selection pressure maps of
HIV proteins involved in drug resistance provide clues on estimating probability of arising
mutations contributing to drug resistance, distinguishing primary drug resistance mutations
from accessory mutations, rate measurements of fast versus slow evolutionary pathways to
multiple drug resistance, and the evolutionary dynamics of different types of mutations
as the virus moves from untreated to drug-treated conditions and back during different
regimen of therapy. The large increase of positive selection mutations occurring in hiv
infected treated with drugs with respect the untreated is reported for example in [25].

6. Error Threshold and Muller’s Ratchet

Viruses, and particularly those with small RNA genomes, often show a quasi species behav-
ior. Important insights into the fitness landscape of viruses are coming from the analysis of
Hiv variants in infected individuals; anti viral therapies influence the fitness landscape: usu-
ally drug resistance mutations reduce replication fitness and drug-sensitive viruses rapidly
evolve after complete treatment interruption. The high genetic diversity in Hiv is caused by
the high virion production rate (1010 daily), the short generation time and the error-prone
reverse transcriptase, which generates an average of 105 mutations per site and generation.
Time series analysis of Hiv strain abundances evolution in infected individuals shows that
during the therapy treatment failure almost 100% of the virus population displays resistance
mutations, while during treatment interruption there is the almost complete disappearance
of resistance mutations from plasma virus. This suggests that the viral populations had
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undergone genetic bottlenecks during the development and reversion of resistance and that
treatment interruption results in reappearance of hidden strains in reservoirs, rare wild-type
variants (which had very low fitness during therapy) or reversion of resistance through con-
tinued evolution. Interestingly, prolonged treatment failure causes a decrease of the number
of viral variants suggesting the existence of an effective genetic bottle-neck [26].

The immune systems and pathogens have evolved with prey-predators exchange role
dynamics. The human protein ABOBEC3G hypermutates the viral genome, via deamina-
tion, while the virus is reverse-transcribing its RNA genome to DNA. This hypermutational
effect of ABOBEC3G on the virus genome could be though as leading to a mutational melt-
down which produce mostly non viable viral strains. Note that during the viral life cycle,
APOBEC3G is incorporated into the viral capsid. Typically, it is subsequently degraded
by the virus’s Vif protein, which is effectively the antidote to APOBEC3G. However, the
imprecise inactivation of APOBEC3G by Vif causes a large spectrum of mutations to occur
in Hiv, which allow the virus to finely explore the fitness landscape modified by the anti
viral therapies. The analysis of strain abundances and variability during the antiviral drugs
may provide an interesting mean of estimating the shape of the fitness landscape.

In order to present a modeling approach, let us consider a sharp peak landscape: the
phenotype u0 = 0, corresponding to the master sequence genotype x = 0 ≡ (0, 0, . . . ) has
higher fitness A0 = A(0), and all other genotypes have the same, lower, fitness A∗. Due to
the form of the fitness function, the dynamics of the population is fundamentally determined
by the fittest strains.

Let us indicate with n0 = n(0) the number of individuals sharing the master sequence,
with n1 = n(1) the number of individuals with phenotype u = 1 (only one bad gene, i.e., a
binary string with all zero, except a single 1), and with n∗ all other individuals. We assume
also nonoverlapping generations,

During reproduction, individuals with phenotype u0 can mutate, contributing to n1, and
those with phenotype u1 can mutate, increasing n∗. We disregard the possibility of back
mutations from u∗ to u1 and from u1 to u0. This last assumption is equivalent to the limit
L → ∞, which is the case for existing organisms. We consider only short-range mutation
with probability µs. Due to the assumption of large L, the multiplicity factor of mutations
from u1 to u∗ (i.e., L − 1) is almost the same of that from u0 to u1 (i.e., L).

The evolution equation (discrete time) of a population of N individuals with carrying
capacity K [11, 27] is

n′
0 =

(
1 − N

K

)
(1 − µs)A0n0,

n′
1 =

(
1 − N

K

)
((1 − µs)A∗n1 + µsA0n0),

n′∗ =
(

1 − N

K

)
A∗(n∗ + µsn1).

(6.1)

and

〈A〉 =
A0n0 + A∗(n1 + n∗)

N

is the average fitness of the population.
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The steady state of Eq. (6.1) is given by n′ = n. There are three possible fixed points
n(i) =

(
n

(i)
0 , n

(i)
1 , n

(i)
∗
)
: n(1) = (0, 0, 0) (N (1) = 0), n2 = (0, 0,K(1 − 1/〈A∗〉)) (N (2) = n

(2)
∗ )

and

n(3) =



n
(3)
0 = N (3) (1 − µs)A0 − A∗

A0 − A∗
,

n
(3)
1 = N (3) µs

1 − µs

A0((1 − µs)A0 − A∗)
(A0 − A∗)2

,

n
(3)
∗ = N (3) µ2

s

1 − µs

A0A∗
(A0 − A∗)2

,

N (3) = 1 − 1
A0(1 − µs)

.

The fixed point n(1) corresponds to extinction of the whole population, i.e., to mutational
meltdown (MM). It is trivially stable if A0 < 1, but it can become stable also if A0 > 1,
A∗ < 1 and

µs > 1 − 1
A0

. (6.2)

The fixed point n(2) corresponds to a distribution in which the master sequence has
disappeared even if it has larger fitness than other phenotypes. This effect is usually called
Muller’s ratchet (MR). The point P2 is stable for A0 > 1, A∗ > 1 and

µs >
A0/A∗ − 1

A0/A∗
. (6.3)

The fixed point n(3) corresponds to a coexistence of all phenotypes. It is stable in the
rest of cases, with A0 > 1. The asymptotic distribution, however, can assume two very
different shapes. In the quasi-species (QS) distribution, the master sequence phenotype is
more abundant than other phenotypes; after increasing the mutation rate, however, the
numeric predominance of the master sequence is lost, an effect that can be denoted error
threshold (ET). The transition between these two regimes is given by n0 = n1, i.e.,

µs =
A0/A∗ − 1
2A0/A∗ − 1

. (6.4)

Our definition of the error threshold transition needs some remarks: in Eigen’s original
work [28, 29] the error threshold is located at the maximum mean Hamming distance, which
corresponds to the maximum spread of population. In the limit of very large genomes these
two definitions agree, since the transition becomes very sharp [30]. See also [31, 32].

In Fig. 7(a) we reported the phase diagram of model (6.1) for A∗ > 1 (the population
always survives). There are three regions: for a low mutation probability µs and high selec-
tive advantage A0/A∗ of the master sequence, the distribution has the quasi-species form
(QS); increasing µs the distribution undergoes the error threshold (ET) effect; finally, for
very high mutation probabilities, the master sequence disappears and we enter the Muller’s
ratchet (MR) region [33, 34]. The error threshold phase transition is not present for smooth
landscapes (for an example of a study of evolution on a smooth landscape, see [35]).
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(a) (b)

Fig. 7. (a) Phase diagram for the error threshold and Muller’s ratchet transitions (A∗ > 1). MR refers to the
Muller’s ratchet phase ET to the error threshold distribution and QS to quasi-species distribution. The phase
boundary between the Muller’s ratchet effect and the error threshold distribution (Eq. (6.2)) is marked ET-
MR; the phase boundary between the error threshold and the quasi-species distribution (Eq. (6.4)) is marked
QS-ET. (b) Phase diagram for the mutational meltdown extinction, the error threshold and the quasi-species
distributions (A∗ < 1). MM refers to the mutational meltdown phase, ET to the error threshold distribution
and QS to quasi-species distribution. The phase boundary between the Mutational meltdown effect and
the error threshold distribution (Eqs. (6.3) and (6.6)) is marked ET-MM; the phase boundary between the
mutational meltdown and the quasi-species distribution (Eqs. (6.3) and (6.5)) is marked QS-MM.

In Fig. 7(b) we illustrate the phase diagram in the case A∗ = 0.5. For a low muta-
tion probability µs and high selective advantage A0/A∗ of the master sequence, again one
observes a quasi-species distribution (QS), while for sufficiently large µs there is the extinc-
tion of the whole population due to the mutational meltdown (MM) effect. The transition
between the QS and MM phases can occur directly, for

A0/A∗ <
1 −√

1 − A∗
A∗

(6.5)

(dotted QS-MM line in figure): during the transient before extinction the distribution keeps
the QS form. For

A0/A∗ >
1 −√

1 − A∗
A∗

, (6.6)

one has first the error threshold transition (QS-ET line in figure), and then one observes
extinction due to the mutational meltdown effect (dashed ET-MM line in figure). This
mutation-induced extinction has been investigated numerically in [33]. The Error threshold
for finite populations has been studied in [34, 36, 37].

7. Application to HIV Immunology

The theoretical immunology represents an important benchmark for modleing genotype-
phenotype dynamics. Here we further discuss the phenotype — genotype mapping by fram-
ing it using a model which takes into account three components, the number of uninfected
(T ) and Hiv infected CD4+ T lymphocytes, and the number of free Hiv viruses (V ). The
immune system increases the fitness of the virus when the virus acts as a CD4 predator; it
decreases the fitness when immune system cells act as Hiv predator (by killing infected cells,
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or using specific antibodies). Given that the virus is quickly speciating in multi different
quasi species, these will have slightly different fitness; the fitness advantage of a quasispecie
will be affected by therapies and resources (CD4) competition.

A multi species modeling of Hiv virus could be described by the following set of equa-
tions, which represent an extension of a model by Perelson el al. [38].

Ṫi =

(
λi +

∑
k

γ
(T )
ik IkTi

)(
1 − 1

K

∑
i

Ti

)
−
(

δT +
∑

k

βkVk

)
Ti, (7.1)

İk =

(∑
k′

µkk′βk′Vk′

)(∑
i

Ti

)
−
(

δI +
∑

i

γ
(I)
ki Ti

)
Ik, (7.2)

V̇k = πIk −
(

c +
∑

i

γ
(V )
ki Ti

)
Vk. (7.3)

The model considers the following cell types: T-helper (CD4+) cells responding to virus
strain i, (Ti); T cells (any strain) infected by virus strain k, (Ik); abundance of viral strain
k, (Vk). This means that viral strain k are identified by just one epitope, which is then
displayed on the surface of the T cell of class k, and that a T cell of class i can be activated
at least by one CD4+ T cell carrying the epitope k, which is specific of the viral strain k.
The indices i (k) range from 1 to Ni (Nk), and in the following we have used Ni = Nk = N .
This model allows to investigate time scale of quasi species evolution during superinfection
(multiple infections at different times) or coinfection (simultaneous infection by different
strains). For further details see [39].

8. Challenges in Fitting Nonlinear Models to Observed Data

Our approach has been to focus on building simple models which use as fewer param-
eters as possible that could be effective in describing the system under study; we should
address the question: how simple models could still provide good fitting with real data? The
large abundance of molecular data from many species (particularly bacteria and viruses)
through next generation sequencing, provides the basis for evaluating mathematical models
with real data. First, it is important to distinguish between “inverse” modeling, also called
model calibration, in contrast to “forward” modeling approach which is used for forecasting
or hypothesis testing. If there is scarcity of data, for example only parts of genetic and bio-
chemical networks can be observed directly, not all the model parameters can be estimated
uniquely.

Model calibration is the process of estimating these parameters by fitting the model to
observed data as a nonlinear optimization problem. An important challenge is the estimation
of nonidentifiable parameters which cannot be unambiguously determined with sufficient
precision mainly due to correlations with other parameters. Note that, together with the
best values estimated for a parameter we would like to estimate parameter uncertainties
which lead to a measure of the robustness of model generated predictions.

When implementing robust predictive analyses, the integrals over high-dimensional
parameter spaces can neither be evaluated analytically, nor numerically in a straight-forward
way. Although inference techniques, such as Maximum likelihood, are relatively easy to
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implement, they suffer from quite few drawbacks, such as not been able to fully explore the
entire parameter space. As partial solutions to this problem, solutions of differential equa-
tion could be approximated by nonparametric functions, which are estimated by penalized
smoothing with penalties defined by the differential equation behaviors. The currently used
inference methods have substantial limitations upon the form of models that can be fitted
and, hence, upon the nature of the scientific hypotheses that can be made and the data
that can be used to evaluate them. Instead, the so-called plug-and-play methods require
only simulations from a model and are thus free from such restrictions.

Unfortunately the Bayesian methodology which provides a powerful inferential frame-
work becomes computationally intensive when the amount of data is limited. Some useful
computational tools are: Laplace‘s method of asymptotic approximation and Markov Chain
Monte Carlo (MCMC) methods, including multi-level Metropolis-Hastings algorithms with
tempering, the Gibbs sampler and the Hybrid Monte Carlo algorithm. Particle filter algo-
rithms are useful for sequential Bayesian state estimation when the Kalman filter is not
applicable because of nonlinear dynamics and/or nonGaussian probability models.

A partial availability of data would still allow to compute sensitivity, parameter identi-
fiability, model fitting and estimate parameter confidence intervals through a Markov-chain
based method. First, given the lack of quasi species data, we focus on single species, i.e. we
drop the subscript of the variables V , I and T . We then use a MCMC procedure to esti-
mate the effect of the parameter uncertainty on the model output (see Fig. 8). We take as
input the sample of the parameter probability density function generated from the marginal
distributions for each parameter (λ,β, δ, γ(I), γ(T ) ).

Note that the arising of quasi species and the corresponding formation of immune
cells specific for the different quasi species describe a simple mechanism for the genera-
tion of complexity. Ronald Fisher in early 1930 proposed that the more complex a plant
or animal, the more difficulty it should have adapting to changes in the environment. This
hypothesis seems strongly violated when observing how well-adapted, complex organisms —
from orchids to bower birds to humans, are. Here we show that complexity can be easily
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Fig. 8. Sensitivity analysis of CD4+ T cells (a) and virus load (b) strain differences based on parameter
distribution generated using a MCMC statistics. Data from [40].
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generated through evolutionary processes and provide organisms to adapt to environmental
change.

9. Conclusions and Potentialities

In this work we have stressed how statistical mechanics and dynamical system approaches
allow evolutionary biology to develop more predictive and robust theory. The shift from
allele data, the basis of classic evolutionary genetics, to sequence, gene expression and in
the near future, biochemical and structure data, and hopefully dynamical aspects will allow
evolutionary biology to develop more predictive and robust theory.

We have presented some simple models of evolution in phenotypic space. We start from
the consideration that viruses represent the best opportunity to measure with high degree
of accuracy, mutation rates, selection pressure and fitness, therefore most likely offering
the “hopeful monsters”, i.e., events of instantaneous speciation, theoretical biologists are
searching for. In particular viruses provide meaningful examples of quasi species.

The intensive research effort over the past twenty years on the human immunodeficiency
virus type 1 (HIV-1), which is the causative agent of the global AIDS pandemic, has led
to the generation of a vast amount of clinical and sequence data on viral strains and on
the action of several classes of effective anti-HIV-1 drugs that have significantly improved
patient survival. One example is given by the Vif-APOBEC3G which could be modeled as a
mutational meltdown system. Future direction could establish the fitness landscape gener-
ated by different timing and the kinds of antiviral drugs selected for inductionmaintenance
and therapy-intensification strategies or the imperfect adherence to HIV induction therapy
or to a personalised therapy.

The need for a nonlinear mathematical formulation of evolution is highlighted by recent
experiments and theoretical advances showing that in some cases the mutation rate could
be fitness-dependent [41]. Clearly, the ideal goals would be that of showing how macro-
evolutionary patterns may arise from a (not too over) simplified individual-based dynam-
ics. However, evolutionary systems tend to develop highly correlated structure, so that it
is difficult to operate the scale separation typical of simple physical system (say, gases).
Nevertheless, here we show simple models could catch important aspects, in order to test
the robustness of many hypotheses.
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[8] P. Lió and N. Goldman, Phylogenomics and bioinformatics of SARS-CoV, Trends Microbiol.
12 (2004) 106–111.

[9] M. W. Nachmana and S. L. Crowella, Estimate of the mutation rate per nucleotide in humans,
Genetics 156 (2000) 297–304.

[10] F. Bagnoli and M. Bezzi, Small world effects in evolution, Phys. Rev. E 64 (2001) 021914.
[11] F. Bagnoli and M. Bezzi, An evolutionary model for simple ecosystems, in: Annual Reviewies

of Computational Physics VII, ed. D. Stauffer (World Scientific, Singapore, 2000), pp. 265–310.
[12] F. Bagnoli, Evolutionary models for simple biosystems, in Handbook on Biological Networks, S.

Boccaletti, V. Latora and Y. Moreno, eds., World Scientific Lecture Notes in Complex Systems,
Vol. 10 (World Scientific, Singapore, 2010), pp. 329–372.

[13] L. Peliti, Introduction to the statistical theory of Darwinian evolution, Lectures at the Summer
College on Frustrated System, Trieste, August 1997, cond-mat/9712027.

[14] M. Lynch and W. Gabriel, Mutation load and the survival of small populations, Evolution
44 (1990) 1725–1737.

[15] M. Lynch, R. Burger, D. Butcher and W. Gabriel, The mutational meltdown in asexual popu-
lations, J. Hered. 84 (1993) 339–344.

[16] A. T. Bernardes, Mutational meltdown in large sexual populations, J. Physique I5 (1995)
1501–1515.

[17] P. G. Higgs and G. Woodcock, The accumulation of mutations in asexual populations, and the
structure of genealogical trees in the presence of selection, J. Math. Biol. 33 (1995) 677–702.

[18] G. Woodcock and P. G. Higgs, Population evolution on a multiplicative single-peak fitness
landscape, J. Theor. Biol. 179 (1996) 61–73.

[19] C. Amitrano, L. Peliti and M. Saber, Population dynamics in a spin-glass model of chemical
evolution, J. Mol. Evol. 29 (1989) 513–525.

[20] L. Peliti, Fitness landscapes and evolution, in Physics of Biomaterials: Fluctuations, Self-
Assembly and Evolution, eds. T. Riste and D. Sherrington (Kluwer, Dordrecht 1996),
pp. 287–308.

[21] R. A. Fisher, The Genetical Theory of Natural Selection (Dover, New York, 1930).
[22] J. A. Anderson et al., HIV-1 Populations in semen arise through multiple mechanisms, PLoS

Pathog 6 (2010) e1001053; J. F. Salazar-Gonzalez et al., Genetic identity, biological phenotype,
and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection,
J. Exp .Med. 206 (2009) 1273–1289.

[23] F. Bagnoli and M. Bezzi, Speciation as pattern formation by competition in a smooth fitness
landscape, Phys. Rev. Lett. 79 (1997) 3302–3306.

[24] A. Sasaki and M. A. Nowak, Mutation landscapes, J. Theor. Biol. 224 (2003) 241–247.
[25] L. Chen and C. Lee, Distinguishing HIV-1 drug resistance, accessory, and viral fitness mutations

using conditional selection pressure analysis of treated versus untreated patient samples, Biol
Direct. 1 (2006) 14.

[26] C. Hedskog, et al., Dynamics of HIV-1 quasispecies during antiviral treatment dissected using
ultra-deep pyrosequencing. PLoS ONE 5 (2010) e11345.

[27] F. Bagnoli and M. Bezzi, Eigen’s error threshold and mutational meltdown in a quasispecies
model, Internat. J. Modern Phys. C 9 (1998) 555–562.

[28] W. Eigen, Selforganization of matter and evolution of biological Macromolecules, Naturwis-
senshaften 58 (1971) 465–523.

[29] W. Eigen and P. Schuster, The hypercycle: A principle of natural self-organization, Naturwis-
senshaften 64 (1977) 541–552.

[30] S. Galluccio, Exact solution of the quasispecies model in a sharply peaked fitness landscape,
Phys. Rev. E 56 (1997) 4526–4539.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Il

lin
oi

s 
C

hi
ca

go
] 

at
 1

0:
58

 1
3 

N
ov

em
be

r 
20

14
 



August 27, 2011 11:25 WSPC/1402-9251 259-JNMP S1402925111001532

286 F. Bagnoli & P. Lió
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