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In this paper, we will show the possibility of studying physical properties and irreversible phenomena that occur in blood by
applying the dielectric Kluitenberg's nonequilibrium thermodynamic theory. Namely, we shall use some recent extensions of this
theory that allow to infer its main characteristic parameters from experimental measures. Applying these results to the study of
normal and diabetic blood we show, by comparing them, that it is possible to determine the difference, in some details, of the
amount of particular phenomena occurring inside them and give a biological meaning to these phenomena. Moreover, observing a
correspondence between a particular value of the frequency for which state coefficients are equal and glucose levels we introduce an
alternative diagnostic method to measure the values of the glucose in the blood by determining only this frequency value. The
thermodynamic description will be completed by determining the trend of the entropy production.
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1. Introduction

Diabetes mellitus (DM) is a group of complex multisystem
metabolic disorders characterized by a relative or absolute in-
sufficiency of insulin secretion and/or concomitant resistance
to the metabolic action of insulin on target tissues. Diabetes is
an increasingly significant health problem as the prevalence
increases with age, the lifetime risk of developing diabetes is
around 10%.1 According to the 1999 World Health Organi-
zation (WHO) criteria (which are also endorsed by Diabetes
UK), diagnosis of diabetes is made if the fasting blood glucose
level is 7.0mmol/L or more, or a random blood glucose test
shows a level of 11.1mmol/L or more. People with diabetes
have an increased risk of developing a number of serious health
problems such as coronary heart disease, blindness, kidney
failure, stroke and peripheral vascular disease.2–4 In fact, hy-
perglycemia, i.e., consistently high blood glucose levels easily
can lead to serious oxidative stress due to the increased pro-
duction of free radicals. The reactive oxygen and nitrogen
species (ROS and RNS) through lipid peroxidation of mem-
brane are responsible for the irreversible changes in the
structure of the red blood cell (RBC) cytoskeleton. Therefore,
the toxic effect of glucose on erythrocytes manifests itself not
only as an alteration of the phospholipids' bilayer but also as a
modification of the integral proteins and of the hemoglobin
(Hb), protein involved in the oxygen transport, abundantly
expressed in the RBCs.

1.1. Dielectric properties approach

The study of the dielectric properties of materials can be
approached in two ways: (i) a theoretical point of view and
(ii) an experimental point of view. The experimental ap-
proach is fundamental because it is the first interaction with
the medium and it furnishes a quantitative and qualitative
vision of the phenomena object of study which occur in the
medium and the evolution of these phenomena. This infor-
mation is utilized to formulate models which are in agreement
with experimental data. Obviously for the formulation of
these models it is necessary to identify the variables which
describe the phenomena. Unfortunately, the number of vari-
ables that describe a biological system is very large, so it is
essential to reduce this number to formulate a concrete
model. Obviously this means substituting the real system
with an ideal one whose description is limited to the chosen
variables. But, as a consequence of the complexity of bio-
logical phenomena, it is very difficult to identify the variables
giving the best — or at least a sufficiently good — descrip-
tion. Every model will be associated to a particular choice of
variables so to conceive the theoretical approach. From a
dielectric point of view, well-known models are based on the
introduction of combination in series or in parallel of ca-
pacitance and conductance. We call the models based on
these combinations classical models. These electrical models,
in some cases, describe well the real biological elements and
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their functions; for example, it is well known that some
aspects of the cell membrane are well described by a ca-
pacitance element.5,6

In this context, the classical models are used to determine
dynamical constitutive differential equations for dielectric
relaxation which describe some specific properties of the
medium under consideration. Of course, depending on the
analyzed medium, a suitable combination of capacitance and
conductance can be chosen. These models are able to de-
scribe some dielectric relaxation phenomena in the linear
approximation.7

But in the differential equations of these models appear
some parameters which are assumed as constant character-
istics of the medium. In other words, it is assumed that these
parameters do not depend on the type of perturbation.

For example, if the medium is perturbed by a harmonic
electric field of frequency, !, these parameters remain con-
stant for each frequency. Indeed, since these parameters
characterize the medium, they must depend on the type of
perturbation. Nevertheless, the assumption of the constancy
of these parameters will be an approximation which in some
cases results in a good one.

Now, if we consider as known the parameters that appear
in the classical differential equation, by assuming as known
perturbation an extensive variable as the polarization field
(the cause), the integration of the dielectric differential
equation leads to the knowledge of the intensive variable of
the electric field inside the medium (effect). This approach
does not give information on the parameters that appear in the
equation, but considering them as known, it is able to give
information on the effects (electric field) of evolution of the
medium when subject to a known perturbation. By starting
from nonequilibrium thermodynamic consideration and by
introducing the concept of internal hidden variables associ-
ated to the internal degree of freedom, Kluitenberg obtained a
dielectric relaxation equation that generalizes the above
mentioned classical models.8–10

Moreover, we have proved that even fractionary models
such as Cole-Cole and others will result as particular case of
the extended Kluitenberg's introduced by us. This has been
possible because Prof. Kluitenberg proved that the polariza-
tion vector can be split into two parts. We have proved, in
previous papers,11–15 that the parameters called phenomeno-
logical and state coefficients, which appear in Kuitenberg's
dielectric differential equation, depend on the perturbation
and we have expressed them as a function of frequency of an
harmonic perturbation by means of the relations, obtained by
us, between these parameters and some frequencies depend-
ing on moduli which can be directly measured.

Moreover, a very important result of the theory is that the
so-called phenomenological and state coefficients are corre-
lated to single phenomena (here we will refer only to di-
electric media of order one). So we can identify each
coefficient just to one phenomenon. Also in this approach it is
assumed that the aforementioned coefficients are constant

over time, but, unlike models cited, they may depend on some
characteristic of the perturbation acting on the medium. In the
case considered by us they may depend on the frequency of
the harmonic perturbation acting on the medium. Here, as in
the aforementioned classical models, if the phenomenological
and state coefficients are known and, for example, the po-
larization, it is possible by integration of the dielectric
equation to obtain the behavior of electric field.

In previous papers,11–15 we approached the study of di-
electric properties of a medium by another point of view: we
investigated the behavior of phenomenological and state
coefficients assuming as known harmonic perturbation and
the response of the medium. This leads to the determination
of the aforementioned coefficients as function of the fre-
quency of perturbation, as aforementioned. There we have
taken into account the linear response theory. This will be
clear in the next sections where we will make a summary of
the results obtained by us. Here we emphasize that the re-
sponse of the medium depends on the type of perturbations.

We will remark that most of the classical models (related
to combination in series or in parallel of capacitance and
conductance) are always formulated to fit experimental data
and, if they are not in agreement with experiments, they are
mathematically modified to this aim.

In this work, we do not formulate any model to fit data,
but we will study some thermodynamic irreversible processes
occurring inside the blood by applying some recent results on
nonequilibrium thermodynamic theory obtained by us so to
determine the thermodynamic function correlated to the
phenomena under study. In other words, we will apply the
nonequilibrium thermodynamic approach to the study of a
biological system such as blood.7–9

We are conscious of the difficulties to adapt the non-
equilibrium thermodynamic theory (which is based also on a
model of inert matter) to the very complex phenomena that
occur in blood. Nevertheless, we think that this new approach
can produce very important results because it provides, from
a thermodynamic point of view, new and more detailed in-
formation on some processes which occur inside the medium
so to determine some physical entities (the more important of
which is the entropy production) which can be used as di-
agnosis and to study the evolution of some pathologies.
In particular, we will use this new approach to deepen the
differences between physiological blood (pb) and diabetic
blood (db).

Thus, the problem is the applicability of the nonequilib-
rium thermodynamic to the phenomena which occur inside
system under study: the blood. In other words, can the blood
model that we consider satisfy the basic axiom of the non-
equilibrium thermodynamics? This will be the subject of the
next section in which we introduce a blood model and
compare it with the basic axioms on local and instantaneous
equilibrium of the thermodynamic of irreversible processes.

Unfortunately our results do not have any direct experi-
mental confirmation, because they consist to obtain the
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expression of some fundamental thermodynamic entities as
functions of the frequency of perturbation. In particular, we
obtained the following results:

1. analytical expression of the polarization vector (Pð0Þ,
Pð1ÞÞ.

2. analytical expression of the state coefficients að0;0Þ, að1;1Þ

characteristic of the medium.
3. analytical expression of coefficients Lð1;1Þ and Lð0;0Þ re-

lated to irreversible processes due to the displacement
current associated to temporal variation of part of polar-
ization Pð1Þ and to temporal variation of vector P, re-
spectively.

4. analytical expression of electric field E ð1Þ related to
temporal variation of part of polarization Pð1Þ.

5. analytical expression of entropy production.

No results of this kind exist in literature.

1.2. Mathematical model of the blood and basic axiom

Human blood accounts for 7% of the body weight, its main
roles in the organisms are: it carries the nutrients and mo-
lecular oxygen indispensable to the cellular metabolism and
at same time it has an important thermoregulatory role. From
the electrical point of view, human blood is a very inhomo-
geneous solution composed of plasma and several kinds of
cells; these cells called corpuscles or \formed elements"
consist of erythrocytes (RBCs), leukocytes (white blood cells,
WBCs) and thrombocytes (platelets). By volume, the RBCs
constitute about 45% of whole blood, the plasma about
54.3% and WBCs about 0.7%.

RBCs are biconcave disk shaped and small size (7�m);
they are highly specialized cells providing as much space for
Hb (4–5mM) as possible, in fact they have no nucleus,
mitochondria or endoplasmic reticulum. Hb is a globular
protein, the main function of which is to transport oxygen
from lungs to respiring tissues. WBCs differ from RBCs
because they always have a nucleus and their shape is usu-
ally spherical. There are two main groups of WBCs: pha-
gocytes and lymphocytes. Phagocytes which destroy
invading cells by phagocytosis are characterized by lobed
nuclei and granular cytoplasm. Lymphocytes that destroy
microorganisms secreting antibodies are smaller than pha-
gocytes and are recognized by large nucleus. In the blood of
all vertebrates, the plasma mostly water contains a wide
variety of substances such as proteins, cholesterol, hor-
mones, amino acids, glucose, salts, vitamins and antibodies.
Among these an important role is carried out by the glucose
sugar, selected as central carbohydrate for its functions both
metabolic and structural. Its normal concentration is regu-
lated by several hormones but in some metabolic disorders as
well as those present in diabetes, glucose concentration in
the blood can reach toxic levels responsible for the func-
tional and structural alterations of the cell constituting the
hematic tissue.

In the pathology of DM, the presence of additional glu-
cose in the blood alters the physical-chemical properties of
the blood such as the electric and dielectric properties.16–19 A
comparative study of the electrical properties of healthy and
pathological blood can lead to a better understanding of bi-
ological processes linked to diabetes and to the discovery of
new methods for early diagnosis. One of the main alterations
that occur in the blood in the presence of high glucose con-
centrations (diabetes disorders) is the glycosylation of pro-
teins. Glycosylation refers to the covalent bonding of glucose
to the blood proteins, in fact, glucose is chemically reactive
and has a slight reducing capacity to accept electrons from the
"-amino group of a protein lysine residue, to form an adduct
commonly referred to as a Schiff base. Lysine is found in
virtually every protein and when that electron is shared it
creates an irreversible chemical bond between the glucose
and the protein. Glycosylation can also occur at the N-ter-
minal amino group of the �-chains by a ketoamine linkage.
This is the case of the mainly glycosylated protein in blood,
the HbA1c is the result of nonenzymatic reaction of glucose
with the �-amino groups of the Valine residues at the N-
terminus of Hb �-chains.20 Normally, only a small percentage
of blood glucose, usually between 4.5% and 6%, is cova-
lently linked to the Hb of nondiabetes population. But, under
conditions of sustained hyperglycemia such as DM, a sig-
nificant increase in the percentage of glycosylated Hb is
commonly noted: HbA1c is increased two- to three-fold in
the RBCs. Nevertheless the increased amount and perma-
nence of glucose in the blood allows more glycosylation to
occur, not only with Hb, but with the proteins of the eryth-
rocyte membrane and with other proteins of the plasma. The
binding of glucose, especially with important protein amino
groups, can affect cell structure and function and create an
unbalance which leads to cell destabilization. Because, each
of these proteins can undergo cyclization and rearrangement
or cross linking to create something called advanced glyco-
sylation end products (AGEs).21

Our approach is based on the assumption (supported by
experiments) that in biological tissue hidden electrical phe-
nomena occur to which corresponding internal degree of
freedom must be taken into account for a more detailed de-
scription and prediction.

So we consider blood as a conducting fluid in which three
major micro-particles are suspended (RBCs, WBCs, MLPs)
and distributed in an homogeneous way.5,6,22

This allows us to consider blood as a continuum medium
which obeys the continuum mechanics indefinite equations
and Maxwell's equation in the matter with a mass density �
which varies as a function of blood's elements under con-
sideration.23 In Sec. 2.3, where we describe in a synthetic
form our theory, we will prove that, by considering blood as
an incompressible fluid, the Lagrangian's derivative d�

dt of the
mass density results in zero. In other words, we will prove
that the mass density is almost constant for each fluid element
during the motion. This is justified if we consider the mass
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density of three major micro-particles of blood (as RBCs,
WBCs, MLPs).

Such an assumption is also in agreement with the basic
axiom on local and instantaneous equilibrium: for sufficiently
small deviation from equilibrium, a system can be divided
into tiny (physical) volume elements, each of which can be
regarded as a small homogeneous equilibrium system.

Moreover, the length and time scale of these subsystems
are infinitesimally small from a macroscopic point of view,
but from a molecular point of view they are still large, such
that the subsystem contains enough molecules so that the
average taken on the number of molecules has deterministic
significance.

Since we will study blood when it is subject to an external
harmonic electric perturbation we assume that in this case
the axiom of local and instantaneous equilibrium will
be satisfied; this is true for a sufficiently low intensity
perturbation.

2. Methods

2.1. Theoretical thermodynamic approach

Kluitenberg's theory is based on the idea that the usual
variables of nonequilibrium thermodynamic are insufficient
to describe some phenomena that occur in a medium when it
is subject to perturbation. In particular, they are insufficient to
describe relaxation dielectric phenomena in a continuous
media (we neglect the magnetic effects).

Generally it is assumed that the specific entropy s of an
elastic dielectric is a function of the specific internal energy u,
the strain tensor "ik and the specific polarization p8–10:

s ¼ sðuj"ikjpÞ: ð1Þ

The new Kluitenberg's idea consists in the assumption
that there is a vector field � which plays the role of ther-
modynamic internal degree of freedom and which influences
the polarization.8–10 In the theory it is assumed that the
specific entropy (which we indicate with s) has the following
functional dependence

s ¼ sðuj"ikjpj�Þ: ð2aÞ

From which it follows:

1
T
¼ @sðuj"ikjpjp ð1ÞÞ

@u
;

�
ðeqÞ
ik ¼ �T�

@sðuj"ikjpjp ð1ÞÞ
"ik

;

E ðeqÞ ¼ �T
@sðuj"ikjpjp ð1ÞÞ

@p
;

E ð1Þ ¼ T
@sðuj"ikjpjp ð1ÞÞ

@p ð1Þ :

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

By assuming that exists a state R at the constant temper-
ature T0 in which it results:

�
ðeqÞ
ik ðT0Þ ¼ �

ðeqÞ
ikð0Þ ¼ 0;

E ðeqÞðT0Þ ¼ E ðeqÞ
ð0Þ ¼ 0

it can be shown that the polarization p is additively composed
of two parts p ð0Þ and p ð1Þ

p ¼ p ð0Þ þ p ð1Þ; ð2bÞ
where following the Debye's model, the vector p ð0Þ is asso-
ciated with molecule deformation polarization and p ð1Þ is
associated with molecule rotation polarization.

Moreover, it can be shown that the change of both p ð0Þ

and p ð1Þ contributes to entropy production and therefore they
represent two irreversible processes. With these clarifications,
Eq. (2a) can be written as:

s ¼ sðuj"ikjpjp ð1ÞÞ ð3Þ
and introduction of vector E ðirÞ defined as:

E ðirÞ ¼ E � E ðeqÞ ð4Þ
is possible, where E is the electric field which occurs in
Maxwell's equations and E ðirÞ is called the irreversible elec-
tric field. If the irreversible electric field (4) vanishes the
change in p ð0Þ does not contribute to the entropy production,
i.e., changes in p ð0Þ are reversible processes.10

2.2. Phenomenological equations

The entropy production per unit of volume and per unit of
time is given by10

�ðsÞ ¼ J ðQÞ � X ðQÞ þ J ðelÞE

þ �E ðirÞ dp
dt

þ �E ð1Þ dp
ð1Þ

dt
; ð5Þ

where J ðQÞ is the heat flow and J ðelÞ is the density of electric
current;

X ðQÞ ¼ �T�1gradT :

It appears that the entropy production (5) is due to heat
conduction, electric conduction and dielectric relaxation.
Moreover, it is a sum of inner products of vectors.

In agreement with the method of nonequilibrium ther-
modynamics developed by De Groot e Mazur (see Ref. 7),
there will be linear relations among these quantities which,
for an isotropic media, can be written as:

E ðirÞ ¼ �Lð0;0Þ dp
dt

þ Lð0;1ÞE ð1Þ; ð6Þ

�
dp ð1Þ

dt
¼ �Lð1;0Þ dp

dt
þ Lð1;1ÞE ð1Þ; ð7Þ
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where Lð0:0Þ; Lð0:1Þ; Lð1:0Þ; Lð1:1Þ; Lð0;1Þ; Lð1;0Þ are phenome-
nological coefficients and we shall assume that they are
constant in time. The coefficients Lð0:1Þ; Lð1:0Þ are connected
with possible cross effects which may occur between the two
types of dielectric relaxation phenomena described by
Eqs. (6) and (7), and they satisfy the Onsager–Casimir re-
ciprocal relations

Lð0:1Þ ¼ �Lð1:0Þ:

If we neglect the cross effect described by coefficients Lð0:1Þ

and Lð1:0Þ we observe that, the coefficient Lð0:0Þ, which has the
dimension of a resistance, is connected to irreversible pro-
cesses related to change of p (and therefore of p ð0Þ, p ð1Þ or
both p ð0Þ and p ð1Þ, while Lð1:1Þ, which has the dimension of a
conductibility, is related to change of p ð1Þ and the corre-
sponding intensive variable E ð1Þ. However, Eqs. (6) and (7)
are connected with irreversible changes in the polarization.

2.3. Linear approximation state equations

The free energy f is defined by

f ¼ u� Ts:

It can be shown that there exists the following functional
dependence of f:

f ¼ f ðT j"ikjpjp ð1ÞÞ:

This is the specific free energy and it can be shown8–10

that the condition of isotropy and of linearity of equations of
state are fulfilled if it is assumed that f is the sum of two
functions f1 and f2

f ¼ f1 þ f2;

where

f1 ¼ f1ðT j"ikÞ; ð8Þ

f2 ¼
1
2
�½að0;0Þp � ðp � 2p ð1ÞÞ þ að1;1Þp ð1Þ 2 �; ð9Þ

where að0;0Þ and að1;1Þ are state coefficients (assumed con-
stant) which have the dimension of reciprocal dielectric
constant.

By defining the fields P ð0Þ and P ð1Þ by

P ð0Þ ¼ �p ð0Þ;

P ð1Þ ¼ �p ð1Þ; ð10Þ
P ¼ P ð0Þ þ P ð1Þ;

we can obtain from equation, the following state equations

E ðeqÞ ¼ að0;0ÞðP � P ð1ÞÞ ¼ að0;0ÞP ð0Þ; ð11Þ
E ð1Þ ¼ að0;0ÞP � að1;1ÞP ð1Þ; ð12Þ

which together with Eqs. (6) and (7), in which we neglect the
cross effects which may occur between them,

E ðirÞ ¼ Lð0;0Þ dP
dt

; ð13Þ

dP ð1Þ

dt
¼ Lð1;1ÞE ð1Þ

¼ Lð1;1Þ½E ðeqÞ þ ðað0;0Þ � að1;1ÞÞP ð1Þ� ð14Þ
will be the equations that allow us to the introduction of
relaxation equation.

As aforementioned now we prove that for a fluid as blood
it is reasonable to assume that � is constant for each element
so to verify the basic axioms on local and instantaneous
equilibrium.

In fact, the assumption that the blood is an incompressible
fluid is expressed for a fluid's element d� by mathematical
relation d

dt ðd�Þ ¼ 0; so, from the well-known cinematic re-

lation d
dt ðd�Þ ¼ divVd� , it follows divV ¼ 0. This last

equation and the equation of conservation of the mass d�
dt þ

�divV ¼ 0 lead to assert that.

d�

dt
¼ @�

@t
þ V � grad� ¼ 0: ð15Þ

Here V is the velocity of the fluid element. If the fluid is not
homogenous at the initial instant its initial density �0 varies
with Lagrangian' coordinates (b1, b2, b3Þ so as to have

�0 ¼ �0ðb1; b2; b3Þ:
By substituting the following relation (which is valid during
the motion) bi ¼ biðt; x1; x2; x3Þ in the last equation, one has

�0ðb1; b2; b3Þ ¼ �0½biðt; xiÞ� ¼ �ðt; x1; x2; x3Þ:
This relation satisfy Eq. (15) and proves the assert.

Thus we assume that the mass density � is constant.8–10 It
is seen from Eq. (14) that sudden change in P ð1Þ is impos-
sible, while from Eq. (13) it follows that sudden change in
P ð0Þ is possible.

2.4. Relaxation equation

In the following, we assume that T ¼ constant, in agreement
with blood status. It can be shown that it is possible to
eliminate the internal fields and the two fields P ð0Þ and P ð1Þ

from Eqs. (11)–(14) so to obtain the so-called relaxation
equation, mentioned in Sec. 1:

�
ð0Þ
EPE þ dE

dt
¼ �

ð0Þ
PEP þ �

ð1Þ
PE

dP

dt
þ �

ð2Þ
PE

d2P

dt 2
; ð16Þ

where

�
ð0Þ
EP ¼ að1;1ÞLð1;1Þ; ð17Þ

�
ð0Þ
PE ¼ að0;0Þðað1;1Þ � að0;0ÞÞLð1;1Þ; ð18Þ
�

ð1Þ
PE ¼ að0;0Þ þ að1;1ÞLð0;0ÞLð1;1Þ; ð19Þ
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�
ð2Þ
PE ¼ Lð0;0Þ: ð20Þ

Moreover it can be shown that phenomenological and
state coefficients together with �

ð0Þ
EP , �

ð0Þ
PE , �

ð1Þ
PE , �

ð2Þ
PE must be

positive in order to satisfy the principle of entropy produc-
tion. Moreover, the following relations must be satisfied:

�
ð1Þ
PE � �

ð0Þ
EP�

ð2Þ
PE > 0;

�
ð1Þ
PE�

ð0Þ
EP � �

ð0Þ
PE � 0:

The importance of the phenomenological and state coef-
ficients is that they characterize the medium specifying the
amount of type of phenomena correlating to each of them.

It is important to observe that their constancy is referred to
the time for each type of perturbation which acts on the
medium. But they vary with the change of perturbation.
For example, if the perturbation is of harmonic type
with frequency ! then the coefficients will depend on ! (we
will see this in next section) which can be considered as
parameter in the functional dependence of the coefficients. In
this case, we shall call að0;0Þ; að1;1Þ; Lð0;0Þ; Lð1;1Þ dynamical
coefficients.

2.5. Phenomenological and state coefficients
as function of frequency

In the following, we consider the vector component normal to
the surface of the electrode, the latter being on the surface of
blood. Assuming that P varies as

P ¼ P0 sin!t ð21Þ
and by introducing some appropriate approximations, phe-
nomenological and state coefficients can be expressed as
functions of the frequency as follows15,23:

að0;0Þð!Þ ¼ �1 þ
�

ð1Þ
2

!�
; ð22Þ

að1;1Þð!Þ ¼ ½� ð1Þ
2 þ �1!��2

!��
ð1Þ
2 ð1þ !2�2Þ

; ð23Þ

Lð1;1Þð!Þ ¼ !�
ð1Þ
2 ð1þ !2�2Þ

½� ð1Þ
2 þ �1!��2

; ð24Þ

Lð0;0Þð!Þ ¼ �2R

!
; ð25Þ

where

�1 ¼
"1 � "0

ð"1 � "0Þ2 þ "22
; ð26Þ

�2 ¼
"2

ð"1 � "0Þ2 þ "22

and �2R is the relaxed value for ! ¼ !R.
24 Here !R is the

frequency under which �2 is almost constant.
Here "1 and "2 are real and imaginary parts, respectively,

of the complex dielectric constant and � is the relaxation

time. Here, we introduced a new quantity defined as:

�
ð1Þ
2 ¼ �2 � !Lð0;0Þ: ð27Þ

By remembering the meaning of �2,
24 the last equation

represent the difference between the total loss modulus and
the loss associated to E ðirÞ (then E ðirÞ and Lð00Þ are not related
to internal degree of freedom); in other words Eq. (27)
represents the dissipation associated to internal degree of
freedom.

From (22) and (24), it follows that, if � ð1Þ
2 ¼ 0, no dissi-

pation is connected to internal degree of freedom, it follows:

að0;0Þð!Þ ¼ �1; ð28Þ

Lð1;1Þ ¼ 0: ð29Þ

And from (14) and (24) it follows

Pð1Þ ¼ cost: ¼ 0: ð30aÞ
We observe that �2 ¼ !Lð00Þ if � ð1Þ

2 ¼ 0ðLð11Þ ¼ 0); this
occurs for sufficiently low frequency where the internal de-
gree of freedom does not appear. So we can put15

�2ðlow frequencyÞ ¼ �2R ¼ !Lð0;0Þ ð30bÞ

2.6. Evaluation of the fields E (eq), E (1) E (ir), P (0), P (1)

Now we will evaluate the fields E ðeqÞ, E ð1ÞE ðirÞ, P ð0Þ, P ð1Þ

taking into account Eqs. (22)–(25). This allows us an ex-
perimental evaluation of these fields since are known by
experimental measurements coefficients (22)–(25).

We introduce the normal component of E ðeqÞ, E ð1ÞE ðirÞ,
P ð0Þ, P ð1Þ which we will indicate as E ðeqÞ, E ð1ÞE ðirÞ, Pð0Þ, Pð1Þ.

In agreement with linear response theory,23,24 we assume
that P varies as Eq. (21), and that E varies as

E ¼ E0ð!Þ sinð!t þ �ð!ÞÞ ð31Þ
or

E ¼ P0�1 sin!t þ P0�2 cos!t; ð32Þ
where

�1 ¼
E0ð!Þ
P0

cos�ð!Þ;

�2 ¼
E0ð!Þ
P0

sin�ð!Þ:

8>><
>>: ð33Þ

�ð!Þ is the phase lag between P and E. From this it follows
that the relaxed value �1R obtained for ! ¼ !R will be

�1R ¼ E0R

P0
; ð34Þ

where

E0R ¼ Eð! ¼ !RÞ: ð35Þ
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Combining (33) and (34) it follows

E0ð!Þ ¼
�1

cos�ð!Þ P0 ¼
�1

cos�ð!Þ
E0R

�1R
: ð36Þ

Now we are able to obtain an explicit form of the
aforementioned fields which is suitable for experimental
evaluation.

From Eqs. (13) and (21) it follows:

E ðirÞ ¼ Lð0;0Þ dP
dt

¼ Lð0;0Þ E0R

�1R
! cos!t: ð37Þ

From (32), (36) and (37) it follows

E ¼ �1Pþ �2

Lð0;0Þ!
E ðirÞ: ð38Þ

This equation is similar to Eq. (4). They can be equated if
�2 is connected only with irreversible dielectric relaxation
phenomena, since in general it is the synthesis of many dis-
sipative phenomena which occur inside the medium. We
impose this equality assuming for �2 the value �2ð!RÞ ¼ �2R

for low (and high) frequency which we consider as the \best
representation" of the aforementioned phenomena (in anal-
ogy with mechanical case). In this case we have:

E ðeqÞ ¼ �1P; ð39Þ

Lð0;0Þ ¼ �2R

!
: ð40Þ

From (11) and (39) it follows

Pð0Þ ¼ E ðeqÞ

að0;0Þ ¼
�1P

að0;0Þ ; ð41Þ

where að00Þ is given by Eq. (22).
From (2b), (21) and (41) it follows:

Pð1Þ ¼ P� Pð0Þ ¼ P 1� �1

að0;0Þ

� �
: ð42Þ

By taking into account (14) and (42) one has:

E ð1Þ ¼ 1
Lð1;1Þ

dPð1Þ

dt
¼ P0! cos!t

Lð1;1Þ 1� �1

að0;0Þ

� �
: ð43Þ

The entropy production (5) in the case of only dielectric
relaxation phenomena becomes:

�ðsÞ ¼ T�1 E ðirÞ dp
dt

þ E ð1Þ dpð1Þ

dt

� �
; ð44Þ

where heat flow and density of electric current have been
neglected.

Taking into account Eqs. (21), (30b), (42) and (43) one
has:

� ðsÞ ¼ P2
0

T
!Lð0;0Þ þ �

ð1Þ
2

ð1þ !2�2Þ

 !
!cos2!t: ð45Þ

3. Results and Conclusions

Here we will refer to experimental data obtained by Abdalla
et al.5 for complex dielectric constant of the pb and db. We
use these data for calculation of thermodynamic functions of
the theory and we analyze the results obtained following the
Debye's point of view8–10 according to which it is assumed
that for molecule deformation polarization is associated with
vector Pð0Þ and for molecule rotation polarization is associ-
ated with P ð1Þ. Obviously, for each molecule both phenomena
may be present.

Here as aforementioned, we consider only the component
of the vector that is normal to the surface plate, so we write
Pð0Þ, Pð1Þ for pb and P ð0Þ

d , P ð1Þ
d for db. In general, we will

indicate with an index \d" the function referred to db.
We start by analyzing the behavior of Pð0Þ both for pb and

for db. By observing Fig. 1 we note that by increasing fre-
quency it results always in Pð0Þ > P ð0Þ

d . This means that in pb
we have a greater number of dipoles that follow the pertur-
bation field than in db. From a biochemical point of view we
explain this by observing that excess glucose in db will lead
to generation of chemical bonds between blood elements
and sugar.

In this context, the glycosylation of proteins may be the
cause of reduced movement of elongation. In fact, glucose
reacting nonenzymatically with proteins to form stable co-
valent linkages increases the molecular weight of glycated
proteins.25 Besides, further increases in blood sugar lead to
further glycation of proteins and lipids with molecular rear-
rangements that lead to generation of AGEs.

Other intracellular and membrane proteins of RBCs are
also glycated, for example Spectrin, a major RBC membrane
protein, band 3 transmembrane protein, and band 4–1. The
glycation results in reduced RBC deformability and in an
increased adherence to endothelium. Platelet membrane
proteins can be glycated. The increased binding of fibrinogen
and the increased platelet aggregation observed in diabetic
patients26 can be related to glycation of the adenosine di-
phosphate receptors and lipids indicating that the number of

0 1x107 2x107 3x107

0,0

2,0x10-1

4,0x10-1

6,0x10-1

8,0x10-1

1,0x100

0 1x107 2x107 3x107

0,0

2,0x10-1

4,0x10-1

6,0x10-1

8,0x10-1

1,0x100

P(1)
d

P
(0

)

ω

 P(0)

 P(1)

 P(0)
d

 P(1)
d P(0)

P(0)
d

P(1)

Fig. 1. Pð0Þ and Pð1Þ for pb and db (Eq. (42)).
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dipoles that follows the field is larger when the frequency
increases. In other words, we have a new generation of po-
larization dipoles when frequency increases. Obviously the
field E ðeqÞ ¼ að0;0ÞPð0Þ (see Eq. (11)) will be an increasing
function, as confirmed by Fig. 4, since this occurs for the
coefficient að0;0Þ (see Fig. 2): the blood will be structured in
such a way that in every point the field associated to polari-
zation Pð0Þ (for deformation) will increase. By invoking the
same motivation used for explaining Pð0Þ > P ð0Þ

d it is easy to
explain the relation E ðeqÞ > E ðeqÞ

d .
Now we analyze the polarization Pð1Þ. On contrary to Pð0Þ

it results in P ð1Þ
d > Pð1Þ as shown in Fig. 1 and moreover P ð1Þ

d ,
Pð1Þ are decreasing functions of the perturbation frequency.
By invoking the meaning associated to Pð1Þ we can assert that
when the perturbation frequency increases we have a lower
number of permanent dipoles that follow the perturbation
field. From a biochemical point of view we explain that P ð1Þ

d
> Pð1Þ by observing that the glucose bonding with the blood
elements will form a greater number of permanent dipoles
with respect to pb. In particular, as a result of nonenzymatic
glycosylation a bulky glycogroup is introduced onto a free
amino group leading to a change in the isoelectric point (pI)
of the proteins. The alteration in pI will be more pronounced
if the sugar is phosphorylated. In fact, as it is known, the
glucose within the cell is immediately phosphorylated by the
action of the kinase. The latter, having a low KM for the
substrate catalyzes the reaction that leads to the formation of
the sugar phosphoric ester. In this way, in addition to neu-
tralization of positive charge on " NHþ

3 of Lys (glycosyla-
tion), two negative charges are added on the protein due to
ionization of phosphate linked to carbon 6 of glucose. This
change in electric charge of protein may facilitate oscillation
in the field. Not to be neglected is also that all the Lys resi-
dues of proteins are susceptible to glycosylation and that the
variation of electric charge is proportional to the number of
Lys characterizing each protein.

Here we will emphasize that, even if we can separate,
both deformation and rotation of polarization are present in
each blood element as it is shown by Eq. (12) if we rewrite it
in the form:

E ð1Þ ¼ að0;0ÞPð0Þ þ ðað0;0Þ � að1;1ÞÞPð1Þ ¼ E ðeqÞ þ E ð1Þ
x ;

ð46Þ
where

E ð1Þ
x ¼ ðað0;0Þ � að1;1ÞÞPð1Þ ð47Þ

is the field associated only to rotation polarization of the per-
manent dipoles represented by Pð1Þ. From Eq. (46) we can
deduce that the field E ð1Þ is sum of two contributes: E ðeqÞ as-
sociated only to Pð0Þ (see Eq. (39)) and E ð1Þ

x associated only to
Pð1Þ (see Eq. (47)). In other words, while to the generation of
the field E ðeqÞ contributes only the polarization for deforma-
tion, to the generation of the field E ð1Þ contributes both the
polarization for deformation and for orientation (see Eq. (46)).
As for E ðeqÞ we can analyze the field E ð1Þ

x associated only to
polarization Pð1Þ for both pb and db; by observing Fig. 3 we
note that there exists a frequency in which it results:

E ð1Þ
x ¼ E ð1Þ � E ðeqÞ ¼ ðað0;0Þ � að1;1ÞÞPð1Þ ¼ 0

for both pb and db. This does not means that Pð1Þ ¼ 0ðPð1Þ is
never zero, see Fig. 1) but that að0;0Þ ¼ að1;1Þ as it is shown by
Fig. 2. In fact, at the same frequency in which it results
E ð1Þ

x ¼ 0 we have að0;0Þ ¼ að1;1Þ. This is true for both pb and
db, so we may write:

E ð1Þ
x ¼ ðað0;0Þ � að1;1ÞÞPð1Þ ¼ 0 ) að0;0Þ � að1;1Þ ¼ 0

for ! ¼ !x;

E ð1Þ
xd ¼ ða ð0;0Þ

d � a ð1;1Þ
d ÞP ð1Þ

d ¼ 0 ) a ð0;0Þ
d � a ð1;1Þ

d ¼ 0
for ! ¼ !xd:

This is shown in Figs. 2 and 3. It is easy to show that from
Eqs. (22) and (23) it results að0;0Þ ¼ að1;1Þ if � ð1Þ

2 !� ¼ �1.
We note that (see Figs. 2 and 3) it results

!x > !xd:

0 1x107 2x107

107

0 1x107 2x107

107

a(0
,0

) ,a
(1

,1
)

ω

 normal
 normal
 diabetic
 diabetic

normal

diabetic

a(0,0)

a(1,1)

a(0,0)
d

a(1,1)
d

Fig. 2. State coefficients for pb and db (Eqs. (22) and (23)).
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d

Fig. 3. Field associated only to rotation polarization for pb and db
(Eq. (46)).
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This is a very important result: the existence of a fre-
quency in which it results E ð1Þ

x ¼ 0 or að0;0Þ ¼ að1;1Þ is, in
general, a peculiarity of blood, but we observe that in this
case frequency depends on the level of glucose in blood. In
particular, glucose and !xd values are linked by an inverse
correlation. This correspondence between frequency and
glucose level may be utilized as an alternative diagnostic
method to measure the values of sugar in blood. In fact, the
glucose concentration is easily obtained determining the
value of frequency for which að0;0Þ ¼ að1;1Þ.

By observing Fig. 4 we note that

for ! < !x it results E
ðeqÞ > E ð1Þ

and for ! > !x it results E
ðeqÞ < E ð1Þ;

i.e., the difference E ð1Þ � E ðeqÞ changes the sign in !x. The
frequency !x is very important because it is a ring of union
between two states of blood (diabetic or not), unfortunately
we are not still able to give a biological explication of this
change. This change is well represented by Eq. (46) and it is
shown in Fig. 5.

As regards the displacement current dPð1Þ=dt associated to
rotation polarization, we note in Figs. 6 and 7 that they show
an increment trend for both db and pb with greater values for
db with respect to pb. In other words, a temporal change in
Pð1Þ will result greater in db than in pb. This means that some
molecules in db have a greater speed of oscillation then in the
pb. We may explain this by assuming a greater polarity in db
(see Fig. 1).

Examining the entropy production we note that over a
frequency (see Fig. 8), which we indicate with !s ffi 107 Hz,
the entropy production will result greater in pb than in db.

�
ðsÞ
d > �ðsÞ if ! < !s;

�
ðsÞ
d < �ðsÞ if ! > !s:

This means that up to frequency !s the pb is more ordered
with respect to db. Over this frequency the contrary occurs. It
is to note (see Figs. 1 and 8) that at the frequency !s the
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Fig. 5. Difference between state coefficients for pb and db (Eqs. (22)
and (23)).
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Fig. 6. Displacement current associated to rotation polarization for
pb and db (Eq. (43)).
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Fig. 7. Displacement conductibility coefficient for pb and db
(Eq. (24)).
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Fig. 4. E ðeqÞ and E ð1Þ electric field for pb and db (Eqs. (11)
and (12)).
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function Pð0Þ has a minimum (for both db and pb) and Pð1Þ

has a maximum (for both db and pb). At present, we are not
able to explain this by a biological point of view, but it may
be that this point will change with the variations of level of
glucose.
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