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Abstract In this paper, we study, in the Newtonian limit,
the virial theorem in the context of a scalar tensor fourth order
gravity. In particular, we show, that for a isolated galaxy in
viral equilibrium, a specific class of scalar tensor fourth order
gravity, i.e. f (R, φ)+ω(φ) φ;α φ;α in not suitable to explain
the large fraction of dark matter necessary to have the flatness
of the galaxies rotation curves experimentally observed.

1 Introduction

Several observational data [1–6] probe that the observed Uni-
verse appears in accelerated expansion and spatially flat. To
explain these observations it is necessary to introduce two
dark components: the dark energy at cosmological scales and
the dark matter at galactic and extragalactic scales. In par-
ticular, the dynamical evolution of self-gravitating structures
can be figured out by the General Relativity, but a not negli-
gible quantity of Dark Matter is needed to obtain agreement
with observations [7].

Several authors [8–10] considered some models of extended
gravity as a possible theoretical mechanism to explain the
galactic rotation curves and cosmic acceleration without
introducing any exotic matter. In the context of models of
extended gravity, one modifies the gravity sector introducing
additional contributions with respect to the standard General
Relativity.

In the weak-field approximation, in general, any models
of extended gravity yields corrections to the gravitational
potential [11,12] which, (using the Solar System as a lab-
oratory) at the Newtonian and post-Newtonian level, could
constitute the test-bed for these theories [13–15].
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From a conceptual viewpoint, there is no reason a priori
to restrict the gravitational Lagrangian to a linear function
of the Ricci scalar minimally coupled to matter. In particu-
lar, one may consider the generalization of f (R, φ) models,
where R is the Ricci scalar and φ is a massive scalar field
Non-minimally to geometry. As models of extended gravity
we consider a particular class: scalar tensor fourth order grav-
ity (STFOG). Models of STFOG have been studied widely
in the Newtonian and post Newtonian [16–23] limit, as well
as in Minkowskian limit [24,25]. Gravitational lensing, stel-
lar hydrodynamics and Galactic rotation curves appear nat-
ural candidates as test-bed experiments [26–31]. In this field
we have several contributions from various authors [32–44].
An interesting application concerns the study of the Casimir
effect [45–47] in weak-field limit in the context of STFOG.

In classic mechanics the virial theorem states that for a
stable, self-gravitating, spherical distribution of equal mass
objects the total kinetic energy of the objects is equal to
minus 1/2 times the total gravitational potential energy. More
specifically, the virial theorem provides a general equation
that relates in a proportionality of the average over time of
the kinetic energy of an isolated gravitational N-body system
and bound by a potential force, with the average over time
of the potential energy. In general, the virial theorem can be
used to connect the average internal motion of the isolated
relaxed gravitational system with its dynamic mass.

The aim of this paper is to show that in the Newtonian
limit, the virial theorem implies that for an isolated galaxy
in viral equilibrium, a specific class of STFOF of the form
f (R, φ) + ω(φ)φ;αφ;α is inadequate to explain the large
fraction of dark matter which is necessary to account for the
flatness of the galaxies rotation curves. Such a result occurs
for some values of the parameters characterizing the model
under consideration.

The outline of this paper is the following. In Sect. 2 we
give the action of a STFOG and write down the correspond-
ing field equations, which we then solve in the presence of
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matter within the weak-field approximation. In Sect. 3 we dis-
cuss the extension of the virial theorem in the framework to
STFOG. In Sect. 4 we show how the STFOG could simulate
dark matter. In Sect. 5 we analyze some models of STFOG.
We summarize our conclusions in Sect. 6.

2 The scalar tensor fourth order gravity

Let us consider the action:

S =
∫

d4x
√−g

[
f (R, φ) + ω(φ) φ;α φ;α + XLm

]
, (1)

where f is an analytic function of the Ricci scalar R and the
scalar field φ, ω is a generic function of scalar field while Lm

is the minimally coupled ordinary matter Lagrangian density.
In the metric approach, namely, when the gravitational field
is fully described by only the metric tensor gμν , the field
equations are obtained by varying the action with respect the
metric, leading to:

fR Rμν − f + ω(φ) φ;α φ;α

2
gμν + ω(φ) φ;μ φ;ν − fR;μν

+gμν� fR = X Tμν,

2 ω(φ)�φ + ωφ(φ) φ;αφ;α − fφ = 0,

fR R − 2 f − ω(φ) φ;αφ;α + 3 � fR = X T . (2)

Here Tμν = −1√−g
δ(

√−gLm )

δgμν is the energy–momentum tensor

of matter, T = T σ
σ is the trace, Rμν is the Ricci tensor,

gμν is the metric tensor, g = det gμν , fR = ∂ f
∂R , fφ =

∂ f
∂φ

, ωφ = dω
dφ

, � = ;σ ;σ the d’Alembert operator and
X = 8πG, with G the gravitational constant [16–19]. We
assume c = 1. We are interested in the use of the solutions
of the field equations (2) in the case of static (or very slow
time depending) and weak gravitational field. In this case the
metric tensor gμν can be thought as:

g00 = 1 + 2
, gi j = −δi j ,

and the scalar field as

φ = φ(0) + ϕ,

where 
, ϕ are two scalar functions depending on the spatial
variables x = (x1, x2, x3) and δi j is the Kronecker delta
[19]. The energy–momentum tensor Tμν for a perfect fluid,
when the pressure is negligible with respect to the mass den-
sity ρ, is given easily by Tμν = ρ uμuν , with the conditions
uσ uσ = 1. Finally among all the analytical functions f of
Ricci scalar R and scalar field φ, we choose the class of f sat-
isfying the conditions f (0, φ(0)) = 0 and fφ(0, φ(0)) = 0.

With these hypothesis the field equations (2) become:

fR(0, φ(0))

[
�
 − R

2

]
− fRR(0, φ(0))�R

− fRφ(0, φ(0))�ϕ = X ρ,

2 ω(φ(0))�ϕ + fφφ(0, φ(0)) ϕ + fRφ(0, φ(0)) R = 0,

3 fRR(0, φ(0))�R + fR(0, φ(0))R

+3 fRφ(0, φ(0))�ϕ = −X ρ, (3)

where � is the Laplacian in the flat space. These equations
are not simply the merging of field equations of f (R)-gravity
and a further massive scalar field, but are due to the fact that
the model f (R, φ) generates a coupled system of equations
with respect to Ricci scalar R and scalar field φ [19]. We
note that, for fRR(0, φ(0)) = 0, fRφ(0, φ(0)) = 0 and
fR(0, φ(0)) = 1, we have the standard Poisson equation:
�
 = 4πGρ. This means that the deviations from GR
emerge when the second derivatives of f are different from
zero. We introduce the “masses”1 mR and mφ , defined by the
conditions:

mR
2 = − fR(0, φ(0))

3 fRR(0, φ(0))
and mφ

2 = − fφφ(0, φ(0))

2 ω(φ(0))
.

(4)

From the field equations (3), we obtain the more general
solutions of field equations as follow:


(x) = − X
4π fR(0, φ(0))

∫
d3x′ ρ(x′)

|x − x′|
− 1

8π

∫
d3x′ R(x′)

|x
−x′| − R(x)

3mR
2 + fR,φ(0, φ(0)) ϕ(x),

ϕ(x) = −mR
2 fRφ(0, φ(0))X

2 ω(φ(0))

∫
d3k

(2π)3/2

× ρ̃(k) eik·x

(k2 + k1
2)(k2 + k2

2)
,

R(x) = − mR
2 X

fR(0, φ(0))

∫
d3k

(2π)3/2

ρ̃(k) (k2 + mφ
2) eik·x

(k2 + k1
2)(k2 + k2

2)
,

(5)

where ρ̃(k) = ∫ d3x′
(2π)3/2 ρ(x′) e−i k·x′

, is the Fourier trans-
form of mass density.

Once the mass density is fixed, the gravitational poten-
tial 
 is found by solving the complete set of equations (5).
However it is more interesting the direct relation which links
the potential with the mass density. The general solution (the

1 In our formalism we consider the coefficients of R2 and φ2 negative.
For this reason, inside of Eqs. (4) we have the minus signs. However,
the definitions of the masses Eqs. (4) are consistent with the formalism
used by K. S. Stelle in Ref. [48].
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metric tensor components) is written by using the interme-
diate quantities ϕ, R only for the choice of calculus strategy.
Indeed we can rephrase the system (5) eliminating the auxil-
iary quantities and obtain the generalized Poisson equation in
the scalar tensor fourth order gravity non-minimally coupled
[22]:

�
(x) = 16πG ρ(x)
3 fR(0, φ(0))

− mR
2G

fR(0, φ(0))

[
A(ξ, η)

∫
d3x′ e−m+|x−x′|

|x − x′| ρ(x′)

+
(

1

3
− A(ξ, η)

) ∫
d3x′ e−m−|x−x′|

|x − x′| ρ(x′)
]
, (6)

where

η = mφ

mR
, ξ = 3 f 2

Rφ(0, φ(0))

2 ω(φ(0))
,

A(η, ξ) = 1

6
+ 1 − ξ − η2

6
√

η4 + (ξ − 1)2 − 2η2(ξ + 1)
,

ω2±(η, ξ) = 1 − ξ + η2 ± √
(1 − ξ + η2)2 − 4η2

2
, (7)

m2± = m2
R ω2±(η, ξ). (8)

We note in the case of minimally coupled theory ( fRφ =
0 → ξ = 0), we have m+ = mR , m− = mφ and the
scalar field φ = φ(0) + ϕ is disconnected from the matter
source2.

In general, the STFOG models present the potential
with
massive modes [25]. In fact, in Eq. (6), we find two massive
modes, with masses m+ and m−. In the present analysis we
assume that these modes have two distinct real masses3. For
this reason, the parameters η and ξ must satisfy the following
constraint:

0 � ξ ≤ (η − 1)2 ∀η � 0, (9)

in order to have real masses (see Fig. 1), i.e. m2± ≥ 0. There-
fore, the constraint (9) on the parameters η and ξ restricts the
class of theories (1) which can be used.

In the case of a point source, ρ(x) = M δ(3)(x) δ(3),
where δ(3) is the three dimension Dirac delta function, the
solution of (6) is [16–19]:


point (x) = − GM

fR(0, φ(0))|x|
[

1 + g(η, ξ) e−m+ |x|

+[1/3 − g(η, ξ)] e−m− |x|
]
, (10)

2 At newtonian level the dynamical evolution of the scalar field in any
non-minimally coupled theory is the same as in any minimally one.
3 From Eq. (7) it is easy to notice that m+ > m−.

Fig. 1 Regions of the parameter space (η, ξ) that admit models of
STFOG with real masses m2± � 0: {(η, ξ) | 0 � η < +∞, 0 � ξ <

ξ∗(η)}, where ξ∗(η) = (η − 1)2

where

g(η, ξ) = A(η, ξ) + ξ

3
√

η4 + (ξ − 1)2 − 2η2(ξ + 1)

= 1

6
+ 1 + ξ − η2

6
√

η4 + (ξ − 1)2 − 2η2(ξ + 1)
, (11)

with M the point-like mass. Since the field equations are
linear, we can ever find the solution for a point-like source
distribution, we get:


(x) = − G

fR(0, φ0)

∑
i

mi

|x − xi |
[

1 + g(η, ξ) e−m+ |x−xi |

+[1/3 − g(η, ξ)] e−m− |x−xi |
]
. (12)

This potential presents two contributions Yukawa-like char-
acterized by two scale lengths defined by the masses m±.

3 The virial theorem in fourth order gravity

Let us consider a stellar system composed by N stars with
mass mi . Considering the potential (12), the force between
the i-th and j-th star is given:

Fi j = −mi∇
 j (x), (13)

while the motion of i-th star is described by

mi
dvi
dt

= −
N∑
j=0

G̃ mi m j (xi − x j )

|xi − x j |3
[

1 + �(|xi − x j |)
]
,

(14)

where μ1 = m+, μ2 = m−, λ1 = g(η, ξ), λ2 =
1/3 − g(η, ξ), G̃ = G/ fR(0, φ(0)) and �(|xi − x j |) is the
contribution of STFOG, given by

�(|xi − x j |) =
2∑

k=1

λk

(
1 + μk |xi − x j |

)
e−μk |xi−x j |. (15)
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If we multiply the motion equation (14) by xi and we sum,
we get:

N∑
i=0

mi
dvi
dt

· xi = −
N∑
j=0

G̃ mi m j (xi − x j ) · xi
|xi − x j |3

×
[

1 + �(|xi − x j |)
]
. (16)

By substituting i � j we get:

N∑
i=0

mi
dvi
dt

· xi

= −1

2

N∑
i, j=0 i �= j

G̃ mi m j

|xi − x j |
[

1 + �(|xi − x j |)
]
. (17)

Consider the inertial momentum I :

I = 1

2

N∑
i=0

mixi · xi , (18)

we note that

d2 I

dt2 =
N∑
i=0

mi
dvi
dt

· xi +
N∑
i=0

mi |vi |2, (19)

where vi = dxi
dt . Using the relation (19), the Eq. (17) takes

the form:

d2 I

dt2 =
N∑
i=0

mi |vi |2

−1

2

N∑
i, j=0 i �= j

G̃ mi m j

|xi − x j |
[

1 + �(|xi − x j |)
]
. (20)

Let us recall that the kinetic energy K and the Newtonian
gravitational potential energy UN of stellar system are given
by

K =
N∑
i=0

mi |vi |2,

UN = −1

2

N∑
i, j=0 i �= j

G̃ mi m j

|xi − x j | . (21)

Hence,

d2 I

dt2 = 2 K +UN +UST FOG, (22)

where

UST FOG = −1

2

N∑
i, j=0 i �= j

G̃ mi m j

|xi − x j | �(|xi − x j |), (23)

and �(|xi − x j |) given by Eq. (15). The expression (22)
can be evaluated as temporal average on the interval τ . The
average quantity is obtained in the limit τ → ∞ and the

averaging operation is given by 〈·〉 = limτ→∞
∫ τ

0 dt ·
τ

. The
average of Eq. (22) is then

d I (τ )
dt − d I (0)

dt

τ
= 2〈K 〉 + 〈UN 〉 + 〈UST FOG〉. (24)

Since d I
dt is a bounded function of time, hence the time aver-

age of 〈 d2 I
dt2

〉 vanishes (for τ → ∞ we have d I
dt → 0). This

is based on the assumption that the velocities and the spatial
coordinates of all stars remain finite for all time. Then, we
obtain the expression of the generalized virial theorem in the
tensor scalar fourth order gravity

2〈K 〉 + 〈UN 〉 + 〈UST FOG〉 = 0. (25)

The deviation of the virial theorem in the Eq. (25) from
the Newtonian result

(
2〈K 〉 + 〈UN 〉 = 0

)
is contained

in 〈UST FOG〉, where UST FOG is given by Eq. (23). More
explicitly, we have

UST FOG(|xi − x j |) = − G̃

2

2∑
k=1

N∑
i, j=0 i �= j

×λk mi m j

|xi − x j |
(

1 + μk |xi − x j |
)
e−μk |xi−x j ||. (26)

Therefore, the fundamental difference between the Newto-
nian form of virial theorem [49] and the (25) is given by the
presence of the term proportional to e−μk |xi−x j | in Eq. (25).
This presence is the outcome of no-validity of Gauss theorem
in fourth order gravity. The gravitational energyUST FOG can
be recast in the case of a continuous mass distribution as fol-
lows:

UST FOG(|xi − x j |) = − G̃

2

2∑
k=1

λk

∫
d3x′d3x′′

×ρ(x′) ρ(x′′)
|x′ − x′′|

(
1 + μk |x′ − x′′|

)
e−μk |x′−x′′|, (27)

where ρ is the mass distribution of the stars in the stellar
system.

4 Effective dark matter

The ordinary matter (baryonic matter) of which all stars and
galaxies are made, only accounts for 5% of the content of
the universe. This matter absorb, reflect or emit light. How-
ever, most of the matter in the universe does not interact
with the electromagnetic force. This means that it does not
absorb, reflect or emit light, making it extremely hard to spot:
dark matter. Then, the properties and the existence of this
unknown form of matter can be analyzed only by means of
its gravitational effect on the ordinary matter.

Currently, the mass-to-light ratio M/L is used to estimate
the baryonic mass for astrophysics systems. However, from
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the observations comes out that the dynamic mass of the
system is usually larger than that estimated by mass-to-light
ratio. For this reason, this experimental evidence is normally
attributed to the possible existence of dark matter (nonbary-
onic matter).

Let us indicate withMbm andMdm respectively the bary-
onic matter and the dark matter, and with εdm = Mdm/Mbm

their ratio. The virial mass (dynamic mass)Mv of the system
can be written as Mv = Mbm + Mdm = Mbm (1 + εdm).
In astronomy, assuming the validity of the virial theorem,
the virial mass is defined as the mass of a gravitationally
bound astrophysical system. For sufficiently isolated self-
gravitating astronomical systems in virial equilibrium, the
virial theorem employed in astronomy, has the following
expression [50,51]:

2
〈
K

〉 + (1 + εdm)
〈
UN

〉 = 0. (28)

In weak-field approximation, the STFOG presents some
additional terms in the virial theorem (25) that they could sim-
ulate the amount of dark matter. Indeed, comparing Eq. (25)
with Eq. (28) the STFOG could account for this mass excess
provided:
〈
UST FOG

〉 = εdm
〈
UN

〉
, (29)

where UST FOG and UN are given respectively in Eqs. (26)
and (21). Therefore, we are assuming that the additional con-
tributions of STFOG (26) contribute to the dynamics of the
astronomical systems, in virial equilibrium, as effective dark
matter. Explicitly, Eq. (29) takes the form

〈 2∑
k=1

λk

∫
d3x′d3x′′ ρ(x′) ρ(x′′)

|x′−x′′|
(

1+μk |x′−x′′|
)
e−μk |x′−x′′|

〉

= εdm

〈 ∫
d3x′d3x′′ ρ(x′) ρ(x′′)

|x′ − x′′|
〉
. (30)

Introducing the following function F(μk) (see Appendix A)

F(μk) =
∫

d3x′d3x′′ ρ(x′) ρ(x′′)
|x′ − x′′|

×
(

1 + μk |x′ − x′′|
)
e−μk |x′−x′′|, (31)

Eq. (30) can be rewritten as

〈 2∑
k=1

λk F(μk)
〉
= εdm

〈
F(0)

〉
. (32)

Equation (32) is an algebraic relation between the free param-
eters contained in a STFOG, μ1 and μ2, and the ratio between
dark matter and baryon matter, i.e. εdm . In general, the rela-
tion (32) represents a condition that the STFOG must satisfy
in order to describe the presence of dark matter in the isolated
self-gravitating astronomical systems in virial equilibrium.
The inconsistency of the relation (32) can be considered as

a criterion for excluding models of STFOG as hypothetical
mechanisms to generate and describe the presence of dark
matter in the astronomical systems above considered.

5 Observational constraints

There are several astronomical observations, for a sufficiently
isolated galaxy in virial equilibrium, with high percentage
of dark matter, i.e. εdm > 1. As an example we have the
Andromeda Galaxy with εdm = 12.7 [52–54]; the Trian-
gulum Galaxy with εdm = 5 [55]; NGC1047 Galaxy with
εdm = 31 [56].

Now let’s analyse the consistency of the relation (32) for
some models of STFOG studied in literature (Table 1):

• Case A: the relation (32) for a sample f (R)-theory (see
Fig. 2) becomes:

〈1

3
F(mR)

〉
= εdm

〈
F(0)

〉
. (33)

In this case, using the properties of the function F(x) (see
Appendix A) and the condition εdm > 1, the algebraic
relation (33) does not admit any solution. Indeed, one
has:

〈
F(mR)

〉
〈
F(0)

〉 < 1 and 3 εdm > 1.

Therefore, the f (R) models could explain the presence
of dark matter only in galaxies with low percentage of
dark matter. Recent observations have shown that some
galactic globular clusters [57] contain a relatively low
percentage of effective dark matter, εdm = 0.4. How-
ever, for these systems the hypothesis of isolated self-
gravitating astronomical systems in virial equilibrium
may not be verified. In general, the influence of a much
larger neighboring galaxy on the dynamics of the globu-
lar clusters cannot be ignored. The analysis of this system
goes beyond the scope of this paper.

• Case B: the relation (32) for these models (see Fig. 3)
takes the form:

〈[1

3
− g(0, ξ)

]
F(m−)

〉
= εdm

〈
F(0)

〉
. (34)

Also in this case we never have a solution, because the
left-hand side of the equation (34) is always negative
∀ ξ (0 < ξ < 1), while the right-hand side is positive.
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Table 1 Some models of
STFOG

Case STFOG Parameters

A f (R)

mR
2 = − fR (0, 0, φ(0))

3 fRR (0)
, mφ

2 = 0
η = 0, ξ = 0

m+ = mR, m− = 0
λ1 = 1

3 , λ2 = 0

B R + α φ R + f (φ) + ω(φ)φ;αφ;α

mR
2 → +∞ , mφ

2 = − fφφ(0,φ(0))

2 ω(φ(0))

η → 0, ξ = 3 α2

2 ω(φ(0))

m+ → +∞, m− → mφ√
1−ξ

λ1 = g(0, ξ) > 0, λ2 = 1/3 − g(0, ξ) < 0

C f (R, φ) + ω(φ)φ;αφ;α

mR
2 = − fR (0, 0, φ(0))

3 fRR (0)
, mφ

2 = − fφφ(0,φ(0))

2 ω(φ(0))

η = mφ

mR
, ξ = 3 fRφ(0, φ(0))

2

2 ω(φ(0))

m+ = ω+ mR, m− = ω− mR,

η < 1 ⇒ λ1 = g(η, ξ) > 0, λ2 = 1/3 − g(η, ξ) < 0
η > 1 ⇒ λ1 = g(η, ξ) < 0, λ2 = 1/3 − g(η, ξ) > 0

Fig. 2 In the space defined by parameters (η, ξ) some classes of mod-
els (1) could be represented with a representative point in the η ξ−plan.
On the abscissa axis (ξ = 0) are representable STFOG models with a
minimally coupled (ξ = 0 ⇒ fRφ = 0), while on the ordinate axis
(η = 0) are represented STFOG models with either a massless scalar
field (η = 0 ⇒ mφ = 0) or models with a massive scalar field non-
minimally coupled in General Relativity (η = 0 ⇒ mR → ∞). In the
origin of the axes, (η, ξ) ≡ (0, 0), are representable all f (R)-models

Therefore, also these models are not compatible with the
presence of dark matter in the galaxies.

• Case C: the relation (32) in this case assumes the follow-
ing more general expression:

〈
g(η, ξ) F(m+)+

[1

3
−g(η, ξ)

]
F(m−)

〉
= εdm

〈
F(0)

〉
.

(35)

Now we analyse the possible solutions of the Eq. (35)
distinguishing two cases: η > 1 and η < 1. In the first case,

Fig. 3 Models with the following structure R + α φ R + f (φ) +
ω(φ)φ;αφ;α can be represented in η ξ−plan as a point of the segment
(in red): (η, ξ) ≡ (0, ξ), with 0 < ξ < 1

i.e. η > 1, the models considered can be represented in the
η ξ−plan as shown in the Fig. 4a. After some algebra, using
the properties of the function F(x) (see Appendix A), we
obtain that the Eq. (35) admits a solution only if:

g(η, ξ) � 1

3
− εdm .

For a generic value of ξ �= ξ∗(η) (see Fig. 4a), as shown in
Fig. 4b we have:

−3 � g(η, ξ) � 0,

while using the observed values [52–56] for the ratio εdm ,
we get:

−30.7 � 1

3
− εdm � −4.7.

Therefore, the Eq. (35) does not admit solution.
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Fig. 4 a Models with the structure f (R, φ) + ω(φ)φ;αφ;α can be represented in η ξ−plan as the generic point (red): {(η, ξ) | η > 1, 0 < ξ <

ξ∗(η)}; b graph of the function g(η, ξ) with η > 1

Fig. 5 a Models with the structure f (R, φ) + ω(φ)φ;αφ;α can be represented in η ξ−plan as the generic point (red): {(η, ξ) | η < 1, 0 < ξ <

ξ∗(η)}; b graph of the function g(η, ξ) with η < 1

In the second case, i.e. for η < 1, the models considered
can be represented as shown in the Fig. 5a. As in the pre-
vious case, after straightforward computations, it is possible
to prove that there is never a solution when is satisfied the
following condition:

εdm

g(η, ξ)
> 1.

On the other hand, a solution is admitted for

εdm

g(η, ξ)
< 1.

Moreover, for a generic value of ξ �= ξ∗(η) (see Fig. 5a), as
shown in Fig. 5b we have:

1

3
� g(η, ξ) � 3,

while using the observed values [52–56] for the ratio εdm ,
we get:

5 � εdm � 31.

Therefore, the Eq. (35) does not admit solution also in this
case.

6 Conclusions

We have analysed the virial theorem for sufficiently isolated
galaxy in virial equilibrium, at the present time. We have con-
sidered the Newtonian limit in the context of STFOG. In this
framework, we have shown that for a point-like source dis-
tribution, the newtonian potential presents two contributions
Yukawa-like characterized by two scale lengths defined by
the masses m±. These masses depend on the gravity model
considered through the parameters η and ξ and we have
shown the regions of the parameter space (η, ξ) in which
m± assume real values (cf. Fig. 1).

We have obtained the expression of the generalized virial
theorem in the STFOG, (Eq. (25)), in which an extra con-
tribution, namely 〈UST FOG〉, presents a term proportional
to e−μk |xi−x j |, due to the no-validity of Gauss theorem in
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STFOG. We have interpreted 〈UST FOG〉 as a term that could
simulate the amount of dark matter:

〈
UST FOG

〉 = εdm
〈
UN

〉
.

In other words, this additional extra contribution in STFOG
could be seen as effective dark matter.

We derived an algebraic relation between the free param-
eters contained in a STFOG, and the ratio between dark mat-
ter and baryon matter (Eq. (32)), and we have shown that
for some models of STFOG such relation does not admit
solutions for isolated galaxies in virial equilibrium with a
large fraction of dark matter, i.e. εdm > 1. For these reasons,
STFOG is not compatible with the amount of dark matter
contained in these astronomical systems necessary to explain
the flatness of the galaxies rotation curves. Therefore, some
other mechanism must be considered in order interpret cor-
rectly the experimental data.
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Appendix A: Properties of the function F

In Sect. 4, we have introduced the function F(μ), Eq. (31),
defined as:

F(μ) =
∫

d3x′d3x′′

×ρ(x′) ρ(x′′)
|x′ − x′′|

(
1 + μ| x′ − x′′|

)
e−μ|x′−x′′|. (A1)

It is easy to notice that F(μ) is a continuous, limited and
positive function of the variable μ, defined ∀μ ∈ [0,+∞[.
In its domain F(μ) is a decreasing monotonic function with
limit 0 when μ → ∞.

Let’s consider the Maclaurin series of the function F(μ):

F(μ) = F(0) +
∞∑
n=1

F (n)(0)

n! μn, (A2)

where F (n)(0) ≡ dn F(μ)
dμn

∣∣∣∣
μ=0

. The expression of F(0) takes

the form:

F(0) =
∫

d3x′d3x′′ ρ(x′) ρ(x′′)
|x′ − x′′| ,

(A3)

instead, the generic term of nth derivative is:

dnF(μ)

dμn
=(−1)(n−1)(n − 1)

×
∫

d3x′d3x′′ρ(x′) ρ(x′′)|x′ − x′′|(n−1) e−μ|x′−x′′|

+(−1)n μ

∫
d3x′d3x′′ρ(x′) ρ(x′′)|x′ − x′′|n e−μ|x′−x′′|.

(A4)

In particular, the first and the second derivative are:

dF(μ)

dμ
= − μ

∫
d3x′d3x′′ρ(x′) ρ(x′′)|x′−x′′| e−μ|x′−x′′|,

(A5)

d2F(μ)

dμ2 = −
∫

d3x′d3x′′ρ(x′) ρ(x′′)|x′ − x′′| e−μ|x′−x′′|

+μ

∫
d3x′d3x′′ρ(x′) ρ(x′′)|x′ − x′′|2 e−μ|x′−x′′|.

(A6)

From the study of the sign of the first derivatives (A5), we
note that the function F(μ) is strictly decreasing:

dF(μ)

dμ
� 0 when μ � 0. (A7)

Then, the function F(μ) has a global maximum in μ = 0:

F(μ) ≤ F(0), ∀μ.

While from the study of the sign of the second derivative
(A6), the function F(μ) has an inflection point μ f , (with
0 < μ f < 1):

d2F(μ)

dμ2 ≥ 0 when μ ≥ μ f (A8)

Note that μ f is defined by the following constitutive equa-
tion:∫

d3x′d3x′′ρ(x′) ρ(x′′)|x′ − x′′| e−μ f |x′−x′′|

= μ f

∫
d3x′d3x′′ρ(x′) ρ(x′′)|x′ − x′′|2 e−μ f |x′−x′′|

From the Eq. (A4) we get:

F (n)(0) = (−1)(n−1)(n − 1)

×
∫

d3x′d3x′′ρ(x′) ρ(x′′)|x′ − x′′|(n−1), ∀n ≥ 2. (A9)
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We introduce the generator �(μ) defined as:

�(μ) =
∫

d3x′d3x′′ρ(x′) ρ(x′′)e−μ|x′−x′′|. (A10)

In this way, we can redefine the relation (A9) as follows:

Fn(0) = (n − 1)
dn−1�(μ)

dμn−1

∣∣∣∣
μ=0

, ∀n ≥ 1. (A11)

Therefore, the Maclaurin series of function F(μ) takes the
following expression:

F(μ) = F(0) +
∞∑
n=2

(n − 1)

n!
dn−1�(μ)

dμn−1

∣∣∣∣
μ=0

μn . (A12)
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