
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3124637, IEEE Access

Digital Object Identifier

One Time User Key: a user-based secret
sharing XOR-ed model for multiple user
cryptography in distributed systems
STEFANO GALANTUCCI1, DONATO IMPEDOVO2 (Senior Member, IEEE) and GIUSEPPE
PIRLO3 (Senior Member, IEEE)
1University of Bari "Aldo Moro" - Department of Computer Science (e-mail: stefano.galantucci@uniba.it)
2University of Bari "Aldo Moro" - Department of Computer Science (e-mail: donato.impedovo@uniba.it)
3University of Bari "Aldo Moro" - Department of Computer Science (e-mail: giuseppe.pirlo@uniba.it)

Research activity co-financed by "Fondo Europeo di Sviluppo Regionale Puglia POR Puglia 2014 - 2020 - Axis I - Specific Objective 1a -
Action 1.1 (RD) - Project Title: CyberSecurity and SOC product Suite" by BV TECH S.p.A. (CUP/CIG B93G18000040007)

ABSTRACT The generation of encrypted channels between more than two users is complex, as it is
necessary to share information about the key of each user. This problem has been partially solved through
the secret sharing mechanism that makes it possible to divide a secret among several participants, so that
the secret can be reconstructed by a well-defined part of them. The proposed system represents an extension
of this mechanism, since it is designed to be applied systematically: each user has his/her key, through
which temporary keys (One Time User Keys) are generated and are used to divide the secret, corresponding
to the real encryption key. The system also overcomes the concept of numerical threshold (i.e., at least n
participants are required to reconstruct the secret), allowing the definition, for each encryption, of which
users can access and which specific groups of users can access. The proposed model can be applied both
in distributed user-based contexts and as an extension of cryptographic functions, without impacting the
overall security of the system. It addresses some requirements of the European Union Council resolution on
encryption and also provides a wide possibility of applications in user-based distributed systems.

INDEX TERMS Secret Sharing, One Time Key, Cryptography, Secret Splitting, Authentication, Multiple
Cryptography.

I. INTRODUCTION

THE secret sharing mechanism is a cryptographic tool de-
signed to divide information among several participants.

Thus it is possible to reconstruct the secret by combining the
information held by a predetermined number of participants.
This mechanism has undergone several formulations over
the years, which have established different secret sharing
schemes and models for reconstruction [1][2][3][4][5].
Generating encrypted channels between more than two users
is complicated in both symmetric and asymmetric encryption
schemes. In asymmetric cryptography, each user has its pri-
vate and public key, but generating a cryptographic channel
between more than two users is not explicitly provided.
In symmetric encryption models, data encryption is done
through a single key, but the key is unrelated to a specific
user (as there is no concept of a private/public key), and
generating a multi-user channel requires agreement among
them in choosing or creating the key. If it is intended to

generate a multi-user encrypted channel with symmetric en-
cryption, a different key must be used for each channel; if
this key is stored, the information is exposed to the inherent
risk due to the storage itself. The model that this work
proposes provides an operational middle ground between
asymmetric and symmetric encryption, aiming to overcome
the limitations mentioned above and allowing easily to have
encrypted channels between multiple users, and accessing the
channel always and only through a single key, which will
always be the same for the user, regardless of the number
of channels on which it is applied. This paper proposes a new
formal model and a possible implementation of this, which
evolves from the classic XOR secret sharing mechanism and
acts as a meta-cryptographic model. This work is not a new
encryption/decryption algorithm, but a model that relies on
existing algorithms, thus ensuring the security of the algo-
rithms already evaluated by the scientific community. This
model, designed to be applied in a systematic manner, allows

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3124637, IEEE Access

the creation of encrypted channels between multiple users.
The main idea is to assign to each user a key, which is the only
one in his/her possession and will always remain the same.
Encrypted channels are then generated between multiple
users, encrypted with a single key, which will be traced to
the keys of the individual users involved, so that it is possible
to derive the real encryption key from the key of a single
user and some additional information. Applying this model,
i.e., adding additional decryption keys, does not impact the
overall security of the system, as will be demonstrated in
section V of this article.
Accordingly, the main contributions of this work are:
• Proposal for a formal meta-cryptographic model that

allows the generation of encrypted channels between
more than two users in a simple manner;

• Implementation of this model through an approach
XOR-ed secret sharing and One Time User Key;

• Extension of this model to groups of keys, overcoming
the concept of the (t, n) thresholds of secret sharing;

• Evaluate model security and formally demonstrate that
the addition of the model does not impact system secu-
rity.
The presented model is designed to be applied in dis-
tributed file systems, in which it is possible to manage

encrypted files and grant them access to a predefined list of
users. Recently it has emerged that the European Union [6]
wishes to provide cryptographic tools, that can be bypassed
by government authorities, to fight terrorism and crime.
Such an application must not impact the security of the
cryptographic algorithm: adding flaws or backdoors in the
algorithms can be dangerous, as those who manage to exploit
such flaws can break a cryptographic system that, it seems,
should become a new standard.
The proposed system can be applied to this end, but without
affecting the overall safety of the system.
This paper is structured as follows: section 2 proposes some
similar approaches; section 3 describes the proposed model;
section 4 provides the Python implementation code of the
model, a complete example of application and a performance
evaluation; section 5 gives a detailed analysis of the system
security; section 6 provides some suggestions for application
possibilities, as well is the conclusions.

II. RELATED WORK
Meng et al. [7] propose a secret sharing scheme based on the
Chinese remainder theorem, developing their previous work
[8], which proposes a general scheme of secret sharing of
type (t,n) that solves some problems of the Shamir’s scheme
[1]. This work analyzes why the Proactive Secret Sharing
(PSS) scheme, i.e. a scheme in which users can refresh
actions without changing the secret, used over an integer ring
cannot work effectively when shares are refreshed too many
times. It also utilizes the Asmuth-Bloom (t,n) threshold SS
to propose a PSS scheme over the integer ring, and the Ning
et al. [8] ideal (t,n) threshold SS for a PSS scheme over a
polynomial ring. Deepika et al. [9] provide two approaches

of a secret sharing scheme, that use an algorithm composed
of XOR operations applied to the Gray code: a 7-out-of-7
scheme and a 3-out-of-7 scheme. Singh et al. [10] use the
Chinese remainder theorem to distribute a number of secrets,
providing a number of parts of the secret equal to the number
of secrets divided. The participants are thus divided into
several levels, and it is possible to reconstruct the secrets
at any of these levels, provided that the threshold (t,n) is
respected. Phiri et al. [11] propose, again with a view to
a secret sharing with threshold (t,n), the application of La-
grange’s polynomial interpolation with the aim of obtaining
the fixed values of output for the function of reconstruction of
the secret. Such an interpolation model can be a valid imple-
mentation for the function ω in this paper, provided that the
possibility of a direct attack on the polynomial using the One
Time User Key scheme is analyzed. Works [7][8][9][10][11],
which make use of thresholds of type (t,n), are designed to be
applied in specific cases: it is not possible to define different
thresholds within the same secret, equating the users. The
proposed work allows the evolution of this scheme, using
groups of keys, which define specifically which groups of
users are sufficient to decrypt, and these groups do not have
to be composed of the same number of users. The previously
mentioned papers are therefore aimed at the application in
specific instances of the problem, whereas the present work
is designed for general and repeated application.
D’Arco et al. [12] propose a probabilistic method for secret
sharing. This model uses a scheme of type (t,n), but with
n=∞, shifting the problem from dividing the secret into valid
subsets to generating t sufficient parts to reconstruct it. The
approach uses access structures, allowing the thresholds of
secret sharing to be extended to potentially infinity, but still
equating users. Unlike our work, paper [12] does not allow
for the possibility of varying parameter t for specific subsets
of users. On the other hand parameter n is free.
Boyle et al. [13] introduce the notion of Function Secret
Sharing (FSS), which applies the secret sharing mechanism
to a binary input function, which generalizes Distributed
Point Functions (DPF), i.e., a primitive created by Gilboa
et al. [14], whose field of application is private information
retrieval. The FSS scheme provides a way to split the function
into different keys. Each key allows the owner to generate
a standard secret share for the evaluation of the function.
An FSS can be used as a method for performing a secret
sharing, obtained by the sum of these functions. This scheme
is improved and extended by Boyle et al. in [15], adding
new FSS constructions from one-way functions via a new
operation, DPF Tensor, that combines FSS schemes. The
method proposed in [13] and [15] shapes secret sharing using
functions as basic elements, unlike the present work that uses
One Time generated keys as the main element. The secret
sharing proposed in the cited works is of the additive type,
whereas the reconstruction in this work is done through the
operation of XOR.
Ding et al. [16] use a class of two-weight and three-weight
codes as an application for secret sharing schemes, since any

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3124637, IEEE Access

linear code on a Galois Field (of odd prime elements) can be
used for such an application. That work has several points in
common with the proposal in this paper, in that it discusses a
subset of participants collaborating for decryption. However,
it does not provide an explicit possibility to define subsets in
a completely arbitrary way.
None of the works examined previously permit the linking of
the secret to user information. The received part of the secret
must be memorized for what it is, and there is no way to
reconstruct this information starting from other information
already known to the user. These works are therefore to be
considered secret-based and not user-based.
Hsu et al. [17] have developed UMKESS, a user-oriented
secret sharing protocol, which uses a dealer, called Key
Generation Center (KGC). This protocol uses secret shar-
ing, instead of RSA asymmetric encryption, as a tool for
broadcast encryption. Our work uses an approach similar to
that of UMKESS. In fact, in both there is a dealer (called
KGC in UMKESS) which is responsible for arbitrating the
system. The main difference between this work and [17] lies
in the way the secret is divided: UMKESS uses Shamir’s
polynomial (t, n) secret sharing scheme, whereas in the
present work a theoretical model is first proposed, whose
implementation of the theoretical function ω can vary. In the
proposed implementation a multiple XOR-ed secret sharing
on the same secret is used. UMKESS has a similar conceptual
approach to the present work in that the system is user-based
and designed to be applied systemically. However, Mitchell
et al [18] have proved that UMKESS does not work in some
cases and is generally insecure.

III. PROPOSED METHOD
A. FORMAL MODEL
The goal is to achieve a system that allows encryption be-
tween multiple users, each with their own key. The system
can be defined through a function. Let K be the set of
possible keys for a certain encryption/decryption algorithm
C. K can be divided into two sets: K+, the set of valid keys
for decrypting a specific channel, and K−, the set of invalid
keys.

K+ ∩K− = ∅ (1)

K+ ∪K− = K (2)

Set I is the set of the users in the system; it is similarly
divided into I+ (authorized users) and I− (unauthorized
users). Encryption will be performed in a standard way by a
single key, called real key k∗ ∈ K. The system must generate
a function ω in K, that, if it receives as input the key of an
authorized user, then returns the real key:

ω : K × I → K (3)

∀k ∈ K+, i ∈ I+ ω(k, i) = k∗ (4)

∀k ∈ K−, i ∈ I− ω(k, i) 6= k∗ (5)

TABLE 1. Table of notations used in the formal model, in One Time User Key
and in the model extension to groups of valid keys

Notation definition
K Set of all possible keys for a certain cryptographic algo-

rithm
K+ Set of valid keys in a specific multiple user cryptography

channel
K− Set of invalid keys in a specific multiple user cryptogra-

phy channel
k∗ Real key used as the encryption/decryption key in the

standard cryptographic algorithm
I Set of all users in the system
I+ Set of authorized users in a specific multiple user cryp-

tography channel
I− Set of unauthorized users in a specific multiple user

cryptography channel
ω(k, i) Transformation function of the key k belonging to the

user i into the real key k∗ if user i is authorized
⊕ XOR operation
k⊕i Part of key obtained by XOR-ed secret sharing of user key

ki and real key k∗
K⊕ Set of all key parts k⊕i
h(m) Standard cryptographic hash function on message m
j Salts number for generating a One Time User Key for a

user
sin n-th salt to be applied in Hi for user i
Si Set of salts to be applied in Hi for user i, composed of

the various sin
S Set of all salts, composed of the various Si

∗ Concatenation function
Hi(k) Function that generates the One Time User Key from a

key k through multiple hashing by applying Si salts
HK+ Set K+ after applying Hi to each key
C(k,m) Decryption function of message m with key k using a

standard cryptographic algorithm
Ω(k, i,m) Function that decrypts message m using user key k

belonging to user i in the multiple user cryptography
channel

K̃+ Set of valid groups of keys in a specific multiple user
cryptography channel (in groups of keys extension)

K̃− Set of invalid groups of keys in a specific multiple user
cryptography channel (in groups of keys extension)

Ĩ+ Set of authorized user groups in a specific multiple user
cryptography channel (in groups of keys extension)

˜I− Set of unauthorized user groups in a specific multiple user
cryptography channel (in groups of keys extension)

k[X] Group key corresponding to the group of keys X , ob-
tained by XOR between the individual One Time User
Keys of the group

[K]+ Set of valid keys K+ in the context of the groups of keys
extension. Set of keys k[X] obtained from the individual
key groups

k⊕
[X]

Part of key obtained by XOR-ed secret sharing of group
key k[X] and real key k∗

ω̃(X,Y) Transformation function of the keys in X belonging to
the users Y into the real key k∗ if the group Y of users is
authorized

Ω̃(X,Y,m) Function that decrypts message m using user keys X
belonging to users in group Y in the multiple user cryp-
tography channel (with groups of keys extension)

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3124637, IEEE Access

Any implementation of ω that ensures conditions (4) and (5)
and does not impact system security is fine for the purposes
of this paper.

B. MULTIPLE XOR-ED SECRET SHARING APPROACH
A valid implementation is possible by defining an XOR-ed
secret sharing for each of the keys in K+:

K+ = {k1, k2, ..., kn} (6)

∀i ∈ [1, n] k⊕i := k∗ ⊕ ki (7)

where ⊕ is the XOR operation between two keys.
Index i represents the user, to whom the key is assigned: key
k1 will be assigned to user 1 and so on. Let all the key parts
obtained by k⊕i be grouped into a set (K⊕):

K⊕ = {k⊕1 , k
⊕
2 , ..., k

⊕
n } (8)

So, function ω can then be implemented as follows:

ω(k, i) := k ⊕ k⊕i (9)

This implementation ensures the validity of (4) for the
properties of XOR operation. (5) is respected since when a
malicious user tries to submit his/her key, he/she will be
forced to identify himself/herself (i.e., in the proposed formal
model he provides his value i), and will therefore have to
pretend to be another legitimate user, submitting his/her key
k⊕i′ . However, the only case in which function ω will return
value k∗ for the user with key ki′ is if he/she submits the
correct key ki, due to the properties of the XOR:

ω(ki′ , i) = ki′ ⊕ k⊕i = k∗ ⇐⇒ ki′ = ki ∈ K+ (10)

To provide a comparison with asymmetric encryption mech-
anisms, it can be considered that, for each user, ki and k⊕i
represent, respectively, private key and public key analogs. ki
represents the private key since it is known only to the user,
whereas k⊕i , the public key, must be known to all to proceed
with decryption. As in asymmetric encryption schemes, the
combination of the two keys enables decryption, in this case,
achieved in the generation of the real key k∗ through the XOR
operation between the two keys.

C. ONE TIME USER KEY
Since each key ki must be the only key in the user’s posses-
sion, using the previous scheme creates the problem that each
user u ∈ I+ can derive the other keys in the same set by the
following algorithm:

1) Calculate ω(k, u) = ku ⊕ k⊕u = k∗
2) Calculate, for all the others i in I+ : ω(k∗, i) =

k∗ ⊕ k⊕i = ki

This problem can be solved by generating, for each encrypted
channel, a One Time User Key (OTUK) for each authorized
user. These keys must be generated from the user keys so that
an OTUK key can be derived from the user key, but not the
contrary.
The solution is provided by cryptographic hash functions.

The chosen hash function h should have an output size
compatible with the used cryptographic function C, since the
output of h will be the key of C:

Ran(h) = K (11)

For each user i ∈ I+ a set of salts sij will be generated
(randomly), with j ≥ 1:

Si = {si1 , si2 , ..., sij} (12)

The j value (i.e., the number of salts to apply) can be different
for each user and each encryption. Having different values of
j involves only a change in the number of times the hash
function must be applied. These salts will need to change for
each cryptographic channel where user i intervenes.
Set S will be the set of salt groups:

S = {S1, S2, ..., Sn} (13)

Let ∗ be the concatenation function. Function H will be
defined as follows:

H : K × I → K (14)

Hi(k) := h(sij ∗ h(sij−1
∗ ...h(si2 ∗ h(si1 ∗ k))...)...) (15)

Each salt can be obtained through a safe random generator.
In particular, the set of salts must always be different for
each new generation. It is crucial that the set of salts be
consistently different for each new generation. In terms of
security, it is sufficient for at least one of them to differ, but
it is strongly recommended that the entire set of salts change.
A current timestamp can also be used as a salt: this allows
it to vary with each new channel generation. Considerations
for balancing time and safety (salt length) proposed in [19]
can be evaluated. A value j = 1 is enough to provide system
security, however, the use of j ≥ 3 is suggested to avoid
possible single hash inversions. The H function will generate
the keys that will be used for encryption, but these will only
be correctly computable by the user in possession of the key
on which the function was executed. The output of the H
function is a new generated key, and it will be a One Time
User Key because it will be used only for the specific channel.
If one of the users in I+ obtains the other K+ keys, and K+

is composed only of One Time User Keys, he/she will have
available keys that can be used only for that specific channel
(where he/she already has his own, so the others are useless)
and he will not be able to get the user keys because of the
non-invertibility of the hash function.
One Time User Key has some points in common with the
One Time Pad [20] mechanism, as both use a different key
for each encryption. The main difference between them is
that One Time Pad uses keys that do not correlate with each
other. However, in the One Time User Key model, each of
these keys is obtained from the user key, so there is a one-way
function H that produces a One Time key from ki. Moreover,
in One Time Pad the key changes constantly to avoid being
attacked by Kasiski’s method [21]. In One Time User Key the
key changes for each channel because, as it can ben derived

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3124637, IEEE Access

FIGURE 1. Example of an application of the model with One Time User Key. The figure shows the decryption phase for user C.

UKA

OTUKA

SA
Multiple hashing

with salts

UKB

SB
Multiple hashing

with salts

UKC

SC
Multiple hashing

with salts

UKD

SD
Multiple hashing

with salts

S

Multiple XOR-ed secret sharing

Decryption
data

Real key k*

1. Model generation and encryption phase

Decryption
algorithm

Encryption
algorithm

OTUKB

Key
parts

OTUKC OTUKD

SC
Multiple hashing

with salts

OTUKC

XOR

Key part k⊕
C

2. Decryption phase (Ω function)

from other valid keys, it could be reused maliciously.
The One Time User Key mechanism is equivalent to the
derived key mechanism (in fact it is not strictly necessary
that the user key size is compatible with the cryptographic
function keys) but differs from the derived key because the
salts must be changed for each different encryption.
Then, to have an effective system, set HK+ is defined from
set K+:

K+ = {k1, k2, ..., kn} (16)

HK+ = {H1(k1),H2(k2), ...,Hn(kn)} (17)

Let C(k,m) be the decryption function of the message m
with key k.
The Ω function that will decrypt a message m starting from
user key k will be:

Ω(k, i,m) = C(ω(Hi(k), i),m) (18)

In this case, the ω function is interpreted to operate with k⊕i
computed from HK+.
Therefore, for each encrypted channel, it will be necessary
to store information for decryption: the enabled users, the
set of salts, and the parts of the key (computed on HK+)
{I+, S,K⊕}.
Fig. 1 shows the complete working of the system: One Time
User Keys are generated (H function) from the keys of
authorized users A, B, C and D using randomly generated
salts (SA, SB , SC , SD); these OTUKs are combined with the

real key k∗ in a multiple XOR-ed secret sharing, generating
the key parts (K⊕ set); the decryption data (S and the key
parts) are stored; in the decryption phase, the user C takes
his/her salts SC from the decryption data, generates his/her
One Time User Key and combines it by XOR with the key
part k⊕C (that is stored in decryption data), obtaining the real
key k∗.
The addition of the One Time User Key mechanism changes
the analogy between the keys and the idea of private and
public key. The public key k⊕i (computed on HK+) is un-
changed, since it needs to be public; ki continues to represent
the private key available to the user. However, the real private
key of the single encryption is Hi(ki), which is derived
directly from ki and the salts.

D. GROUPS OF VALID KEYS
The model can be extended from single keys to groups of
valid keys by transforming set K+ ⊂ K into K̃+ ⊂ P (K).
The algorithm will return the real key when all the keys of a
certain valid set are submitted. A single k ∈ K can be part of
zero, one or more K̃+ elements.
This extension involves rephrasing (4) and (5) in the follow-
ing manner, considering K̃+ as the set of single sets of valid
keys, and K̃− = P (K)− K̃+

ω̃ : P (K)× P (I)→ K (19)

∀X ∈ K̃+, Y ∈ Ĩ+ ω(X,Y) = k∗ (20)

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3124637, IEEE Access

FIGURE 2. Example of an application of the model with Group Keys. In the figure, the decryption phase for the [C, D] users is shown.

UKA

OTUKA

SA
Multiple hashing

with salts

UKB

SB
Multiple hashing

with salts

UKC

SC
Multiple hashing

with salts

UKD

SD
Multiple hashing

with salts

S

Multiple XOR-ed secret sharing

Decryption
data

Real key k*

1. Model generation and encryption phase

Decryption
algorithm

Encryption
algorithm

OTUKB

Key
parts

OTUKC OTUKD

SC
Multiple hashing

with salts

OTUKC

XOR

Key part k⊕
CD

2. Decryption phase (Ω function)

XOR XOR

GroupKeyAB GroupKeyCD

SD
Multiple hashing

with salts

OTUKD

XOR

GroupKeyCD

∀X ∈ K̃−, Y ∈ Ĩ− ω(X,Y) 6= k∗ (21)

The result is obtained by returning the problem from the
domain of valid key sets to single valid keys. It is then
necessary to obtain a single valid key from each set in K̃+.
This can be achieved, again, by using secret splitting:

X = {k̃1, k̃2, ..., k̃m} ∈ K̃+ (22)

k[X] = H1(k̃1)⊕ H2(k̃2)⊕ ...⊕ Hm(k̃m) (23)

Then set K̃+ will be represented and transformed into set
K+ (hereafter referred to as [K]+ to differentiate the nota-
tions) by the following conversion rule:

[K]+ := {k[Y]|Y ∈ K̃+} (24)

The key parts in K⊕ will then be derived from the keys
k[1], k[2], ..., k[m]. Function ω is rewritten as follows:

X ′ = {ka, kb, ..., kz} ∈ K̃+ (25)

Y ′ = {a, b, ..., z} (26)

k⊕[X′] = (k∗⊕Ha(ka)⊕Hb(kb)⊕ ...⊕Hz(kz)) ∈ K+ (27)

ω̃(X ′, Y ′) := k⊕[X′]⊕(Ha(ka)⊕Hb(kb)⊕...⊕Hz(kz)) (28)

and function Ω becomes:

Ω̃(X ′, Y ′,m) = C(ω̃(X ′, Y ′),m) (29)

Fig. 2 shows the complete working of the system using
Groups Keys: the authorized users are the pairs [A,B] and
[C,D]; a One Time User Key is generated for each of the four
users involved using the randomly generated salts (SA, SB ,
SC , SD); the OTUKs of users A and B are combined through
XOR generating the Group Key AB and the same happens for
users C and D; these Group Keys are used for multiple XOR-
ed secret sharing with the real key k∗, generating the key parts
that will be stored together with the salts; in the decryption
phase, users C and D generate their own OTUKs using the
salts present in the stored data (SC and SD) and combine
these by XOR, obtaining the Group Key CD; this Group Key
is combined by XOR with the key part k⊕CD, obtaining the
real key k∗.

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3124637, IEEE Access

E. DEALER AND KEY MANAGEMENT

The implementation of the model needs an arbitrator (dealer).
The dealer must provide at least the following functions:

• Accrediting users in the system;
• Generating for each cipher the real key k∗;
• Securely retrieving a single One Time User Key from

each user;
• Generating sets HK+,K⊕, K̃+ from the One Time

User Keys;
• Providing individual parties with decryption informa-

tion for each encrypted channel;
• Regenerating data in the case of change in access per-

missions of individual users (i.e. in the case of I+ and
I− changes on a single encryption).

Each user must be equipped with an application that allows
him to generate his/her own One Time User Keys and transfer
them to the dealer. Each user must also be able to read
the decryption information of each channel and must be
able to apply the ω and Ω functions. Users must be able to
communicate confidently with the dealer.
The dealer doesn’t necessarily have to be a third-party
trustee, but could also be impersonated from time to time
by a different user, who acts as the coordinator. The detailed
implementation of the dealer is not the object of the present
theoretical study, as these features would have quite different
applications, depending on the purposes for using this model.
For example, where the model is to be used in a distributed
file system, it is easily handled by a trusted third-party dealer
acting as a super-user within the system. If the model is
to be used for the implementation of the requirements of
the European Union Council resolution on cryptography, the
situation has to be treated in a completely different way, since
the main goal would be to generate trusted One Time User
Keys starting from the user key of government institutions.
Therefore, it would be necessary to develop a library or a
hardware implementation that hooks up to external genera-
tors through the network, or to pre-packaged generators (such
as bank OTPs).
A possible protocol for the dealer (Fig. 3) that acts like a

Public Key Infrastructure: the dealer is a user of the system,
he/she generates his/her key and acts as a third party. The
dealer issues user keys to individual users and, immediately
after, generates through the One Time User Key model an
encrypted channel between the user just created and the
dealer. This is possible because the dealer knows the user
key, since he/she issued it, therefore, he/she can generate a
One Time User Key for that user and couple it to a One
Time User Key linked to his key. Once everything is done,
he/she no longer needs to store the user key of the new user.
By having secure channels between the dealer and each user,
the dealer can exercise its arbitrage functions by requesting
and receiving One Time User Keys from individual users. In
the case of key groups, it is still the dealer who builds the
group keys. There is no need to authenticate the dealer to the
users, because the users never transmit the user key to the

FIGURE 3. Example of dealer protocol

Dealer User A User B

Dealer generates a One Time User Key for
user A and for himself, choose a real key and
generates an encrypted channel via the two

OTUKs

Dealer generates a One Time User Key for
user B and for himself, choose a real key and
generates an encrypted channel via the two

OTUKs

Step 1: User A creation

Following this step, the Dealer deletes
A's user key and there is an encrypted

channel between A and the Dealer

Step 2: User B creation

Following this step, the Dealer deletes
B's user key and there is an encrypted

channel between B and the Dealer

A generates its own One Time
User Key to communicate with B

B generates its own One Time
User Key to communicate with A

Step 3: A-B communication

A and B decide to communicate with
each other, provide this information to
the dealer in some way, generate their
own keys and the dealer creates the
communication channel. Following
this, the dealer deletes the two One

Time User Keys received.

Dealer choose a real key and generates an
encrypted channel via the two OTUKs received

In square brackets, the
communications between the

dealer and the users that
take place through the
encrypted user-dealer

channel

Generate and send user key for User A

Generate and send user key for User B

Encrypted channel data

Encrypted channel data

[OTUK to communicate with B]

[OTUK to communicate with A]

[Encrypted channel data (A-B)]

[Encrypted channel data(A-B)]

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

dealer, but at most the One Time User Keys, which, even in
clear text, have no value if not used in encryption. A fake
malicious dealer can then ask the user for an infinite number
of One Time User Keys, however, will not be able to derive
the user key or keys of other encryptions because of the non-
invertibility of the cryptographic hash function. In any case,
the dealer communicates with the users only through the
generated encrypted channels, so a malicious dealer cannot
intrude into a channel managed by a trusted dealer, since
the intruder, to communicate with the user, would have to
know the dealer-user channel key. Similarly, the dealer never
transmits critical information to the user, except when issuing
the key, so the user does not need to be authenticated to the
dealer. The only problem is if the dealer who emits the user
key is malicious: the dealer could store the information of
the user key, One Time User Keys, or real keys and use it to
decrypt the channels generated later between users.

IV. PYTHON ALGORITHM IMPLEMENTATION
Here below we present the implementation in Python of the
single functions constituting the model.

class Key:
def __init__(self, keyData, users, keyType

, salts):
self.keyData = keyData
self.users = users
self.keyType = keyType
self.salts = salts

def generateOTUK(userKey, salts):
x = userKey.keyData
for salt in salts:

x = hashFunction(concatenation(salt, x))
return Key(x, userKey.users, "OTUK", salts

)

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3124637, IEEE Access

def generateGroupKey(OTUKs):
key = zeros(key_size) #create a bytes

0000...
saltdb = {}
usersset = set()
for OTUK in OTUKs:

key = XOR(key, OTUK.keyData)
saltdb[OTUK.users] = OTUK.salts
usersset.add(OTUK.users)

return Key(key, sorted(usersset), "
GroupOTUK", saltdb)

def generateCryptoChannel(realKey, groupKeys
):

#IMPORTANT: Each user must be assigned the
same salts, even if he participates in
more than one set of keys

decipherData = {"keyparts": {}, "salts":
{}}

for groupKey in groupKeys:
key = XOR(realKey.keyData, groupKey.

keyData)
users = repr(groupKey.users)
decipherData["keyparts"][users] = key
for user in groupKey.users:

decipherData["salts"][user] = groupKey
.salts[user]

return decipherData

def decryptData(data, userKeys, decipherData
):

OTUKs = []
for userKey in userKeys:

OTUKs.append(generateOTUK(userKey,
decipherData["salts"][userKey.users])
)

grKey = generateGroupKey(OTUKs)
realKeyData = XOR(grKey.keyData,

decipherData["keyparts"][repr(grKey.
users)])

decrypt(data, realKeyData)

The example code for generating an encrypted channel be-
tween a user A and a user B (I+ = {A,B}) is

>>> 1. User keys generation
ukey_A = randomKey("UserA")
ukey_B = randomKey("UserB")

>>> 2. Real key generation and data
encryption

realK = randomKey("THEREALKEY")
encryptedData = encrypt(data, realK.keyData)

>>> 3. Generation of an OTUK for each user
j is number of salts
OTUK_A = generateOTUK(ukey_A, generatesalts(

j, salt_size))
OTUK_B = generateOTUK(ukey_B, generatesalts(

j, salt_size))

>>> 4. Generation of a Group Key for each
OTUK

Group Keys in this case are equivalent to
the OTUKs because allowed groups of users
are [A] and [B]

group_A = generateGroupKey([OTUK_A])

group_B = generateGroupKey([OTUK_B])

>>> 4. Generation of encrypted channel
data

decipherAB = generateCryptoChannel(realK, [
group_A, group_B])

>>> 5. Deciphering by users

#USER A
decryptData(encryptedData, [ukey_A],

decipherAB)

#USER B
decryptData(encryptedData, [ukey_B],

decipherAB)

The example code for generating an encrypted channel au-
thorizing Ĩ+ = {{A,B}, {C,D}, {E}} is

>>> 1. User keys generation
ukey_A = randomKey("UserA")
ukey_B = randomKey("UserB")
ukey_C = randomKey("UserC")
ukey_D = randomKey("UserD")
ukey_E = randomKey("UserE")

>>> 2. Real key generation and data
encryption

realK = randomKey("THEREALKEY")
encryptedData = encrypt(data, realK.keyData)

>>> 3. Generation of an OTUK for each user
j is number of salts
OTUK_A = generateOTUK(ukey_A, randomsalts(j,

salt_size))
OTUK_B = generateOTUK(ukey_B, randomsalts(j,

salt_size))
OTUK_C = generateOTUK(ukey_C, randomsalts(j,

salt_size))
OTUK_D = generateOTUK(ukey_D, randomsalts(j,

salt_size))
OTUK_E = generateOTUK(ukey_E, randomsalts(j,

salt_size))

>>> 4. Generation of a Group Key for each
group

group_AB = generateGroupKey([OTUK_A, OTUK_B
])

group_CD = generateGroupKey([OTUK_C, OTUK_D
])

group_E = generateGroupKey([OTUK_E])

>>> 4. Generation of encrypted channel
data

decipherData = generateCryptoChannel(realK,
[group_AB, group_CD, group_E])

>>> 5. Deciphering by users groups
#This is just an inshore example, actually

to perform decryption, individual users
generate their own OTUKs and combine them
via XOR

#USER A-B
decryptData(encryptedData, [ukey_A, ukey_B],

decipherData)

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3124637, IEEE Access

#USER C-D
decryptData(encryptedData, [ukey_C, ukey_D],

decipherData)

#USER E
decryptData(encryptedData, [ukey_E],

decipherData)

A. A COMPLETE APPLICATION EXAMPLE

Below is a complete application example. Keys and salts are
expressed in the hexadecimal notation of their component
bytes. The keys have a size of 256 bits (32 bytes); the salts
are generated in groups of 3, each with a size of 10 bytes.
The hashing algorithm used is SHA256.

Real Key
k∗ = 1b950c8f7669370b7c875c116bf7ed9833a4
db32f56b007515bef42a3a1fab19

User Keys
ukA = 8d36c127bb7d012303460e3acaec175adf1
93428f0304564b19bd696c6c9a66d
ukB = 14e3e502710a39e84ecaaaafb18341d80dd
51fb20efe2f5f84f9151d61219f0d
ukC = da3037a8cddd0f3ace3b741534cb14c811d
1c3d0895999d617afdf219af62151
ukD = 2c394bc4cc865c42a44e7b5ed71e186eefb
90f9f0d17bb297be6885e07cecf04
ukE = 847ea5dc50d46ebdfa3aac5e08ec95bd127
8dcdb88764be532b2a4cff604d785

Generation of One Time User Keys

User A
SA = {6f1d9a5993ebdea3261f, fc8ff4103551d7
2aaddd, 4569c24eeebe54d4a631}
OTUKA = HA(ukA) = a11e6b457758ebad3895d75
8001356d73c5de06fd2f3771892c5bf610acb030
7

User B
SB = {b8989ca2bda49aaec6d8, ce02819fea290f
f5132e, 4530b6988cbd55d1effe}
OTUKB = HB(ukB) = 8af560fce41bd07aaa95ab5
48e3ec3e96c66c4fdbf7718318064b6c2e20b869
8

User C
SC = {ea5c51826f804136a49b, 6f19ce91885062
466e1e, ee01fae38806f5a0f69c}
OTUKC = HC(ukC) = c6c956f3196e354a2e82030
525813581eb23bc18da9cf79d4f694b3d3060bb1
4

User D

SD = {e86f0d1fe10ed91c0bb7, a336e71b5a254c
dd2c36, 313512cae5052bf021d5}
OTUKD = HD(ukD) = dd810e714959e1e58ddc78
a23ecc36b8613d4aa079c87ceadfb60d2e2ee911
cc

User E
SE = {57e7f6a2b6f2124beafe, 3fe34d9e292485
fc8abb, a652bb45a873906d5016}
OTUKE = HE(ukE) = 25deee26ef08e42cb185461
fe3ddeeda6d4ab82281ae27eb21a5e8dc8c056f3
a

Generation of Group Keys
Ĩ+ = {{A,B}, {C,D}, {E}}

Group A-B
k[A,B] = OTUKA ⊕OTUKB = 2beb0bb993433bd79
2007c0c8e2d953e503b24926d846f2912a109a3e
8c0859f

Group C-D
k[C,D] = OTUKC ⊕OTUKD = 1b4858825037d4afa
35e7ba71b4d03398a1ef6b8a3548b7790df46131
e89aad8

Group E
k[E] = OTUKE = 25deee26ef08e42cb185461fe3
ddeeda6d4ab82281ae27eb21a5e8dc8c056f3a

Generation of set K⊕

Group A-B
k⊕[A,B] = k[A,B] ⊕ k∗ = 307e0736e52a0cdcee87201d
e5da78a6639fffa098ef6f5c071ffd89d2df2e86

Group C-D
k⊕[C,D] = k[C,D] ⊕ k∗ = 00dd540d265ee3a4dfd927b6
70baeea1b9ba2d8a563f8b028561b239249601c1

Group E
k⊕[E] = k[E] ⊕ k∗ = 3e4be2a99961d327cd021a0e882
a03425eee631074c5279e341b1cf6b61ac423

Decryption attempts

Using only key A - A tries to force deciphering by itself
OTUKA ⊕ k⊕[A,B] = 91606c739272e771d612f745e
5c92e715fc21fcf4a1c184495da42e8d8142d81 7
OTUKA ⊕ k⊕[C,D] = a1c33f4851060809e74cf0ee7
0a9b87685e7cde584ccfc1a17a40d582e5d02c6 7
OTUKA ⊕ k⊕[E] = 9f5589ecee39388af597cd56883
9559562b3837fa6365086a6dea397bcd1c724 7

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3124637, IEEE Access

Using only key B - B tries to force deciphering by itself
OTUKB ⊕ k⊕[A,B] = ba8b67ca0131dca644128b496
be4bb4f0ff93b5d2798776d877b4b4b30d4a81e 7
OTUKB ⊕ k⊕[C,D] = 8a2834f1c24533de754c8ce2f
e842d48d5dce977e9489333050504fbc69d8759 7
OTUKB ⊕ k⊕[E] = b4be82557d7a035d6797b15a061
4c0ab3288a7edcbb23fafb47faa34541142bb 7

Using only key C - C tries to force deciphering by itself
OTUKC ⊕ k⊕[A,B] = f6b751c5fc443996c0052318c
05b4d2788bc43b8427398c14876b6b4e2bf9592 7
OTUKC ⊕ k⊕[C,D] = c61402fe3f30d6eef15b24b35
53bdb20529991928ca37c9fca08f90414f6bad5 7
OTUKC ⊕ k⊕[E] = f882b45a800fe66de380190bada
b36c3b5cddf08ae59d0037b7257cb867a7f37 7

Using only key D - D tries to force deciphering by itself
OTUKD ⊕ k⊕[A,B] = edff0947ac73ed39635b58bfd
b164e1e02a2b500e12713b6d8a9f0a7fc363f4a 7
OTUKD ⊕ k⊕[C,D] = dd5c5a7c6f07024152055f144
e76d819d887672a2ff7f7e85ad7bf170a7f100d 7
OTUKD ⊕ k⊕[E] = e3caecd8d03832c240de62acb6e
635fa3fd329b00d0d5b74ebad11d898f3d5ef 7

Using only key E - E lawfully accesses
OTUKE ⊕ k⊕[E] = 1b950c8f7669370b7c875c116bf
7ed9833a4db32f56b007515bef42a3a1fab19 3
for completeness:
OTUKE ⊕ k⊕[A,B] = 15a0e9100a22e8f05f0266020
607967c0ed54782194148b726ba15555eda41bc 7
OTUKE ⊕ k⊕[C,D] = 2503ba2bc95607886e5c61a99
367007bd4f095a8d791ace9a4c45ae5a8936efb 7

Using another OTUK for E - Someone has obtained this key,
used in another encrypted channel, and tries to use it
SE2

= {6cadf033d25b6b1aa38e, 4b2a0ae00c066
7c53cb7, acf5aa0fa48eaa506b04}
OTUKE2 = HE2(ukE) = 3a3afab8d007ba0ddb17e
0fe708fe349627cab2d14d48645334d33ee63213
ac1
OTUKE2

⊕ k⊕[A,B] = 0a44fd8e352db6d13590c0e39
5559bef01e3548d8c3be9193452ce67b1fe1447 7
OTUKE2

⊕ k⊕[C,D] = 3ae7aeb5f65959a904cec7480
0350de8dbc686a742eb0d47b62c81d747b73b00 7
OTUKE2 ⊕ k⊕[E] = 047118114966692a1615faf0f8
a5e00b3c92c83d6011a1db07562f18d53bfee2 7

Using group key A-B - A-B lawfully accesses
k[A,B] ⊕ k⊕[A,B] = 1b950c8f7669370b7c875c116bf7
ed9833a4db32f56b007515bef42a3a1fab19 3

for completeness:
k[A,B] ⊕ k⊕[C,D] = 2b365fb4b51dd8734dd95bbafe97
7b9fe98109183bbbe42b97c0bb9acc56845e 7
k[A,B] ⊕ k⊕[E] = 15a0e9100a22e8f05f02660206079
67c0ed54782194148b726ba15555eda41bc 7

Using a new group key B-C - B and C try to force decipher
by combining their keys
k[B,C] = OTUKB ⊕OTUKC = 4c3c360ffd75e5308
417a851abbff668874578e565ebefaccf0dfdffd
26b3d8c
k[B,C] ⊕ k⊕[A,B] = 7c423139185fe9ec6a90884c4e65
8ecee4da8745fd0480f0c812007600b4130a 7
k[B,C]⊕ k⊕[C,D] = 4ce16202db2b06945bce8fe7db05
18c93eff556f33d464ae4a6c4fc6f6fd3c4d 7
k[B,C] ⊕ k⊕[E] = 7277d4a6641436174915b25f2395f
52ad9ab1bf5112ec832fb16e1096471f9af 7

Using group key C-D - C-D lawfully accesses
k[C,D]⊕ k⊕[C,D] = 1b950c8f7669370b7c875c116bf7
ed9833a4db32f56b007515bef42a3a1fab19 3
for completeness:
k[C,D] ⊕ k⊕[A,B] = 2b365fb4b51dd8734dd95bbafe97
7b9fe98109183bbbe42b97c0bb9acc56845e 7
k[C,D] ⊕ k⊕[E] = 2503ba2bc95607886e5c61a993670
07bd4f095a8d791ace9a4c45ae5a8936efb 7

B. PERFORMANCE
Table 2 shows the time performance in generating One Time
User Keys. The hashing algorithm used is SHA-256. This
performance is calculated on Google Colaboratory (without
using hardware acceleration) and is inclusive of the random
salt generation time. Each reported time is calculated as the
arithmetic mean of 20,000 One Time User Key generations
using the reference salt number-dimension configuration. It

TABLE 2. Time performance in OTUK generation. Each value is in e-05
seconds.

Salt size (bytes)
5 10 20 30 40 50

Salt number 3 1.148698 1.077464 1.172358 1.147355 1.292105 1.329993
4 1.437464 1.413291 1.443406 1.505799 1.62866 1.709932
5 1.75503 1.676196 1.689763 1.791142 2.053413 2.009451
6 1.990707 1.969763 2.038242 2.156322 2.379203 2.358516
7 2.288272 2.275149 2.334738 2.414774 2.700992 2.656931
8 2.581429 2.583169 2.579329 2.77001 3.104515 3.0252
9 2.854338 2.822433 2.881157 3.112465 3.406454 3.38677
10 3.188862 3.136392 3.223689 3.373617 3.663958 3.878438
11 3.436275 3.508794 3.449614 3.739653 4.079279 4.113926
12 3.678104 3.763142 3.733964 3.981841 4.435476 4.41532
13 4.057726 3.967748 4.057006 4.296496 4.76375 4.797256
14 4.343076 4.336928 4.298309 4.61588 5.153102 5.051832
15 4.604455 4.515618 4.623206 5.007675 5.451142 5.458481

can be observed that as the number of salts increases (param-
eter j), there is a considerable increase in the generation time
of the One Time User Key. The size of the salts does not prove
to be a particularly relevant parameter, in comparison with
the number of hashing operations to be performed. Therefore,

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3124637, IEEE Access

it is possible to choose a value j that balances the need for
performance and security in terms of non-invertibility.

V. SYSTEM SECURITY
A. ONE TIME USER KEY STRENGTH
The security of the OTUK mechanism depends on the se-
curity of the hash algorithm used and the size of the salts.
A fundamental condition for the operation is to change the
salts for each encryption, otherwise, the user’s key could be
exposed. Thus, the security of such a mechanism depends
substantially on the possibility of having a collision between
any two user keys, which produce, with a certain combination
of salts, the same OTUK. The choice of the parameter of the
number of salts has an impact on security: as the number of
salting and encryption processes increases, the possibility of
collisions occurring increases. However, this consideration
should be deferred to the security of the hashing algorithm.
In theory, where there should be a repetition of some salts for
the same user, it is better for security that only the first salts
used are repeated, because the more salts are repeated, the
more it is (theoretically) possible to reverse the encryption
or generate a collision on OTUKs. This consideration is,
however, overzealous, because if it were possible to reverse
even a single hash in a situation like this, in which the
keys are completely unrelated to any semantic interpretation,
the hashing algorithm used would be considered unsafe. If
only the last salts were to be repeated, so the first salts are
different, thus would not be a problem because the process
of generating One Time User Keys would apply those salts
on completely different values. Whether any OTUK can
be traced back to the user key depends only on the non-
invertibility of the chosen hash function. Dictionary or rain-
bow table attacks aimed at inverting the hash have extremely
limited effectiveness, since none of the One Time User Keys
comes from values with semantic meaning, but only from
random bit sequences.
What is expressed depends only on the cryptographic hash
function chosen, so it is independent of the proposed model.

B. STRENGTH OF MULTIPLE SECRET SHARING
In the proposed method, the same secret (k∗) is shared in
different ways with each participant. Set K⊕ is public and
known to everyone:

K⊕ = {k⊕1 , k
⊕
2 , ..., k

⊕
n } (30)

k⊕1 = k1 ⊕ k∗ (31)

k⊕2 = k2 ⊕ k∗ (32)

... (33)

k⊕n = kn ⊕ k∗ (34)

It is necessary to understand what information about k∗ can
be exposed by this procedure.
Obtaining k∗ from K⊕ is not possible. The only way to

obtain the value of k∗, starting with K⊕, is to have an
expression in the form:

k∗ = x⊕ k∗︸ ︷︷ ︸
∈K⊕

⊕x (35)

It is obvious that x ∈ K+, so the only way to derive k∗ is to
have one of the valid keys.
Combining the elements of K⊕ does not produce informa-
tion about k∗. Taking any subset T ⊆ K⊕ (|T | > 1),
performing the XOR operation among the elements of T , viz.:

T = {k⊕a , k⊕b , ..., k
⊕
z } ⊆ K⊕ (36)

t⊕ = k⊕a ⊕ k⊕b ⊕ ...⊕ k⊕z (37)

can lead to only two different situations:
1) If |T | is even: t⊕ = ka ⊕ kb ⊕ ...⊕ kz , which does not

contain information about k∗;
2) If |T | is odd: t⊕ = k∗⊕ka⊕kb⊕ ...⊕kz , which leads

to a more complex case than the one currently being
solved.

It is still possible to combine situation (1) and situation (2),
i.e., to simultaneously find values t⊕ and t⊕ ⊕ k∗:

t⊕ ⊕ (t⊕ ⊕ k∗) = k∗ (38)

However, this is not possible since for both to be computable
it must be simultaneously true that |T | is even and that |T | is
odd.
The most information that can be obtained is by taking two by
two elements of K⊕ and performing the XOR between them.
The result show which bits each OTUK key has in common.
As demonstrated in the next section, this information is not
useful. If the keys had a semantic value (e.g. they were im-
ages), this would be a problem since the XOR between them
would allow us to display the two overlapping semantics.
However, in the proposed system, these are keys produced by
hashing and used only once, so the problem does not arise.

C. BRUTEFORCE ATTACK
It could be assumed that the presence of multiple valid keys
in this system increases the possibility of a bruteforce attack,
but this is demonstrably not the case. This demonstration
certainly applies to what is expressed in III-C, and, since the
case in III-D is traced back to the case in III-C, it applies also
for the III-D extension.
To perform a bruteforce attack, it is necessary to find a key
that has already been hashed, as hashing operations would
only lead to a slowdown of the attack.
Having K+ = {k1, k2, ..., kn},K⊕ = {k⊕1 , k

⊕
2 , ..., k

⊕
n } and

k∗, a bruteforce attack means one of the following:
0. Attempting all possible keys directly on the decryption

algorithm C until k∗ is found;
1. Attempting all possible keys, performing XOR with k⊕1

and checking if the result is k∗ by decryption C;
2. Attempting all possible keys, performing XOR with k⊕2

and checking if the result is k∗ by decryption C;

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3124637, IEEE Access

...
n. Attempting all possible keys, performing XOR with k⊕n

and checking if the result is k∗ by decryption C.
Problems (0.), (1.), (2.), ..., (n.) are equivalent to each other.
As explained in V-B, only key similarity information can be
obtained. This information does not allow us to improve the
bruteforce attack: each of the problems (0.), (1.), (2.), ...,
(n.) can be traced back to one of these problems, hereafter
referred to as (p.), of our choice. This is done by choosing as
a reference the key k⊕p and rewriting the other keys according
to it.
Below evidence of this is provided through a practical exam-
ple:

Secret Information - not known

k∗ = 11110110

K+ = {k1, k2, k3, k4}
k1 = 10001010
k2 = 01100111
k3 = 10101011
k4 = 00011010

k⊕1 = k1 ⊕ k∗ = 10001010⊕ 11110110 = 01111101
k⊕2 = k2 ⊕ k∗ = 01100111⊕ 11110110 = 10010001
k⊕3 = k3 ⊕ k∗ = 10101011⊕ 11110110 = 01011101
k⊕4 = k4 ⊕ k∗ = 00011010⊕ 11110110 = 11101101

Public Information - usable

K⊕ = {k⊕1 , k
⊕
2 , k

⊕
3 , k

⊕
4 }

k⊕1 = 01111101
k⊕2 = 10010001
k⊕3 = 01011101
k⊕4 = 11101101

In the example, assign p = 3, i.e., it is required to trace
problems (1.), (2.) and (4.) back to (3.).
Let key kp (in this example key k3) be defined as a sequence
of bits b:

kp = k3 = [b1|b2|b3|b4|b5|b6|b7|b8]

Now check, bit by bit, taking the bits of k⊕p as a reference,
when the bits of the other keys k⊕i are the same (not under-
lined) and when they are different (underlined):

k⊕1 = 01111101
k⊕2 = 10010001
k⊕3 = 01011101
k⊕4 = 11101101

Consider with notation ki[j] the bj relative to key ki.
Now the keys k1, k2, k4 can be rewritten as a function of k3:

∀ki, i 6= p ∀j k′i[j] =

{
bj , if bj = k⊕i [j]

b̄j , if bj 6= k⊕i [j]

The keys are then rewritten as:

k1 = [b1|b2|b̄3|b4|b5|b6|b7|b8]

k2 = [b̄1|b̄2|b3|b4|b̄5|b̄6|b7|b8]
k3 = [b1|b2|b3|b4|b5|b6|b7|b8]
k4 = [b̄1|b2|b̄3|b̄4|b5|b6|b7|b8]

This does not add any kind of information about the key k∗,
since

∀j bj = kp[j]⊕ k∗[j]

which depends only on the keys kp and k∗, that are unknown
to us. Thus, it is possible to know the value of bj as a function
of other values, but never the actual boolean value, providing
no advantage whatsoever in a bruteforce attack, since it is
impossible to determine the value of any bit a priori. There
is also no correlation between any two bx and by , since the
operation XOR is bitwise.
Therefore, it is possible, by employing bj , to trace the prob-
lem (i.) of finding any valid ki back to the problem (p.)
of finding kp, since there is a biunivocal correspondence
between each key searched in the domain of the problem
(i.) with a key searched in the domain of the problem (p.).
Similarly, by transitivity, there is an obvious correspondence
between all problems in this class. This correspondence oc-
curs by placing each bj equivalent to the bit of the attempted
key in the domain (p.). In the example above:

Trying the key 01010101 in the problem domain (p.)/(3.)

kp = k′3 = [b1|b2|b3|b4|b5|b6|b7|b8]

= [0 | 1 | 0 | 1 | 0 | 1 | 0 | 1]

is equivalent in domain (1.) to trying the key

k′1 = [b1|b2|b̄3|b4|b5|b6|b7|b8]

= [0 | 1 | 1 | 1 | 0 | 1 | 0 | 1]

and is equivalent in domain (2.) to trying the key

k′2 = [b̄1|b̄2|b3|b4|b̄5|b̄6|b7|b8]

= [1 | 0 | 0 | 1 | 1 | 0 | 0 | 1]

and is equivalent in domain (4.) to trying the key

k′4 = [b̄1|b2|b̄3|b̄4|b5|b6|b7|b8]

= [1 | 1 | 1 | 0 | 0 | 1 | 0 | 1]

and they are all equivalent to trying, in domain (0.), the key
00001000 directly

(1.) k′1 ⊕ k⊕1 = 01110101⊕ 01111101 = 00001000
(2.) k′2 ⊕ k⊕2 = 10011001⊕ 10010001 = 00001000
(3.) k′3 ⊕ k⊕3 = 01010101⊕ 01011101 = 00001000
(4.) k′4 ⊕ k⊕4 = 11100101⊕ 11101101 = 00001000

Attempting a certain key also does not result in excluding
|K+| keys from it, since the rejection of that key applies only
to the attempt of the user of the domain in which the key is
being tested. To exclude equivalent keys in other domains, it
is still necessary to test them.
In conclusion, problems (1.), ... (n.) are mutually equivalent
and correspond to a key bruteforce attempt, with the addition
of an XOR operation for each key attempted. Attempting
this way is, because of the XOR operation, more onerous

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3124637, IEEE Access

than directly attempting bruteforce on k∗, so problem (0.) is
always preferable. Since direct bruteforce on the algorithm is
the best attack attempt, the problem is deferred to the security
of the chosen cryptographic algorithm, so the problem is
independent of the use of the proposed system.

VI. CONCLUSIONS
In this paper, a new user-based cryptographic model for
generating encryption among multiple users is proposed. The
proposed model allows obtaining mutually equivalent keys.
In the proposed implementation, these keys are associated
with user keys through the One Time User Key mechanism,
to participate in a certain encrypted communication. The
transmission of keys between the parties is done and the
choice of the real key is make through a synchronization
protocol, for which a possible mode of operation is proposed.
The mechanism proves to be a decorator concerning current
symmetric encryption mechanisms and is similarly applica-
ble in asymmetric encryption mechanisms.
It has been proved that the security of the model depends
solely on the cryptographic functions chosen and the size of
the keys. So the system, as it is proposed, proves to be a non-
impactful addition to security, as it depends only on factors
not directly related to the system itself.
The proposed mechanism can be applied in distributed user-
based systems, where ad-hoc encryptions can be defined
based on the users who will be able to access this informa-
tion. However, a dealer is needed to manage the keys, and, in
particular, to generate and choose key k∗, and consequently
set K⊕. It is necessary to use a synchronization protocol
between the parties to make the system work, and if the
proposed example protocol is chosen, the dealer must be
benevolent, otherwise the dealer could illegally decrypt the
communications between users. The system also needs to
store information in addition to the encrypted data, as this
information is essential for decryption.
The model can be used by government agencies by providing
new cryptographic algorithms that already contain such a
mechanism. The model becomes even more effective if, of
course, such a mechanism is implemented in a hardware
manner, effectively forcing users to use it. In this specific
case, an OTUK, derived from a user key corresponding to the
user Government, must also be added for each cipher. The
chips should therefore be supplied with a government OTUK
generator, without ever exposing the user key, or with a num-
ber of these keys. In the latter case, it is best that each chip
has different lists. It is also possible to avoid concentrating
the decryption power in a single key by distributing it among
different keys assigned to different agencies, as specified
in the III-D section. Thus, it is necessary for government
agencies to work together to enable the specific decryption.

REFERENCES
[1] A. Shamir, “How to share a secret,” Communications of

the ACM, vol. 22, no. 11, pp. 612–613, 1979.
[2] G. R. Blakley, “Safeguarding cryptographic keys,”

in Managing Requirements Knowledge, International
Workshop on, 1979, pp. 313–313.

[3] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch,
“Verifiable secret sharing and achieving simultaneity in
the presence of faults,” in 26th Annual Symposium on
Foundations of Computer Science (sfcs 1985), 1985,
pp. 383–395.

[4] D. R. Stinson, “An explication of secret sharing
schemes,” Designs, Codes and Cryptography, vol. 2,
no. 4, pp. 357–390, 1992.

[5] E. Dawson and D. Donovan, “The breadth of shamir’s
secret-sharing scheme,” Computers & Security, vol. 13,
no. 1, pp. 69–78, 1994.

[6] Council of the European Union, Council Resolution on
Encryption Security through encryption and security
despite encryption, 2020.

[7] K. Meng, F. Miao, Y. Ning, W. Huang, Y. Xiong, and
C.-C. Chang, “A proactive secret sharing scheme based
on chinese remainder theorem,” Frontiers of Computer
Science, vol. 15, no. 2, pp. 1–10, 2021.

[8] Y. Ning, F. Miao, W. Huang, K. Meng, Y. Xiong, and
X. Wang, “Constructing ideal secret sharing schemes
based on chinese remainder theorem,” in International
Conference on the Theory and Application of Cryptol-
ogy and Information Security, 2018, pp. 310–331.

[9] M. Deepika and A. Sreekumar, “Secret sharing scheme
using gray code and xor operation,” in 2017 Second
International Conference on Electrical, Computer and
Communication Technologies (ICECCT), 2017, pp. 1–
5.

[10] N. Singh, A. N. Tentu, A. Basit, and V. C. Venkaiah,
“Sequential secret sharing scheme based on chinese
remainder theorem,” in 2016 IEEE International Con-
ference on Computational Intelligence and Computing
Research (ICCIC), 2016, pp. 1–6.

[11] K. K. Phiri and H. Kim, “Linear secret sharing scheme
with reduced number of polynomials,” Security and
Communication Networks, vol. 2019, 2019.

[12] P. D’Arco, R. De Prisco, A. De Santis, A. Pérez del
Pozo, and U. Vaccaro, “Probabilistic secret sharing,” in
43rd International Symposium on Mathematical Foun-
dations of Computer Science (MFCS 2018), 2018.

[13] E. Boyle, N. Gilboa, and Y. Ishai, “Function secret shar-
ing,” in Annual international conference on the theory
and applications of cryptographic techniques, 2015, pp.
337–367.

[14] N. Gilboa and Y. Ishai, “Distributed point functions and
their applications,” in Annual International Conference
on the Theory and Applications of Cryptographic Tech-
niques, 2014, pp. 640–658.

[15] E. Boyle, N. Gilboa, and Y. Ishai, “Function secret
sharing: Improvements and extensions,” in Proceedings
of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, 2016, pp. 1292–1303.

[16] K. Ding and C. Ding, “A class of two-weight and three-
weight codes and their applications in secret sharing,”

VOLUME 4, 2016 13

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3124637, IEEE Access

IEEE Transactions on Information Theory, vol. 61,
no. 11, pp. 5835–5842, 2015.

[17] C.-F. Hsu, L. Harn, and B. Zeng, “Umkess: user-
oriented multi-group key establishments using secret
sharing,” Wireless Networks, vol. 26, no. 1, pp. 421–
430, 2020.

[18] C. J. Mitchell, “Yet another insecure group key distri-
bution scheme using secret sharing,” Journal of Infor-
mation Security and Applications, vol. 57, p. 102713,
2021.

[19] S. Boonkrong and C. Somboonpattanakit, “Dynamic
salt generation and placement for secure password stor-
ing,” IAENG International Journal of Computer Sci-
ence, vol. 43, no. 1, pp. 27–36, 2016.

[20] F. L. Bauer, “Vernam cipher,” in Encyclopedia of Cryp-
tography and Security, H. C. A. van Tilborg, Ed.
Springer, 2005, pp. 1359–1360.

[21] A. L. Hananto, A. Solehudin, A. S. Y. Irawan, and
B. Priyatna, “Analyzing the kasiski method against vi-
genere cipher,” arXiv preprint arXiv:1912.04519, 2019.

STEFANO GALANTUCCI is a PhD student in
Computer Science at the University of Bari. He
holds a MSc degree in Cybersecurity with full
marks and honors, defending a thesis on the gener-
ation of multiple cryptographic keys equivalent to
each other. He is involved in research in the areas
of cybersecurity, cryptography and biometrics. He
is a reviewer for IEEE Access.

DONATO IMPEDOVO (M’08-SM’17) received
the MEng degree cum laude in computer engineer-
ing and the PhD degree in computer engineering.
He is associate professor with the Department
of Computer Science of the University of Bari
(IT). His research interests include field of signal
processing, pattern recognition, machine learning
and biometrics. He is co-author of more than
80 articles on these fields in both international
journals and conference proceedings. He received

the “distinction” award in May 2009 at the International Conference on
Computer Recognition Systems (CORES – endorsed by IAPR), and the
first prize of the first Nereus-Euroavia Academic competition on GMES
in October 2012. He is also very involved in research transfer activities
as well as in industrial research, he has managed more than 25 projects
funded by public institutions as well as by private SMEs. He is IEEE
Access associate editor and he serves as reviewer for many international
journals including IEEE Access, IEEE Transactions on Systems, Man, and
Cybernetics: Systems, Pattern Recognition and many others. He was the
general cochair of the International Workshop On Artificial Intelligence
With Application In Health (WAIAH2017), of the International Workshop
on Emergent Aspects in Handwritten Signature Processing (EAHSP 2013)
and of the International Workshop on Image-Based Smart City Application
(ISCA 2015). He was a reviewer in the scientific committee and program
committee of many international conferences in the field of computer
science, pattern recognition and signal processing, such as the ICPR and
ICASSP. He is IAPR and IEEE senior member.

GIUSEPPE PIRLO (M’92–SM’13) received the
degree in computer science (cum laude) from the
Department of Computer Science, University of
Bari, Italy, in 1986. Since 1986, he has been car-
rying out research in the field of computer science
and neuroscience, signal processing, handwriting
processing, automatic signature verification, bio-
metrics, pattern recognition and statistical data
processing. Since 1991, he has been an assis-
tant professor with the Department of Computer

Science, University of Bari, where he is currently a full professor. He
developed several scientific projects and authored more than 250 papers
on international journals, scientific books and proceedings. He is currently
an associate editor of the IEEE Transactions on Human–Machine Systems.
He also serves as a Reviewer for many international journals including the
IEEE Transactions on Pattern Analysis and Machine Intelligence, the IEEE
Transactions on Fuzzy Systems, IEEE transactions on Systems, Man, and
Cybernetics: Systems, the IEEE Transactions on Evolutionary Computation,
the IEEE Transactions on Image Processing, the IEEE Transactions on
Information Forensics and Security, the Pattern Recognition, the Interna-
tional Journal on Document Analysis and Recognition, and the Information
Processing Letters. He was the general chair of the International Workshop
on Emerging Aspects in Handwriting Signature Processing, Naples, in
2013, the International Workshop on Image-based Smart City Applications,
Genoa, in 2015, and the general co-chair of the International Conference
on Frontiers in Handwriting Recognition, Bari, in 2012. He was a reviewer
in the scientific committee and program committee of many international
conferences in the field of computer science, pattern recognition and signal
processing, such as the ICPR, ICDAR, ICFHR, IWFHR, ICIAP, VECIMS,
and CISMA. He is also the editor of several books. He was an editor of
the Special Issue Handwriting Recognition and Other PR Applications of
the Pattern Recognition Journal in 2014 and the Special Issue Handwriting
Biometrics of the IET Biometrics Journal in 2014. He was the guest editor
of the Special Issue of the Je-LKS Journal of e-Learning and Knowledge
Society Steps toward the Digital Agenda: Open Data to Open Knowledge in
2014. He is currently the guest co-Editor of the Special Issue of the IEEE
Transactions on Human–Machine Systems on Drawing and Handwriting
Processing for User-Centered Systems. He is a member of the Governing
Board of Consorzio Interuniversitario Nazionale per l’Informatica (CINI), a
member of the Governing Board of the Societa Italiana di e-Learning and the
e-learning Committee of the University of Bari. He is currently the deputy
representative of the University of Bari in the Governing Board of CINI. He
is also the managing advisor of the University of Bari for the Digital Agenda
and Smart Cities. He is the chair of the Associazione Italiana Calcolo
AutomaticoPuglia. He is also a member of the Gruppo Italiano Ricercatori
Pattern Recognition, the International Association Pattern Recognition, the
Stati Generali dell’Innovazione, and the Gruppo Ingegneria Informatica. He
is a senior member of the IEEE.

14 VOLUME 4, 2016

