
2325-5870 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2017.2746344, IEEE
Transactions on Control of Network Systems

Distributed Calculation of Edge-Disjoint Spanning Trees for Robustifying
Distributed Algorithms against Man-in-the-Middle Attacks

Gabriele Oliva∗, Sebastian Cioabă† and Christoforos N. Hadjicostis‡

Abstract—In this paper we provide a distributed methodology
to allow a network of agents, tasked to execute a distributed
algorithm, to overcome Man-in-the-middle attacks that aim at
steering the result of the algorithm towards inconsistent values
or dangerous configurations. We want the agents to be able to
restore the correct result of the algorithm in spite of the attacks.
To this end, we provide a distributed algorithm to let the set
of agents, interconnected by an undirected network topology,
construct several edge-disjoint spanning trees by assigning labels
to their incident edges. The ultimate objective is to use these
spanning trees to run multiple instances of the same distributed
algorithm in parallel, in order to be able to detect Man-in-the-
middle attacks or other faulty or malicious link behavior (e.g.,
when the instances yield different results) and to restore the
correct result (when the majority of instances is unaffected).
The proposed algorithm is lightweight and asynchronous, and is
based on iterated depth-first visits on the graph. We complement
the paper with a thorough analysis of the performance of the
proposed algorithms.

Keywords: Distributed Algorithms, Man-in-the-middle At-
tacks, Tree Packing Problem, Edge Disjoint Spanning Trees.

I. INTRODUCTION

Distributed algorithms, such as consensus algorithms [1],
[2], have been proven quite effective in allowing a set of
interconnected agents to perform complex global computa-
tions, optimizations, or other desirable operations, by means
of iterative, simple and local interactions among neighboring
agents. These algorithms, however, are often prone to failures
and malicious data manipulations, and there is a need to
provide reliable methodologies to overcome such issues.

Several solutions have been provided in the literature. For
example, in [3] a distributed Byzantine consensus algorithm
that tolerates message omissions by a subset of the agents is
provided; in [4] a related methodology for directed graphs is
developed; in [5] a framework that places emphasis on the trust
among the nodes is given. More recently, an adaptive finite-
time approach has been provided in [6], while a methodology
that can overcome actuator faults is presented in [7]; moreover,
in [8] an approach that can handle a variable network structure
is proposed.

The above approaches focus on the agent’s behavior, while
malicious attacks affecting the links are typically neglected;
∗ Complex Systems & Security Laboratory, University Campus Bio-

Medico, via A. del Portillo 21, 00128, Rome, Italy.
Email g.oliva@unicampus.it. Corresponding author.
† Department of Mathematical Sciences, University of Delaware, Newark, DE
19716-2553. Email cioaba@udel.edu. This research was partially supported
by NSF grant DMS-1600768.
‡ Department of Electrical and Computer Engineering, University of Cyprus,
75 Kallipoleos Avenue, P.O. Box 20537, 1678 Nicosia, Cyprus.
Email chadjic@ucy.ac.cy.

Alice Bob Alice Mallory Bob

Fig. 1. Example of Man-in-the-middle attack: Mallory intercepts all
communications between Alice and Bob. As a result of the attack, Mallory can
modify the content of messages exchanged between Alice and Bob, without
being noticed.

there is, however, a relevant literature on distributed algorithms
with packet drops, especially in the case of average consensus
algorithms: for instance in [9] an approach to obtain a value
close to the nominal one is provided, under certain conditions,
while the algorithms provided in [10], [11] achieve exact
consensus in spite of packet losses.

Among other issues, Man-in-the-middle (MITM) attacks
[12]–[14] represent an effective way to alter the data trans-
mitted by the agents, potentially steering the network towards
inconsistent results or dangerous configurations. As shown
in Figure 1, MITM attacks consist of an attacker (Mallory)
becoming the proxy for the communication between two
victim nodes (Alice and Bob). Specifically, Mallory intercepts
all messages between Alice and Bob and it sends maliciously
altered messages to Alice pretending to be Bob, and vice-
versa. In this way, Alice and Bob believe they are directly
communicating with each other, and are unable to detect the
attack.

A. Related Work: Fault-Tolerant Distributed Algorithms

In the literature there have been attempts to develop dis-
tributed algorithms and protocols having some resistance to
MITM attacks. In [15] Chiang et al. develop a methodology
for distributed time synchronization that has some robustness
to MITM attacks, in that only limited damage can be dealt by
malicious attackers, which can cause only constant delays. In
[16] a secure time synchronization protocol was developed,
based on pairing and identity-based cryptography. In [17]
received signal strength information is used to spot spoofed
messages. Such approaches, however, require the implementa-
tion of sophisticated countermeasures, which are often tailored
to the specific application (e.g., time synchronization).

Note that fault-tolerant message delivery protocols are often
implemented by constructing multiple paths on the network
[18]–[20], by requiring the existence of such disjoint paths
[21], or by building independent subnetworks [22], [23]. In
this paper we follow such a perspective while facing MITM at-
tacks; our focus, therefore, is not on preventing the occurrence
of MITM attacks, but on guaranteeing that the distributed
algorithm executed by the agents achieves its purpose, in

2325-5870 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2017.2746344, IEEE
Transactions on Control of Network Systems

v1

v2

v3

v4

v5 v1

v2

v3

v4

v5

Fig. 2. Comparison between depth-first visit (left plot) and breadth-first visit
(right plot) starting from node v1. In the first case we get 2 EDSTs (red dashed
and blue dotted edges), while in the second case we obtain a single spanning
tree. However, the diameter obtained for the breadth-first visit is considerably
smaller than the diameter of the EDSTs obtained via the depth-first visit.

spite of successful MITM attacks. To achieve this result,
we partition the network into several Edge-Disjoint Spanning
Subgraphs (EDSSGs), i.e., connected subgraphs spanning all
the nodes and not having common edges. Once these EDSSGs
are defined, the agents run independent instances of the same
distributed algorithm over each EDSSG. By comparing the
results obtained by the different instances of the algorithm,
which are supposed to yield the same result under nominal
conditions, the agents are able to detect the attack (e.g., when
the results obtained are not all the same) and to restore the
correct value (when the majority of instances are unaffected).

To achieve this result in a distributed way, we develop
a methodology to let the agents in the network partition
their incident links in order to construct several Edge-Disjoint
Spanning Trees (EDSTs) over the network, with the aim to
use these EDSTs as the backbone for the EDSSGs.

B. Related Work: Edge-Disjoint Spanning Trees

The problem of finding the maximum number of ED-
STs over a graph, often referred to as the Tree Packing
Problem has been faced since the beginning of the 1960’s
when mathematicians like Tutte [24] and Nash-Williams [25]
provided the same combinatorial conditions to calculate the
maximum number of EDSTs. Other theoretical results include
a shorter proof of the Tutte-Nash-Williams condition [26], and
a characterization of the number of spanning trees based on the
eigenvalues of the adjacency or Laplacian matrices of regular
graphs [27], further extended to general graphs in [28]. In [29]
the authors characterize the expected minimum total weight of
the number of EDSTs over complete weighted graphs.

From an algorithmic point of view, there are several ap-
proaches for obtaining EDSTs in the literature, and they are
intrinsically centralized. The centralized algorithm in [18]
calculates two EDSTs; the algorithm presented in [30] is based
on the work of Edmonds on matroid theory [31] and is able
to construct the maximum number of EDSTs in a graph in
polynomial time. Available distributed approaches are limited
to extremely particular structures, such as hypercubes [32] or
twisted cubes [33].

C. Contribution and Paper Outline

In this paper we provide a lightweight and asynchronous,
yet suboptimal, algorithm that iteratively lets the agents label

their incident links as part of different EDSTs. The key idea
behind the algorithm is that, in order to increase the chances
to have several edge-disjoint spanning trees, a good strategy
is to resort to iterated depth-first visits of the graph, each time
removing edges that have been labeled (i.e.,used) in previous
iterations.

The procedure is iterated as long as it is possible, i.e., until
the remaining links form a disconnected graph, as shown in
the left plot of Figure 2, where 2 EDSTs are found. Other
approaches, such as a breadth-first visit (see the right plot in
Figure 2) are not suitable for the problem at hand, as in the
breadth-first visit all links that are incident to the starting node
are used for constructing the first EDST, thus preventing the
construction of additional EDSTs.

The proposed approach, apart from constructing several ED-
STs, also allows the nodes to calculate useful meta-information
such as the diameter of each EDST and the number of nodes
in the network.

The outline of the paper is as follows: Section II pro-
vides some preliminary definitions; Section III introduces the
problem at hand and discusses the motivations underlying the
proposed approach; Section IV collects some classical theo-
retical and algorithmic results related to finding the maximum
number of EDSTs in a graph; Sections V and VI introduce
the proposed algorithms for finding a single spanning tree, and
several EDSTs, respectively; Section VII provides a simulation
campaign aimed at assessing the performances of the proposed
approach, while some conclusions and future work directions
are collected in Section VIII.

II. PRELIMINARIES

Let G = {V,E} be a graph with n nodes
V = {v1, v2, . . . , vn} and e edges E ⊆ V × V , where
(vi, vj) ∈ E captures the existence of a communication link
from node vi to node vj . A graph is said to be undirected if
(vi, vj) ∈ E whenever (vj , vi) ∈ E, and is said to be directed
otherwise.

A path P over a graph G = {V,E} is a sequence of nodes
vi1 , . . . , vit such that (vik , vik+1

) ∈ E for k = 1, 2, ..., t − 1;
the length of the path is the number of edges involved (t− 1)
and it is denoted by|P | = t− 1. A cycle is a path of nonzero
length that starts and ends at the same node, while a path is
called simple if it does not contain cycles. A minimum path
between vi and vj is a simple path from vi to vj with minimum
length. An undirected graph is connected if for each pair of
nodes vi, vj there is a simple path over G that connects them.
An acyclic graph is a graph without cycles.

In the following, although some of the results discussed in
Section IV apply to multigraphs (i.e., graphs with multiple
instances of an edge between the same pair of nodes) and
to graphs with self-loops (i.e., graphs containing links in the
form (vi, vi)), we will consider undirected connected graphs
without self-loops or multiple edges.

Let the neighborhood Ni of node vi be the set of nodes
vj such that (vj , vi) ∈ E. The degree di of a node vi is the
number of its edges, i.e., di = |Ni|. Let Pij be the minimum

2325-5870 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2017.2746344, IEEE
Transactions on Control of Network Systems

path connecting node vi to node vj , with vi, vj ∈ V . The
eccentricity of node vi ∈ V is given by

εi = max
vj∈V \{vi}

{|Pij |},

i.e., it is the maximum length among the minimum paths
connecting vi to each of the remaining nodes. The diameter
δ of a graph G is given by

δ = max
vi∈V

{
max

vj∈V \{vi}
{|Pij |}

}
= max
vi∈V
{εi},

i.e., it is the length of the longest minimum path between any
pair of nodes in V .

A graph can be represented via an n×n adjacency matrix A,
whose entries aij = 1 if (vj , vi) ∈ E and aij = 0 otherwise.
The degree matrix D is a diagonal matrix whose diagonal
elements are

dii =
n∑
j=1

aij = |Ni|.

The Laplacian matrix is L = D − A, while the signless
Laplacian matrix is Ls = D+A. Given a graph G, we denote
by λi(G), µi(G) and θi(G) the i-th smallest eigenvalue of A,
L and Ls, respectively1.

A tree T is a connected acyclic graph. We say T is rooted
at a node vi if vi has been designated the root of T . With
respect to a root node vi, a leaf is a node vj 6= vi such that
dj = 1, while the depth of a node vj is the length of the path
over T from the root node vi to vj . Given a node vj in a tree
and the root vi, the branch of the tree for node vj is the set
of nodes that are in a path P , from vj to a leaf node, such
that vi 6∈ P . A spanning tree of a graph G = {V,E} is a
connected acyclic subgraph T = {V,ET }, where ET ⊆ E. A
graph composed of one of more connected components, each
being a tree, is referred to as a forest.

Two subgraphs G1 = {V,E1} and G2 = {V,E2} of a graph
G = {V,E} are edge-disjoint if E1 ∩ E2 = ∅. In particular,
if G1 and G2 are connected they are edge-disjoint spanning
subgraphs (EDSSG). Similarly, we refer to two connected and
edge-disjoint trees T1 = {V,ET1

} and T2 = {V,ET2
} as edge-

disjoint spanning trees (EDST).

III. PROBLEM STATEMENT AND MOTIVATION

Consider a set of n agents interconnected by an undirected
and connected graph G = {V,E} and suppose the agents need
to exchange information in order to implement a distributed
algorithm A that satisfies the following assumption.

Assumption 1: The distributed algorithm A achieves a
steady-state result (asymptotically or in finite time) for each
agent (not necessarily the same result for all agents) which is
invariant with respect to the underlying graph G, as long as it
is connected and undirected.

Note that algorithm A might be prone to data manipulations
such as man-in-the-middle attacks, where malicious attackers

1Since these matrices are symmetric, their eigenvalues are real-valued.

hijack the communication between one or more pairs of
nodes, modifying the information sent, without being noticed.
As a consequence of the attack, algorithm A might yield
completely different results at each agent, preventing them
from performing their intended functions.

Our objective is therefore to endow the agents with the
ability to detect MITM attacks and recover the correct result
of the algorithm in spite of the attack. To this end, we note
that if the graph G has been partitioned into several EDSSGs
and the agents execute, in parallel, an instance of algorithm
A over each EDSSG, then malicious manipulations can be
spotted after the termination of the instances of A (or after
the transients are extinguished when A exhibits asymptotic
convergence).

Specifically, by running in parallel the desired distributed
algorithm A over m EDSSGs, each agent computes a set of
m steady-state values or results. Note that, if the algorithm
being executed has asymptotic convergence, the agents may
compute an approximation of the asymptotic values, using
stopping criteria like those in [34], [35] and references therein,
thus obtaining values that are within a small distance from the
asymptotic values. One can also use finite time approaches
like the ones in [21], [36]. Under nominal conditions, all such
values must be the same (or must have negligible discrepancies
in the case of asymptotic algorithms). In the event of man-
in-the-middle attacks affecting the links of a subset of the
EDSSGs, the agents are able to detect the problem if there are
discrepancies in the result of the different instances. Moreover,
if the majority of EDSSGs is not affected by the attack, the
agents are able to determine the correct result. However, this
strategy is effective only after the execution of the algorithm
(or after transients are extinguished in the case of asymptotic
algorithms).

Moreover, we point out that in the proposed framework the
agents are able to detect that one or more steady-state values
are corrupted or differ from the majority of the steady state
values, but are not able to determine the exact links that are
under MITM attack. Instead, by detecting that one final value
is corrupted or differs from the majority of the other values,
the agents are able to conclude that the links under attack must
belong to the spanning subgraph associated to that particular
final value, and may decide not to use the spanning subgraph
for further computations.

We now elaborate on the main motivations for our problem
setting in the following remarks, then we introduce the prob-
lems studied in this paper and we discuss a strategy to address
them.

Remark 1: As long as at least one final value is different
from the others, within the proposed strategy the agents are
able to detect a man-in-the-middle attack, even if they might
not be able to retrieve the correct result for Algorithm A. In
other words, the agents are guaranteed to be able to spot an
attack if at most m− 1 links in E are attacked.

2325-5870 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2017.2746344, IEEE
Transactions on Control of Network Systems

Remark 2: Within the proposed strategy, Algorithm A is
robust with respect to man-in-the-middle attacks leaving the
majority of the EDSSGs unaffected. In other words, the agents
are guaranteed to be able to compute the correct result if at
most ζ links in E are attacked, with

ζ =
⌈m

2

⌉
− 1.

Remark 3: Note that, when at least ζ+1 links are affected,
there is the possibility that the majority of the results is
faulted, preventing the agents from calculating the right values.
However, attacking more than ζ links is not sufficient to have
a guarantee to affect the final result. This happens because the
attacker needs to attack at least ζ+1 links, each belonging to a
different EDSSGs. To succeed in this task, the attacker needs
either prior knowledge on the network or enough resources to
deal a large-scale attack.

Remark 4: In order to drive the agents towards incorrect
final values, the altered values must all be the same. This,
again, implies that, depending on the particular algorithm
being executed, the attacker may need to spend nontrivial
effort in order to successfully steer the algorithm towards a
different result.

For the reasons collected in Remarks 1–4, in this paper we
are interested in solving the following problem.

Problem 1: Given a connected and undirected graph
G = {V,E} find a maximum number of EDSSGs.

In this paper we are interested in solving the problem in a
distributed way, i.e., we want each agent to interact with its
neighbors in a distributed way in order to label their incident
edges with different labels, so that links with the same label
belong to the same EDSSG.

Note that finding a maximum number of EDSSGs essen-
tially coincides with finding a maximum number of EDSTs.
Moreover, solving exactly Problem 1, especially in a dis-
tributed way, might be impractical because, as discussed in the
next section, available solutions in the literature are essentially
centralized. In the remainder of this paper, therefore, we
adopt a strategy which is suboptimal but implementable in a
distributed context. Specifically, we provide an approximate
solution to Problem 1 by iteratively performing depth-first
visits of the graph and by removing the visited links from
consideration, thus building multiple EDSTs.

IV. MAXIMUM NUMBER OF EDSTS

In this section we discuss some results on the maximum
number τ(G) of edge-disjoint spanning trees of a graph G.

A. Combinatorial Condition

The following theorem, proved independently by Tutte and
Nash-Williams [24], [25], provides a combinatorial condition
for finding τ(G).

Theorem 1: An undirected multi-graph G = (V,E) con-
tains k edge-disjoint spanning trees iff for every partition
Π of V into l sets, V1, V2, . . . , Vl, the number q of edges
having endpoints in different sets of the partition Π is at least
q = k(l − 1).

Remark 5: The direct application of the above condition
to calculate τ(G) is rather impractical, because of the need to
inspect a vast number of partitions. In fact, for n nodes, the
total number of partitions of the nodes is given by the Bell
number Bn, which can be obtained by taking B0 = B1 = 1
and by applying the recursive rule, for m ≥ 2

Bm+1 =
m∑
k=0

(
m

k

)
Bk.

In [37] it is shown that

Bm ≈
1√
m
λ(m)m+1/2eλ(m)−m−1,

where λ(m) is such that λ(m) log(λ(m)) = m.

B. Optimal but Centralized Algorithm

In [30], Roskind and Tarjan provide an efficient, yet cen-
tralized, algorithm to find a maximum number of EDSTs in a
graph, based on matroid theory.

Let a set X of n elements and define some of the subsets
of X as independent. The set X is a matroid if the inde-
pendence of any S ⊆ X implies the independence of any
subset of S. Matroids have the interesting property that the
largest independent subset can be found by means of greedy
algorithms [31]. In [30] the authors cast the problem at hand
in terms of matroids: given a graph G = {V,E}, they choose
X = E and they say E′ ⊆ E is independent with respect to
an integer k if G′ = {V,E′} can be partitioned into k edge-
disjoint forests. The main idea of the algorithm in [30] is,
therefore, to iteratively grow a set of k edge-disjoint forests
F = {F1, . . . , Fk}, considering a link e ∈ E at each time
and checking the independence of F ∪ {e}. If F ∪ {e} is
independent, then the algorithm modifies the assignment of
some of the links in F and adds e to F . If, conversely, F ∪{e}
is dependent, then the algorithm increases the number k of
forests (initially, k = 1).

The above algorithm, therefore, invokes |E| times an oracle,
that is, a function that is able to tell the independence of
F ∪ {e} (and to reorganize the links in the forests to avoid
cycles). The oracle is the bottleneck of the approach, and
in [30] an efficient implementation is provided, which has
a computational complexity O(|E|2); the implementation is
based on the fast disjoint set union algorithm [38]. Such an
approach, however, is centralized and appears hard to translate
in a distributed context.

C. Lower bound on τ(G)

The following Theorem provides a lower bound on τ(G)
[28], which extends the result given in [27]. We will take
advantage of this lower bound in Section VII while discussing
the performances of the proposed distributed algorithms.

2325-5870 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2017.2746344, IEEE
Transactions on Control of Network Systems

Theorem 2 (Liu et al., 2014 [28]): Let G be a graph of
minimum degree dmin ≥ 2τlb(G) ≥ 4; the following con-
ditions hold true:

(1) If λn−1(G) < dmin − 2τlb(G)−1
dmin+1 , then τ(G) ≥ τlb(G).

(2) If θn−1(G) < 2dmin − 2τlb(G)−1
dmin+1 , then τ(G) ≥ τlb(G).

(3) If µ2(G) > 2τlb(G)−1
dmin+1 , then τ(G) ≥ τlb(G).

In [27] it is shown that the above bounds are tight in the
case of regular graphs with τlb(G) = 2 or τlb(G) = 3, while
the result is extended to graphs with τlb(G) ≥ 4 in [39].

V. DISTRIBUTED CONSTRUCTION OF EDSTS

As discussed above, the algorithm from Roskind and Tarjan
is quite hard to implement in a distributed fashion. In this
paper we present a distributed methodology for obtaining
EDSTs based on repeated depth-first visits of the graph; in this
section we develop an algorithm to construct a single spanning
tree, while in the next section we discuss the construction of
multiple EDSTs.

Note that the algorithm we present in the remainder of
this section exploits the typical token-passing approach that
implements a depth-first visit in a graph, which is quite
diffused in the literature of distributed algorithms [40]–[43].
With respect to the state of the art, the main improvement
here is the ability to calculate the diameter of the tree while
it is being built. As discussed in the conclusive section, this
feature can be the basis to guide the construction of EDSSGs
with small diameter; specifically, it might be useful to sacrifice
some of the EDSTs in order to have more “spare links” to be
assigned to the remaining EDSTs, with the aim to reduce their
diameter and boost the convergence time of the distributed
algorithms being executed.

A. Distributed Spanning Tree Construction Algorithm

In this section we develop a distributed algorithm to let a
set of agents, interconnected by an undirected and connected
graph, find a spanning tree by labeling some of the edges; we
call this algorithm the Distributed Spanning Tree Construction
Algorithm (DSTC). The pseudocode of the proposed DSTC
Algorithm is reported in Algorithm 1, while an example of
its execution is shown in Figure 3. The algorithm amounts
to a depth-first visit of the graph, starting from a leader node
vi∗, which can be elected via several techniques (e.g., see [44]
and references therein). Specifically, we assume the depth-first
visit is implemented in an asynchronous way, by letting the
nodes pass each other a single token (initially the leader has the
token). The node holding the token passes it to a neighbor node
which has not yet been visited (if any), otherwise it returns
the token to its father (i.e., to the node from which it received
the token in first place). The spanning tree is constructed by
selecting the edges through which the token is passed among
the nodes. In the process, each node receiving a token also
updates some internal variables, which are used to keep track
of the links in the spanning tree and to calculate useful meta-
information such as the number of nodes and the diameter
of the spanning tree that is being constructed. The procedure

Algorithm 1 Distributed Spanning Tree Construction Algo-
rithm (DSTC)

procedure INITIALIZATION(ID,is-leader)
vfatheri ← ∅;
Mi ← Ni;
∆† ← 0; // biggest ∆ from vi to a leaf
∆‡ ← 0; // second biggest ∆ from vi to a leaf
δ†T ← 0; // estimate of the diameter
label (vi, vj) with −∞ for all vj ∈ Ni;
if is-leader then

visitedi ← 1;
send < i,visitedi > to all neighbors;
∆i ← 0;
select random vj ∈Mi;
send token < ID, 1, 0, 0, 0 > to vj ;
label (vi, vj) with ID;

else
visitedi ← 0;
∆i ←∞; // depth of vi in the tree

procedure ONRECEIVEVISITED(< j,visitedj >)
Mi ←Mi\{vj};

procedure ONRECEIVETOKEN(vs,< ID,m,∆,∆s, δT >)
label (vs, vi) with ID;
if ∆i =∞ then // update ∆i on first token received

∆i ← ∆s + 1;
vfatheri ← vs;

if ∆ > ∆† then // update ∆† and ∆‡

∆‡ ← ∆†;
∆† ← ∆;

else if ∆ > ∆‡ then
∆‡ ← ∆;

if δT > δ†T then // update δ†T
δ†T ← δT ;

δT ← max{δ†T ,∆† + ∆‡ − 2∆i};
/* Send token */
if Mi 6= ∅ then //send towards leaves

select random vj ∈Mi;
if is-leader then

send < ID,m, 0, 0, 0 > to vj ;
else if not visitedi then

visitedi ← 1;
send < i,visitedi > to all neighbors;
send < ID,m+ 1,∆ + 1,∆i, 0 > to vj ;

else
send < ID,m,∆i,∆i, 0 > to vj ;

else if not vfatheri = ∅ then // send towards root
if not visitedi then

visitedi ← 1;
send < i,visitedi > to all neighbors;
send < ID,m+ 1,∆ + 1,∆i, δT > to vfatheri ;

else
send < ID,m,∆†,∆i, δT > to vfatheri ;

stop;
else // vi is the leader and visit complete

δ ← δT ;
stop;

2325-5870 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2017.2746344, IEEE
Transactions on Control of Network Systems

v1

v2

v4

v6

v5

v3

Fig. 3. Example of execution of the proposed DSTC algorithm. Red dotted
links are labeled as belonging to a spanning tree.

is completed when the token returns to the leader and all its
neighbors have been visited.

The token contains some information about the spanning
tree that is being constructed, and some of the contents of the
token are modified at each passage. Specifically, the token is
the 5-tuple

< ID,m,∆,∆s, δT >

where
• ID is the identifier of the spanning tree being constructed;
• m is the current value of the number of nodes visited so

far;
• ∆ is the depth of the spanning tree so far (i.e., the

maximum length of a path connecting a visited node to
the leader);

• ∆s is the depth of the node vs that sends the token;
• δT is the current estimate of the diameter of the spanning

tree.
In addition to passing the token, each node vi maintains and

updates the following parameters during the execution of the
algorithm:
• a binary label visitedi that is used to determine if vi has

been visited (we initialize visitedi = 0 for all nodes);
• the identifier of its father over the tree (initialized to zero);
• an integer ∆i that represents the depth of vi over the

spanning tree–initially ∆i = ∞ for all nodes but the
leader, which sets ∆i = 0;

• the set Mi of not visited neighbors, which is initially
equal to its neighborhood Ni;

• the labels associated to the links (vi, vj) towards its
neighbors vj (initialized to −∞);

• two integers ∆† and ∆‡, which are the biggest and the
second biggest depths of the nodes that branch from vi
along the tree (both initialized to zero for all nodes);

• an integer δ† which is an estimate of the diameter of the
tree (initialized to zero for all nodes).

During the initialization phase, the leader vi∗ sends the
token

< ID, 1, 0, 0, 0 >

to a random node vj ∈ Mi∗, and it labels (vi∗, vj) with
the identifier ID of the current spanning-tree; then the leader
becomes visited and it provides such an information to all its
neighbors, by broadcasting the message

< i∗, visitedi∗ > .

Every time a node vi receives information about a neighbor
vj that becomes visited, vj is removed from Mi.

When a node vi receives a token for the first time, it updates
its depth setting ∆i = ∆+1, while each time a node receives a
token, it updates the value of the biggest depth ∆† and second
biggest depth ∆‡ of one of its neighbors that branch from vi
along the tree; then, node vi updates δ† and it calculates

δT = max{δ†T ,∆
† + ∆‡ − 2∆i}.

The node vi attempts to transmit the token downwards the tree
to a not visited neighbor vj ∈ Mi. If such a neighbor exists,
we have three cases:

1) if vi is the leader, then it sends to node vj the token

< ID,m, 0, 0, 0 >;

2) if vi is not visited, then it becomes visited, it informs
its neighbors and it sends to node vj the token

< ID,m+ 1,∆ + 1,∆i, 0 >;

3) otherwise vi sends to node vj the token

< ID,m,∆i,∆i, 0 > .

If Mi = ∅, conversely, node vi transmits the token upwards
to its parent, unless vi is the leader. Specifically, three cases
are possible:

I) if vi is not visited nor the leader, then it becomes visited,
it informs its neighbors and it sends to its parent the
token

< ID,m+ 1,∆ + 1,∆i, δT >;

II) if vi is visited and it is not the leader, it sends to its
parent the token

< ID,m,∆†,∆i, δT >

2325-5870 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2017.2746344, IEEE
Transactions on Control of Network Systems

(recall that ∆† is the biggest depth among those of the
nodes that branch from vi along the tree);

III) if vi is the leader, then it calculates the diameter of the
tree as δ = δT , the number m of nodes visited, and
terminates the procedure.

In all the above cases, a node vi with Mi = ∅ is no more
involved in the calculation of that particular tree, while it is
involved in the calculation of successive spanning trees.

B. Discussion and Properties

Let us provide some results on the correctness of the above
algorithm.

Theorem 3: Suppose G is undirected and connected. The
DSTC Algorithm is correct, that is, at its completion

a) it finds a spanning tree over G;
b) the leader node knows the number n of nodes in G;
c) the leader node knows the diameter δ of the spanning

tree.

Proof: The proof of point a) is trivial; since we execute
a depth-first search of the nodes, we obtain a spanning tree.
As for point b), the estimate m of the number of nodes is
increased each time a not visited node receives the token, and
the depth-first visit approach guarantees all nodes are visited.

Let us now prove point c). Note that, when a leaf node
transmits the token to its parent, it transmits its depth over
the tree, while non-leaf nodes vi transmit to their parents the
value of the maximum depth ∆† of one of the nodes in the
branch of vi. As a result, each node knows the correct value
of ∆† and ∆‡.

Let us consider the generic node vi sending the token to its
parent along the tree. If vi is a leaf, then it sends δ†T = ∆i to
its parent. If it is not a leaf, nor the leader, it calculates δT as
the maximum between δ†T and ∆†+ ∆‡− 2∆i. The first term
is the maximum length of a path from the root node to one
of the leaves in the branch of vi. As for the second term, we
claim that it is the maximum length of a path connecting the
2 farthest leaves (if there is more than one) in the branch of
node vi; in fact, the distance between vi and its farthest leaf
is ∆† − ∆i, while the distance from the second farthest one
(if any) is ∆‡ −∆i.

Therefore, it can be noted that, when a node vi transmits
a token to its parent, all possible paths of maximum length
involving vi and the nodes in the branch of vi have been
inspected, and the maximum among the lengths of such paths
is stored in δT ; hence, when the last token is received by the
root node it must hold δT = δ.

Let us now discuss the computational characteristics of the
proposed DSTC algorithm.

Proposition 1: The DSTC algorithm is such that:
a) it requires 2e+ 2n− 2 total messages and at most 2|Ni|

messages for each node;
b) each message is O(log n) bits;
c) the total memory required at each node is O(|Ni| log n)

bits.

Proof: a) If G is connected, then exactly 2n−2 tokens are
sent, because a token is sent twice along all the links assigned
to the spanning tree, which are n−1. Since eventually all nodes
are visited, each node provides an additional message to all
its neighbors, and for each edge two such messages are sent,
hence the total number of messages sent (without counting the
leader election) is 2e+ 2n−2, while each node sends at most
2|Ni| messages (i.e., a token and a visited message to all its
neighbors).

b) Each message requires O(log n) bits, as the quantities
exchanged are Boolean variables or integers in the range [0, n].

c) As for the memory requirements for each agent, they
need to store a label for each neighbor, and using progressive
integers for the ID of the trees each label requires O(log n)
bits, hence the memory requirement is O(|Ni| log n) bits for
each agent.

Note that, the DSTC algorithm can be implemented in an
asynchronous fashion, as only one message is sent at a time in
the network. Notice further that, at the end of the procedure,
the leader node knows the number n of nodes in the network
and the diameter δ of the tree; this information can be provided
to all other nodes by means of n−1 more messages (i.e., along
the spanning tree).

In the next section we provide a methodology to solve
Problem 1 in an approximated manner.

VI. CONSTRUCTION OF MULTIPLE EDSTS

As discussed above, in order to provide a suboptimal
solution to Problem 1, we attempt to build multiple edge-
disjoint spanning trees by iteratively executing the DSTC
Algorithm and removing the edges in the found spanning tree,
and so on until DSTC fails to construct a spanning tree; we
refer to this algorithm as Distributed Edge-Disjoint Spanning
Trees Construction Algorithm (DESTC), and we report its
pseudocode in Algorithm 2.

Specifically, within DESTC the leader node starts a DSTC
procedure, and when the procedure terminates each node
discards the labeled edges. After the t-th run of DSTC, the
leader starts a new DSTC if t = 1 (i.e., if only one DSTC has
been performed) or if the number of visited nodes mt during
the t-th DSCT is equal to the number of nodes visited at the
previous run. When the condition is not met, the leader stops
and the algorithm terminates.

Note that, over a connected graph, there is the guarantee to
find at least one spanning tree, hence the leader node is able
to detect the failure or success of subsequent executions of the
DSTC Algorithm by comparing the estimate of the number of
nodes obtained at each execution after the first estimate.

Note further that there is no need to elect a new leader
at each execution of the DSTC Algorithm; it is, however,
possible to further reduce the overall computations by selecting
different leaders, as discussed in the next remark.

Remark 6: If the number of nodes does not change during
the execution of the DESTC Algorithm, a simple improvement

2325-5870 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2017.2746344, IEEE
Transactions on Control of Network Systems

consists in executing once the DSTC algorithm, and then
simplifying the successive runs of DSTC. Specifically, when
the n-th node is visited, there is no need to traverse the links in
the spanning tree up to the leader. It is sufficient to let the n-th
node become the new leader and begin a new depth-first visit.
Such an approach would result in a reduction of half of the
time steps, and would be more robust because it does not rely
on a single leader. However, for simplicity, in the following
we neglect this possibility.

Algorithm 2 Distributed Edge-Disjoint Spanning Trees Con-
struction (DESTC)

1: procedure DESTC(is-leader)
2: if is-leader then
3: t← 0;
4: start first DSTC;
5: procedure ONFINISHEDDSTC(is-leader)
6: remove labeled edges from consideration;
7: if is-leader then
8: t← t+ 1;
9: mt ← visited nodes in t-th run of DSTC;

10: if t = 1 or mt = mt−1 then
11: start new DSTC;
12: else // DSTC failed to find a spanning tree
13: stop;

A. Computational Properties

The following proposition characterizes the number of
messages exchanged during the execution of the DESTC
algorithm.

Proposition 2: The overall number φ of messages ex-
changed within the DESTC Algorithm is such that

φ ∈
[
kψ, (k + 1)ψ

)
,

where

ψ = 2e+ 2(n− 1)
[
1− (k − 1)(k − 2)

2

]
and k is the number of EDSTs found by Algorithm DESTC.
Moreover, each node sends at most 2(k + 1)|Ni| messages.

Proof: The number of messages required for the first
execution is 2e + 2(n − 1), while for each execution t we
need to discard

2
k∑
t=1

(t− 1)(n− 1)

links, because at each execution n−1 links are removed from
the graph. Hence, the total number of messages required for
k executions is

φ′ = k[2e+ 2(n− 1)]− 2k
k∑
t=1

(t− 1)(n− 1)

or, after some algebra, φ′ = kψ. The root node may have
some links left after k executions, hence the agents attempt to

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
ρ

102

103

104

nu
m
b
er

of
m
es
sa
ge
s

DESTC/DSTC Average Number of Messages

DESTC Average Number of Messages
DSTC Average Number of Messages

Fig. 4. Average number of messages for the DESTC algorithm (magenta
squares) and for the DSTC algorithm (green triangles). As discussed in Section
VII-A, we consider random geometric graphs with n = 30 and different
values of ρ. The plot shows the average of the results for m = 500 trials.

execute the DSTC Algorithm once more; the total number of
messages exchanged is, therefore, φ < (k + 1)ψ.

As for the number of messages exchanged by each node,
it is at most k + 1 times the amount of messages exchanged
within DSTC; hence, it is at most 2(k + 1)|Ni|.

Remark 7: The memory requirements and the size of the
messages within DESTC Algorithm coincide with those of
DSTC Algorithm.

VII. SIMULATIONS

In this section we analyze the performance of the proposed
DSTC and DESTC algorithms and we provide examples of
applications that cope with MITM attacks.

A. Experimental Setting

In the following, we consider a random geometric graph,
i.e., we place the nodes in uniformly distributed random
positions in the unit square [0, 1]× [0, 1] and we connect them
by an edge when their Euclidean distance is less than or equal
to a threshold ρ.

B. DSTC and DESTC: Computational Properties

Figure 4 shows the average of the total number of messages
exchanged by the agents during the DESTC algorithm (purple
squares) and during the DSTC algorithm (green triangles
facing down); it can be noted that the number of links in the
graph (and the number of EDSTs found by DESTC Algorithm)
grows as ρ grows, and the amount of messages exchanged
grows accordingly.

C. DESTC versus Optimal but Centralized Approach

We now evaluate the results of DESTC in terms of the
number of found EDSTs, depending on the communication
radius ρ. Specifically, we compare the number of EDSTs found
by the proposed algorithm (DESTC) against the algorithm

2325-5870 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2017.2746344, IEEE
Transactions on Control of Network Systems

Original Graph Tree #:1 Tree #:2 Tree #:3 Tree #:4 Tree #:5 Tree #:6 Tree #:7 Tree #:8 Tree #:9 Tree #:10 Spare Links:6

Original Graph Tree #:1 Tree #:2 Tree #:3 Tree #:4 Tree #:5 Tree #:6 Spare Links:122

Original Graph Tree #:1 Tree #:2 Tree #:3 Tree #:4 Tree #:5 Tree #:6 Tree #:7 Tree #:8 Tree #:9 Tree #:10 Spare Links:6

Original Graph Tree #:1 Tree #:2 Tree #:3 Tree #:4 Tree #:5 Tree #:6 Spare Links:122

Fig. 5. Comparison between the algorithm from Roskind and Tarjan [30] (upper plot) and the DESTC Algorithm (lower plot), with respect to the same
random geometric graph with n = 30 and ρ = 0.65.

LB DESTC R&T

τ
(G

)

0

2

4

6

8

10

ρ = 0.4

LB DESTC R&T

τ
(G

)

0

2

4

6

8

10

ρ = 0.45

LB DESTC R&T

τ
(G

)

0

5

10

15
ρ = 0.5

LB DESTC R&T

τ
(G

)

0

5

10

15
ρ = 0.55

LB DESTC R&T

τ
(G

)

0

5

10

15
ρ = 0.6

LB DESTC R&T

τ
(G

)

4

6

8

10

12

14

ρ = 0.65

LB DESTC R&T

τ
(G

)

4

6

8

10

12

14

ρ = 0.7

LB DESTC R&T

τ
(G

)

4

6

8

10

12

14

ρ = 0.75

LB DESTC R&T

τ
(G

)

4

6

8

10

12

14

ρ = 0.8

LB DESTC R&T

τ
(G

)

4

6

8

10

12

14

ρ = 0.85

LB DESTC R&T

τ
(G

)

4

6

8

10

12

14

ρ = 0.9

LB DESTC R&T
τ
(G

)

4

6

8

10

12

14

ρ = 0.95

Fig. 6. Comparison of the number of EDSTs found by the proposed algorithm (DESTC) against the algorithm from Roskind and Tarjan (R&T) [30] and
against the lower bound (LB) discussed in Section IV-C, considering random geometric graphs with n = 30 nodes and different choices of ρ. Each plot
shows the distribution of the results for m = 500 trials.

from Roskind and Tarjan (R&T) [30] and against the lower
bound (LB) discussed in Section IV-C.

Figure 5 shows a comparison of DESTC (lower plots)
and [30] R&T (upper plots) on a particular instance with
n = 30 nodes and ρ = 0.65. As shown by the picture,
DESTC Algorithm finds 6 EDSTs, while the algorithm in [30]
finds τ(G) = 10 EDSTs. Within DESTC Algorithm, instead,
there are 122 spare links that constitute a disconnected graph,
implying that a different choice of the links would have yielded
a bigger number of EDSTs.

In Figure 6, we consider random geometric graphs with
n = 30 nodes and for each choice of ρ ∈ [0.4, 0.95] we
generate 500 connected graphs. According to the figure, we
note that the median value for DESTC is above the one for
LB when ρ ≤ 0.8; moreover, it can be noted that the 5th

percentile for DESTC is above the median of LB for ρ = 0.4,
and it is above the 25th percentile of LB for ρ = 0.45 For
higher values of ρ, the results for DESTC and LB tend to
coincide. As for the comparison with R&T, it can be noted that
for ρ < 0.5 the results are comparable for the median values,

although R&T has better results in terms of 75th and 95th

percentile. For ρ ≥ 0.5, instead, the 75th percentile for DESTC
is below the 25th percentile for R&T, while for ρ ≥ 0.75
the 75th percentile for DESTC is below the 5th percentile
for R&T. The results suggest that the proposed algorithm
has good performance for relatively sparse networks, while
it gets increasingly closer to the lower bound as ρ grows; it
should be noted, however, that the distributed setting is of
particular interest in the case of sparse networks, therefore the
proposed algorithm appears well justified. Note that, in the
above simulation, the EDSTs found by DESTC have average
diameter between 24 (ρ = 0.4) and 25.67 (ρ = 0.95), while
R&T obtains considerably smaller average diameter, being
between 8 and 10; in both cases, however, the average diameter
is well above the diameter of the graph being partitioned,
which in our trials is around 4 for ρ = 0.4 up to 2 for ρ = 0.95.

D. Coping with MITM Attacks

We now provide an example showing the potential of the
proposed approach in terms of detection of MITM attacks
and restoration of the correct result. We consider a random

2325-5870 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2017.2746344, IEEE
Transactions on Control of Network Systems

geometric graph with n = 30 nodes and ρ = 0.7, resulting
in |E| = 363 links. By means of DESTC Algorithm, we find
9 EDSTs and we analyze the effectiveness of MITM attacks
affecting distributed algorithms running in parallel over the
found EDSTs.

Specifically, in Figure 7 we report the results obtained
with respect to agents executing the max-consensus algorithm
(upper plot, see [45] and references therein for details on max-
consensus algorithms) and the average-consensus algorithm
[1] (lower plot). Note that, since the average-consensus algo-
rithm has asymptotic convergence, we implement a stopping
criterion and we approximate the result of each instance.
In each plot we consider MITM attacks affecting a given
number of links (up to 30) selected at random and we plot,
depending on the number of attacked links the percentage of
successful detections of the attack (in red) and the percentage
of successful restoration of the correct result (in blue). In the
max-consensus case we assume the i-th agent starts with initial
condition equal to i (so that the maximum is n = 30) and the
attackers replace the transmitted values with a value 2n = 60,
so that by affecting one link the result of the corresponding
EDSSG is 60 instead of 30. In the average-consensus case
we do the same (hence the average is 15.5), but since we
approximate the asymptotic result at a given point, we assume
that solutions differing of less than 0.1 are counted as if they
were the same result. According to the figure, the ability to
cope with MITM attacks is radically different in the case of
max-consensus and average-consensus. In the first case the
agents are able to detect the attack with high probability in
spite of the attacks; the detection percentage is around 100%
if up to 13 links are attacked, while it degrades as more links
are attacked (for 30 links attacked the detection percentage
is around 20%). In the case of average-consensus, instead,
the percentage is always 100%, since the attackers have no
obvious way to guarantee that each attacked instance will yield
the same result, hence in general the attacks yield different
results, and the agents are able to spot the attack. As for
the restoration probability, according to Remark 2, having
9 EDSTs we are guaranteed to be able to restore attacks
to no more than 4 links in all cases, while the percentage
degrades as more links are attacked. However, the results for
average-consensus are remarkably better than max-consensus;
as discussed above, the attackers might not be able to steer
the result of the different instances to the same result; hence,
although not being the absolute majority, there might be a
relative majority of instances that are not attacked (e.g., two
instances having the same value while all other instances have
erroneous but different values).

VIII. CONCLUSIONS

In this paper we provide a lightweight and asynchronous
distributed methodology to construct a set of EDSTs. Such
EDSTs can be used to execute in parallel several instances of
the same distributed algorithm, so that the algorithm becomes
robust to man-in-the-middle attacks. Future work will be
aimed at extending the methodology to directed graphs and

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Number of attacked links

0

20

40

60

80

100

%

Man-in-the-middle attacks to Max-consensus

Attacks Detected
Correct Value Restored

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Number of attacked links

0

20

40

60

80

100

%

Man-in-the-middle attacks to Average-consensus

Fig. 7. Example of detection of MITM attacks and restoration of the correct
result in the case of max-consensus (upper plot) and average consensus (lower
plot), with respect to a random geometric graph with n = 30 nodes and ρ =
0.7. In this case, DESTC algorithm finds 9 EDSTSs and run the algorithms in
parallel over the EDSTs. We plot the results in terms of detection percentage
(in red) and restoration percentage (in blue) when different number of links
are attacked at random. We consider 100 trials for each number of attacked
links.

to increase the degree of parallelism in the construction of the
EDSTs. Moreover we will investigate strategies to construct a
smaller set of EDSSGs with small diameter; to this end the
ability of DSCT Algorithm to find the diameter of the EDSTs
it constructs will be highly beneficial. Another important
research direction is the definition of performance bounds
of the proposed approach with respect to the optimal but
centralized algorithm.

REFERENCES

[1] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks
of agents with switching topology and time-delays,” IEEE Transactions
on automatic control, vol. 49, no. 9, pp. 1520–1533, 2004.

[2] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems & Control Letters, vol. 53, no. 1, pp. 65–78, 2004.

[3] H. Moniz, N. F. Neves, and M. Correia, “Byzantine fault-tolerant
consensus in wireless ad hoc networks,” IEEE Transactions on Mobile
Computing, vol. 12, no. 12, pp. 2441–2454, 2013.

[4] L. Tseng and N. H. Vaidya, “Fault-tolerant consensus in directed
graphs,” in Proceedings of the 2015 ACM Symposium on Principles
of Distributed Computing. ACM, 2015, pp. 451–460.

[5] H. Chen, “Decentralized consensus for P2P network with trust relation-
ships,” arXiv preprint arXiv:1501.06238, 2015.

[6] M. Cai, Z. Xiang, and J. Guo, “Adaptive finite-time fault-tolerant
consensus protocols for multiple mechanical systems,” Journal of the
Franklin Institute, vol. 353, no. 6, pp. 1386–1408, 2016.

[7] G. Chen and Y.-D. Song, “Robust fault-tolerant cooperative control of
multi-agent systems: A constructive design method,” Journal of the
Franklin Institute, vol. 352, no. 10, pp. 4045–4066, 2015.

[8] Y. Ge, J. Wang, L. Zhang, B. Wang, and C. Li, “Robust fault tolerant
control of distributed networked control systems with variable structure,”
Journal of the Franklin Institute, vol. 353, no. 12, pp. 2553–2575, 2016.

[9] F. Fagnani and S. Zampieri. “Average consensus with packet drop
communication”, SIAM Journal on Control and Optimization, vol. 48,
no. 1, pp. 102–133, 2009.

[10] C. Kai and H. Ishii, “Average consensus on arbitrary strongly connected
digraphs with time-varying topologies”, IEEE Transactions on Auto-
matic Control, vol. 59, no. 4, pp. 1066-1071, 2014.

[11] C. N. Hadjicostis, H. V. Nitin and A. D. Domı́nguez-Garcı́a,“Robust
distributed average consensus via exchange of running sums”, IEEE
Transactions on Automatic Control, vol. 61, no. 6, pp. 1492–1507, 2016.

[12] M. Strebe and C. L. Perkins, Firewalls: 24 Seven. Sybex Inc., 1999.

2325-5870 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2017.2746344, IEEE
Transactions on Control of Network Systems

[13] Y. Desmedt, “Man-in-the-middle attack,” in Encyclopedia of cryptogra-
phy and security. Springer, 2011, pp. 759–759.

[14] M. Conti, N. Dragoni, and V. Lesyk, “A survey of man in the middle
attacks,” IEEE Communications Surveys & Tutorials, vol. 18, no. 3, pp.
2027–2051, 2016.

[15] J. T. Chiang, J. J. Haas, Y.-C. Hu, P. Kumar, and J. Choi, “Fundamental
limits on secure clock synchronization and man-in-the-middle detection
in fixed wireless networks,” in INFOCOM 2009, IEEE. IEEE, 2009,
pp. 1962–1970.

[16] M. Rahman and K. El-Khatib, “Secure time synchronization for wireless
sensor networks based on bilinear pairing functions,” IEEE Transactions
on Parallel and Distributed Systems, 2010.

[17] L. Wang and A. M. Wyglinski, “Detection of man-in-the-middle attacks
using physical layer wireless security techniques,” Wireless Communi-
cations and Mobile Computing, 2014.

[18] A. Itai and M. Rodeh, “The multi-tree approach to reliability in
distributed networks,” Information and Computation, vol. 79, no. 1, pp.
43–59, 1988.

[19] Y. Challal, A. Ouadjaout, N. Lasla, M. Bagaa, and A. Hadjidj, “Secure
and efficient disjoint multipath construction for fault tolerant routing in
wireless sensor networks,” Journal of network and computer applica-
tions, vol. 34, no. 4, pp. 1380–1397, 2011.

[20] S. Chakraborty, S. Chakraborty, S. Nandi, and S. Karmakar, “Fault
resilience in sensor networks: distributed node-disjoint multi-path multi-
sink forwarding,” Journal of Network and Computer Applications,
vol. 57, pp. 85–101, 2015.

[21] S. Sundaram and C. N. Hadjicostis, “Distributed function calculation
via linear iterative strategies in the presence of malicious agents”, IEEE
Transactions on Automatic Control, vol. 56, no. 7, pp. 1495–1508, 2011.

[22] Y.-C. Tseng, S.-Y. Wang, and C.-W. Ho, “Efficient broadcasting in
wormhole-routed multicomputers: A network-partitioning approach,”
IEEE Transactions on Parallel and Distributed systems, vol. 10, no. 1,
pp. 44–61, 1999.

[23] O. Beaumont, N. Bonichon, L. Eyraud-Dubois, P. Uznański, and S. K.
Agrawal, “Broadcasting on large scale heterogeneous platforms under
the bounded multi-port model,” IEEE Transactions on Parallel and
Distributed Systems, vol. 25, no. 10, pp. 2520–2528, 2014.

[24] W. T. Tutte, “On the problem of decomposing a graph into n connected
factors,” Journal of the London Mathematical Society, vol. 1, no. 1, pp.
221–230, 1961.

[25] C. S. J. Nash-Williams, “Edge-disjoint spanning trees of finite graphs,”
Journal of the London Mathematical Society, vol. 1, no. 1, pp. 445–450,
1961.

[26] T. Kaiser, “A short proof of the tree-packing theorem,” Discrete Math-
ematics, vol. 312, no. 10, pp. 1689–1691, 2012.

[27] S. M. Cioabă and W. Wong, “Edge-disjoint spanning trees and eigen-
values of regular graphs,” Linear Algebra and its Applications, vol. 437,
no. 2, pp. 630–647, 2012.

[28] Q. Liu, Y. Hong, X. Gu, and H.-J. Lai, “Note on edge-disjoint spanning
trees and eigenvalues,” Linear Algebra and its Applications, vol. 458,
pp. 128–133, 2014.

[29] A. Frieze and T. Johansson, “On edge disjoint spanning trees in a
randomly weighted complete graph,” arXiv preprint arXiv:1505.03429,
2015.

[30] J. Roskind and R. E. Tarjan, “A note on finding minimum-cost edge-
disjoint spanning trees,” Mathematics of Operations Research, vol. 10,
no. 4, pp. 701–708, 1985.

[31] J. Edmonds, “Matroids and the greedy algorithm,” Mathematical pro-
gramming, vol. 1, no. 1, pp. 127–136, 1971.

[32] Y. Wang, J. Fan, X. Jia, and H. Huang, “An algorithm to construct
independent spanning trees on parity cubes,” Theoretical Computer
Science, vol. 465, pp. 61–72, 2012.

[33] Y. Wang, J. Fan, W. Liu, and Y. Han, “A parallel algorithm to construct
BISTs on parity cubes,” in Information Science and Control Engineering
(ICISCE), 2015 2nd International Conference on. IEEE, 2015, pp. 54–
58.

[34] V. Yadav and M. V. Salapaka, “Distributed protocol for determining
when averaging consensus is reached”, Annual Allerton Conference, pp.
715–720, 2007.

[35] N. E. Manitara and C. N. Hadjicostis, “Distributed stopping for average
consensus in undirected graphs via event-triggered strategies,” Automat-
ica, vol. 70, pp. 121–127, 2016.

[36] T. Charalambous, Y. Yuan, T. Yang, W. Pan, C. N. Hadjicostis and M.
Johansson, “Distributed finite-time average consensus in digraphs in the

presence of time delays”, IEEE Transactions on Control of Network
Systems, vol. 2, no. 4, pp. 370–381, 2015.

[37] L. Lovász, Combinatorial problems and exercises. American Mathe-
matical Soc., 1993, vol. 361.

[38] R. E. Tarjan, “Efficiency of a good but not linear set union algorithm,”
Journal of the ACM (JACM), vol. 22, no. 2, pp. 215–225, 1975.

[39] W. Wong, Spanning trees, toughness, and eigenvalues of regular graphs.
University of Delaware, 2013.

[40] B. Awerbuch, “A new distributed depth-first-search algorithm,” Informa-
tion Processing Letters, vol. 20, no. 3, pp. 147–150, 1985.

[41] K. Lakshmanan, N. Meenakshi, and K. Thulasiraman, “A time-optimal
message-efficient distributed algorithm for depth-first-search,” Informa-
tion Processing Letters, vol. 25, no. 2, pp. 103–109, 1987.

[42] S. Makki and G. Havas, “Distributed algorithms for depth-first search,”
Information Processing Letters, vol. 60, no. 1, pp. 7–12, 1996.

[43] M. Raynal, Distributed algorithms for message-passing systems.
Springer, 2013, vol. 500.

[44] S. Kutten, G. Pandurangan, D. Peleg, P. Robinson, and A. Trehan, “Sub-
linear bounds for randomized leader election,” Theoretical Computer
Science, vol. 561, pp. 134–143, 2015.

[45] F. Iutzeler, P. Ciblat, and J. Jakubowicz, “Analysis of max-consensus
algorithms in wireless channels,” IEEE Transactions on Signal Process-
ing, vol. 60, no. 11, pp. 6103–6107, 2012.

Gabriele Oliva (M’11) received the Laurea degree
and the Ph.D in Computer Science and Automation
Engineering in 2008 and 2012, respectively, both
at University Roma Tre of Rome, Italy. He is cur-
rently assistant professor in Automatic Control at the
University Campus Bio-Medico of Rome, Italy. His
main research interests include distributed systems,
distributed optimization, and applications of graph
theory in technological and biological systems.

Sebastian Cioabă received the B.Sc degree in
Mathematics and Computer Science in 2000 at the
University of Bucharest, Romania, the M.Sc and
Ph.D degrees in Mathematics in 2002 and 2005,
respectively, both at the the Queen’s University of
Kingston, Ontario. After postdoctoral positions at
University of California, San Diego and University
of Toronto, he has been at University of Delaware
since 2009. He currently serves as Associate Pro-
fessor in the Department of Mathematical Sciences
at University of Delaware in Newark, Delaware.

His main research interests lie in graph theory, combinatorics and their
applications to other areas of mathematics and science. He authored or
co-authored more than 40 papers published in peer-reviewed international
journals. He is on the editorial board of Linear and Multilinear Algebra and
Electronic Journal of Linear Algebra.

2325-5870 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2017.2746344, IEEE
Transactions on Control of Network Systems

Christoforos N. Hadjicostis (M’99, SM’05) re-
ceived the S.B. degrees in electrical engineering,
computer science and engineering, and in mathe-
matics, the M.Eng. degree in electrical engineering
and computer science in 1995, and the Ph.D. degree
in electrical engineering and computer science in
1999, all from Massachusetts Institute of Technol-
ogy, Cambridge. In 1999, he joined the Faculty at the
University of Illinois at Urbana–Champaign, where
he served as Assistant and then Associate Professor
with the Department of Electrical and Computer

Engineering, the Coordinated Science Laboratory, and the Information Trust
Institute. Since 2007, he has been with the Department of Electrical and
Computer Engineering, University of Cyprus, where he is currently Professor
and Dean of Engineering. His research focuses on fault diagnosis and
tolerance in distributed dynamic systems, error control coding, monitoring,
diagnosis and control of large-scale discrete-event systems, and applications
to network security, anomaly detection, energy distribution systems, medical
diagnosis, biosequencing, and genetic regulatory models. He currently serves
as Associate Editor of IEEE Transactions on Automatic Control, and IEEE
Transactions on Automation Science and Engineering; he has also served as
Associate Editor of IEEE Transactions on Control Systems Technology, and
IEEE Transactions on Circuits and Systems I.

