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ABSTRACT Several techniques exist for mobile test automation, from script-based techniques to
automated test generation based on GUI models. Most techniques fall short in being adopted extensively by
practitioners because of the very costly definition (and maintenance) of test cases.
We present a novel testing framework for Android apps that allows a developer to write effective test scripts
without having to know the implementation details and the user interface of the app under test. The main
goal of the framework is to generate adaptive tests that can be executed on a significant number of apps, or
different releases of the same app, without manual editing of the tests. The frameworks consists of: (1) a Test
Scripting Language, that allows the tester to write generic test scripts tailored to activity and app categories;
(2) a State Graph Modeler, that creates a model of the app’s GUI, identifying activities (i.e., screens) and
widgets; (3) an app classifier that determines the type of application under test; (4) an activity classifier that
determines the purpose of each screen; (5) a test adapter that executes test scripts that are compatible with
the specific app and activity, automatically tailoring the test scripts to the classes of the app and the activities
under test.
We evaluated empirically the components of our testing framework. The classifiers were able to outperform
available approaches in the literature. The developed testing framework was able to correctly adapt high-
level test cases to 28 out of 32 applications, and to reduce the LOCs of the test scripts of around 90%.
We conclude that machine learning can be fruitfully applied to the creation of high-level, adaptive test cases
for Android apps. Our framework is modular in nature and allows expansions through the addition of new
commands to be executed on the classified apps and activities.

INDEX TERMS Android Testing, Test Selection, App Classification

I. INTRODUCTION
User interface and functional testing are notoriously tedious
and costly processes. Even when automated testing tech-
niques are adopted, testers have to manually write test scripts
susceptible to human errors and requiring constant main-
tenance, to be aligned with the evolution of the Software
Under Test (SUT). When a full test suite has been written,
small changes in the user interface or the functionality of
the Application Under Test (AUT) may make it necessary
to correct or re-design a significant number of test cases to
ensure that their behaviour is still correct. In the Android
domain, this issue is exacerbated by the rapid refresh cycle
of apps and their GUIs, fueled by the constant evolution
of the Android operating system and its design guidelines.

Several empirical works in literature have highlighted the
amount of maintenance typically required by Android test
suites [1]–[3]. In contrast, several survey-based studies have
linked the intrinsic difficulties in test script development to
the relatively low adoption of scripted testing frameworks
among Android developers [4], [5].

According to many development best practices, Android
applications have to follow several standard patterns in their
design and functional structure [6]. Research has also tried
to identify semantic categories of applications, according to
the structure and components inside the screens (or Activities
in Android parlance). The characteristics of the app GUIs
can allow to create clusters of application types and screen
categories, to abstract the application behaviour and exploit
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such high-level description for the creation of generalized test
cases [7], [8].

The experience reports from the literature of the Android
domain suggest that mobile testers would benefit from a
generalization of test scripts, to untie them from the imple-
mentation details of individual applications. High-level test
scripts can be adapted to different apps of the same typology;
moreover, they can be run against the same app even if the
implementation details change during its lifecycle.

Therefore, our work aims at building a novel testing frame-
work capable of allowing a developer user to write straight-
forward, robust and adaptive tests that can be launched
against different apps based on its class, without having
to manually re-adapt them to the specific properties of the
individual GUI. To that extent, we define a novel test script-
ing language, offering 33 high-level commands generalizing
(sets of) common interactions with typical Android apps.

The framework leverages a State Graph Model of the GUI
built through a systematic exploration of the app’s compo-
nents, and machine learning algorithms to identify the class
of the application and to classify every activity that is met.
In contrast with other Android test scripting tools (such as
Appium [9] or Espresso [10]), which require the developer
to identify explicitly the elements of the GUI that have to
interact in each test case, our framework supports writing
down app-independent commands that relieve the tester from
exploring every screen’s layout structure.

The main contribution of this paper is an extensible and
low-weight framework for the development of high-level,
readable and application-independent test suites. As a sec-
ondary contribution, we provide two novel means of classi-
fying Android apps and Activities, enhancing—in terms of
performance–state-of-the-art classifiers.

The remainder of the paper is organized as follows: Sec-
tion II provides background information about the Android
layout and activity structure, the different testing strategies
for Android apps, and related work on machine learning
strategies to classify Android app. Section III provides a
high-level description of the testing framework that we pro-
pose. Section IV provides details about the individual com-
ponents of the framework: the State Graph Modeler, the APK
classifier, the Activity classifier, and the Test Adapter. Section
V reports the results of the evaluations taht we performed for
all the components of the architecture, in isolation. Section
VI discusses the results and the current limitations of the
approach. Section VII gives our conclusions and outlines
future work directions.

II. BACKGROUND AND RELATED WORK
This section provides background information about the
structure of typical Android apps and the available ap-
proaches for modelling and testing them. We also discuss
similar findings in the literature, highlighting the differences
with our work and the existing gaps in the literature.

A. ANDROID APPLICATION STRUCTURE
Android apps can be divided into three different categories,
according to the target deployment platform. First, Native
apps are developed using components that are part of the
Android framework. These apps are deployed and run on
Android devices only. Second, Web-based apps are typical
are intended to be loaded and displayed on a mobile browser.
Third Hybrid apps contain native components that can be
used to load web-based contents at run time.

Native Android apps are made up of several components,
each conforming to a specific lifecycle driven by the Android
operating system. Four kids of components exist: Activities,
Content Providers, Services and Broadcast Receivers. The
latter three components are responsible for managing data,
operations in the background, and message exchange be-
tween different apps. Activities are the main components of
Android apps since they are in charge of populating the user
interface with the required widgets. The population of the
user interface is performed according to specifications that
are given via code, in the Activity class itself, or via static
XML layout files, that are provided in a specific folder of
an Android project. The GUIs of Android apps are consist of
so-called Views, arranged on the screen according to different
Layouts; each view is provided with a set of properties that
govern the displaying of the view. Views (e.g., buttons) can
be associated with callbacks executed in response to user
interactions (e.g., button presses).

The Android PacKage file (APK) is a compressed archive
(similar to a jar or zip archive) containing a compiled pro-
gram for Android and additional assets belonging to the app,
such as widgets, screen layout specifications and strings in
different languages (for localization purposes). The APK,
digitally signed with a certificate, is the format in which
the applications are distributed for the Android system. The
most important files and folders contained in the archive are
summarized in Table 1.

Every APK must contain a file named AndroidMani-
fest.xml, which contains essential information about the app
itself that is needed by various agents, such as the Google
Play store, the build tools, and the Android operating system.
Some of the most critical items described in the manifest
file include the hardware requirements needed to run the
app, the package name (which is generally the same as the
project namespace), and details about the list of components
(including activities) in the application. Most importantly, the
manifest file contains information about the permissions that
the app needs from the Android operating system. Permis-
sions are needed to have controlled access to some features or
areas of the device that are deemed as sensitive or vulnerable
(e.g., the user’s emails and contacts, the device’s camera, etc).
For many of the required permissions, the user is prompted to
manually consent to their use when the permission is needed.

B. TESTING STRATEGIES FOR ANDROID APPS
Several testing approaches can be applied to mobile appli-
cations. Linares-Vasquez et al. gave a characterization of the

2 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3029735, IEEE Access

Ardito et al.: Automated Test Selection for Android Apps Based on App Domain

TABLE 1: Content of a decompiled Apk file

Name Description

assets A directory containing all the multimedia files required by the app
res A directory containing all the resource files, such as drawables, string definitions and layout XML files
lib A directory containing compiled libraries used by the app
META-INF A directory containing the app signature and other meta-information
AndroidManifest.xml A file describing essential information about the app (e.g., OS compatibility and permissions)
classes.dex The compiled Android application code file
resources.arsc A file with precompiled strings, colors and styles to optimize performance

current state of the art of Android testing, dividing testing
tools and techniques into three different categories [5].

Automation APIs/Frameworks provide testers/developers
with interfaces for writing GUI tests with manually-written
scripts with a JUnit-like syntax. These testing techniques give
full control to the testers for exercising complex use cases
against the app GUI, at the cost of high development and
maintenance costs. Test cases written with Automation APIs
are also significantly prone to fragility issues, meaning that
they need relevant maintenance effort when the application is
subject to typical maintenance [3]. Examples of Automation
APIs and Frameworks are the official Espresso [11] and UI
Automator [12] tools, Calabash [13], Ranorex [14], Robolec-
tric [15] and Robotium [16].

Record and Replay tools relieve testers from manually
encoding sequences of interactions into test scripts, enabling
the automated recording of testing sequences, that can be re-
executed at any time. However, these tools expose several
limitations because they cannot provide significant defect-
finding power if the developers manually insert no assertions
or if the testing environment has no knowledge of the user
interface that is tested. Even though no script development
effort is needed by Record and Replay tools, the tests are
not runnable against other AUTs if not explicitly adapted.
Examples of Record and Replay testing tools for Android
apps are the Espresso Test Recorder (which comes embedded
in recent releases of the Android Studio IDE) [10], RERAN
[17] and Barista [18].

Automated test input generation techniques have been
largely investigated by the most recent studies in the litera-
ture. These approaches automatically generate sequences of
inputs with the app, with a particular goal (e.g., achieving
high coverage or finding a high number of defects). Auto-
mated test input generation techniques can be further divided
into three different categories:

• Random Exploration Strategy: Random independent
UI events are generated and applied to the application
under test to find some faults. The advantage of this
method is that it is possible to generate many test
sequences with little effort, making it suitable for stress
testing. The main drawbacks lie in the fact that targeted
inputs cannot be generated, and that the tools are not
aware of how much coverage is provided for the applica-
tion under test. Also, random input generation can lead
to redundant test sequences. Examples of random-based

input generation tools are Monkey [19], Dynodroid [20],
and Cadage [21].

• Model-Based Exploration strategy: These tools sys-
tematically generate and explore a symbolic model of
the app, to investigate its behaviour. The model can be
seen as a finite-state machine, where the states represent
screens of the app, and the transitions represent events
triggered by interactions with the GUI. All the states and
transitions are typically generated dynamically while
interacting with the application, and stopping when
all possible routes lead to already explored states. On
the one hand, the main advantage of the model-based
approach is reaching full GUI coverage of the app
without many redundant test sequences. On the other
hand, internal behavioural changes that have no effects
on the GUI may not be registered by the models. Testing
tools that leverage the model-based exploration strategy
to test Android apps are MobiGUItar [22], A3E [23],
Swifthand [24], QUANTUM [25], and GuiRipper [26].

• Systematic Exploration Strategy: This category of
tools refer to a family of more sophisticated techniques
(such as genetic algorithms) that are used to guide the
exploration towards previously uncovered code. These
techniques seek to create input sequences capable of
unveiling undesired behaviours. Compared to Random
and Model-based strategies, these can achieve greater
coverage and target more defect-prone areas of the
application. The main limitation of those techniques
lies in the scalability of the algorithms. Examples of
testing tools adopting a systematic exploration strategy
are AndroidRipper [27], CrashScope [28] and EvoDroid
[29].

C. RELATED WORK
Existing research recognizes the importance of an approach
similar to ours; anyway, they are not comprehensive in
developing a framework involving all the aspects of GUI
modelling, classification, and high-level script generation.
In [22], Amalfitano et al. explore the state graph modelling
phase with the MobiGuitar tool. They build a state-machine
model where each state is a specific state of the app’s screen,
and each transition is a UI event. After creating the state
graph breadth-first, MobiGuitar generates test cases for each
path given the initial state. Then, it crosses out every possible
incoming and outgoing edge for every node.
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Yang et al. [30] have explored the application classification
phase, with Lacta. Their approach, however, requires access
to the full source code of the application. From the code,
Lacta can identify the app’s category. Dong et al. decompile
the app’s code and count the number of occurrences for
each API function call and then classify the app through
a Multinomial Naive Bayes classifier [31]. Hamedani et
al. decompile the code to retrieve the list of called APIs, but
they also exploit the app’s intents and hard-coded strings to
classify the app’s category [32].

The activity classification phase has not been extensively
explored yet by existing research projects. The main work
towards this direction is the one by Rosenfeld et al., which re-
trieves the list of swipable, clickable, and edited text elements
to perform classification [33]. Hu et al. developed AppFlow
that converts the entire screen layout into a single string and
uses a screenshot and Optical Character Recognition (OCR)
techniques to identify useful text [34].

Related to the test scripting phase, instead, a direct com-
parison can be made between our work and the already cited
work of Hu et al. [34]. They allow the user to write specific
test scripts where conditions with some semantic values can
be imposed.

With this work, we improved accuracy on both APK
and Activity classification. We developed a comprehensive
approach not yet explored in literature. Finally, we created a
new testing framework based on these classifiers.

III. TESTING FRAMEWORK
Figure 1 shows an overview of the testing process according
to our framework. The individual modules and their imple-
mentation details will be detailed in the following section.

• Test Script Writing. In the first step of the testing pro-
cess, the human tester can create a set of test scripts (i.e.,
a test suite). The test scripts, written in our scripting
language, are not aimed at any specific mobile app but
are generally applicable to broad classes of apps and
activities. Therefore the tester writes scripts that will be
fired when specific types of screens and apps are being
tested. The test suite can contain tests for different kinds
of activities, meaning that they will be executed only
when a specific kind of activity is encountered.

• APK Classification. This module analyzes the APK
file of the application under test, retrieving useful and
symbolic information that can be used to classify the
app into a specific category. These results are then used
in the testing phase, to understand which test suites have
to be executed against the AUT.

• State Graph Modelling. This module builds a finite
state machine model of the app’s GUI. This element
is then used as a functional map for the execution of
the test scripts. The creation of the GUI model can be
considered, by itself, a form of stress test for the GUI
of the app, since during the exploration of the GUI it is
possible to detect crashes, bugs, freezes and other forms
of defects in the application.

• Activity Classification The activity classifier is run at
each state that identified by the State Graph Modeler, to
understand the kind of the activity.

• Test Adapter. The information about the specific cat-
egories of APK and activity is used to filter out the
tests from the test suite that are designed to be run on
them. Each test case is then fired, and the test results are
reported based on the assertions that are contained in the
test. At the end of each test execution, the exploration of
the application is backtracked to the state preceding the
test execution.

IV. TOOL IMPLEMENTATION
In this section, we provide implementation details about key
modules of our framework. Specifically, we detail the imple-
mentation choices that we made for state graph modelling,
for both the classifiers and for the automated selection and
execution of test cases.

A. STATE GRAPH MODELLING
The main purpose of the State Graph Modelling module
is to build a reliable, functional, and logical map of the
application. Such a map allows us to proactively learn what
screen widgets are available in the application and what
transitions can be triggered by interacting with them.

Building automatically a state graph is equivalent to draw-
ing a formal model, as a Finite State Machine, since the ap-
plication can only be in one of a finite set of states at a given
time. The state graph considers all the possible transitions
out of a state, i.e., exploring all the possible UI elements in
a given screen of the application. The construction of such a
graph is a relevant aid for functional testing, as it provides a
systematic way to explore all features of the applications.

The State Graph Model (from now on, SGM) that we
adopted is a Directed Graph, with its main elements defined
as follows:

• Nodes: Each node represents the state of an activity.
By state of activity, we take into consideration the
current values of the set of attributes associated with
each UI element contained in the activity. For instance,
this value could indicate whether a button is enabled,
or if a toggle button is on or off. This implies that the
same activity/screen can be represented multiple times,
in multiple states of the app.
From an implementation point of view, each node con-
tains the full layout hierarchy of the activity and the
values for all the available attributes. The node also
contains a reference to the predecessor node, a list of
all possible successor nodes, and the node’s roadmap,
that is, the list of all edges that need to be traversed to
reach the node from the entry point of the graph (most
typically, the Main activity shown to the user at the
startup of the app). By keeping the predecessor nodes
and the roadmap in a node, we can replicate the chain of
interactions needed to reach the node from the startup
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FIGURE 2: Graphical visualization of the State Graph Model obtained by crawling the Android stock messaging app.

screen of the app, hence guaranteeing replication of the
created test sequences.

• Edges: Each edge corresponds to a specific UI element
that the user can select to reach a new screen state. As
every widget is represented by a multitude of attributes,
we selected an id for each UI element, where the id is
unique in the context of a single activity.

Figure 2 represents a sample State Graph Model, obtained
by crawling the stock Android messaging app. To build the
SGM, we crawled the states of the app using a FIFO queue
to store the set of states that were discovered. Five essential
steps are performed during the State Graph Modelling proce-
dure:

1) Start State Building: The start state s0 consists of

the main activity of an application. The UI elements
contained in the activity are set to their initial state as
evinced by monitoring the activity with the Android
Debug Bridge (ADB), which allows an app to be
controlled from a desktop or laptop computer. This
state corresponds to the start node of the SGM. This
node is then inserted in the FIFO queue of nodes to be
explored.

2) Dequeue Phase: The first available unexplored state
is dequeued from the queue and reproduced on the
Android device being monitored, starting from state s0
(the startup screen);

3) Exploration Phase: Once the state to explore is repro-
duced, its layout structure is explored with the ADB, to
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save all the attribute values and to identify all possible
interaction with every available UI element. All ele-
ments, both clickable and non-clickable, are interacted
at this point: the reason for such operation is to provide
a form of UI testing of the app already in the phase of
graph building, to investigate if defects or crashes can
be reached by interacting with any element of the GUI;

4) New-State-Check Phase: After the interaction with a
GUI element, we check whether the app is now in a
new screen. If so, the new state is appended to the FIFO
queue;

5) Merging Phase: once an iteration of the exploring
phase is completed, we check whether some states
inserted in the FIFO queue are equivalent to previously
encountered states (i.e., all the attributes in the screen
hierarchy are the same). If this is the case, only the
previously created state is kept in the queue.

B. APK CLASSIFICATION
This section describes the first classification step of the
proposed architecture. The APK classifier is in charge of
assigning one of a set of app categories to a given APK.
The approach we followed is a black-box approach where
only the APK compiled package of the application is needed
and not its source. It is based on Deep Neural Networks
and it is similar to existing approaches in the literature, e.g.,
AndroClass system [32]. The main differences lie in the
feature vectors and parameters that we use.

1) Composing the Feature Vector
The first decisions taken for the APK classification step
was the objective features of the application that would bias
toward a given app class. The following elements were taken
into consideration when building our feature vectors:

• Android API Calls: Several methods in the literature
have used Android OS API calls as features to perform
classification of Android apps: LACTA [35] gathers
information from the semantics of the code identifiers;
AndroClass [7] and ClassifyDroid [8] refer to the full
list of the possible Android OS API methods called by
the app. Both approaches lead to tens of thousands of
features, resulting in very sparse data. For these reasons,
we are using only Android OS API calls, building a
binary feature vector where each cell represents one of
the possible Android OS API Classes. The value in each
vector cell indicates whether the corresponding API call
is present in the APK file or not.
To find the methods (and classes) referred by the ap-
plication, we extract the Java bytecodes executed by
Android’s Dalvik virtual machine from an APK file.
The bytecodes are typically contained in one or more
classes.dex files. Each of these dex files contains a meth-
ods_ids section, where identifiers for all API and user-
defined methods are stored. Once the list of methods is
obtained, it is compared with the full collection of 4339

Android API classes (as of this writing), which can be
retrieved from the publicly-available Android.jar file.

• Permissions: Requested permissions can be very help-
ful in the classification of the APKs since different cat-
egories of applications need different permissions from
the OS. For instance, communication applications will
require INTERNET and VIBRATE permissions, which
are generally not used by offline and video music play-
ers, and so on. To extract Dalvik bytecodes and the per-
missions required by an app, we used Apktool1, which
returns the application’s manifest file in a readable form
as well as the classes.dex files. Android applications
must specify the required permissions in the first part
of the manifest.
In our feature vector, we indicated with 1 a permission
that was requested, and with 0 a permission that was
not requested. We considered the list of 60 permissions
that are provided by the official developer guide for
Android2.

• Hard-coded Strings as Word Vectors: Every Android
application features a file named strings.xml located in
the /values/ subfolder of the application project. This file
is referred by the application when a particular string
value is needed and contains hard-coded strings that can
be referred multiple times in the app and changed for
localization. Each string is denoted by a unique id, using
standard XML encoding. It is evident that we might
have an important semantic core in the strings.xml file
since the strings correspond to the main functionality of
the app.
The AndroClass classifier [7] collects all N words ap-
pearing in all the APKs of the training set and uses a
binary vector of N elements to represent the presence
of a given word in the current app instance. The main
drawback of such an approach is that the diversity of
the vocabulary and its size depend on the number of
applications used in the dataset. We hence adopted the
Word2Vec Word Embedding technique, in which each
word is identified by a word vector in a vector space
of 300 dimensions. We adopted the pre-trained word
embedding model by Google News Word2Vec model as
released by Mikolov et al.3. The model pairs every word
string found in the strings.xml file with the correspond-
ing vector of 300 values. Because of the variable number
of strings, we next compute the average word vector
among all the strings, obtaining a point that locates the
app in a 300-dimensional space.

The resulting Feature Vector of 4699 elements is shown
in Figure 3. The vector contains 4339 cells with a binary
indication of the presence of references to Android API
classes; 60 cells with a binary indication of whether one

1https://ibotpeaches.github.io/Apktool/
2https://developer.android.com/guide/topics/ permission-

s/overview#normal.permissions
3https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit
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FIGURE 3: Structure of the Feature Vector used by the APK classifier.

TABLE 2: Structure of the APK classification data set.

Category Number of APKs

News and Magazines 293
Communication 342
Shopping 293
Education 295
Social 292
Food and Drink 294
Video Players 307
Medical 330
Weather 409
Music and Audio 341

Total 3,196

of the Android OS permissions has been requested or not;
300 cells with floating values that represent the average of
the word vectors obtained by querying the Google News
Word2Vec model with all the words contained as hard-coded
strings in the APK.

2) Building the Dataset
While training the classification algorithm, we benefited
from the black-box nature of our classification approach that
allowed us to select packaged apps available in the usual
Android app markets.

For our evaluation, we specifically used the APK Pure
store4, as it provides not only a very wide selection of appli-
cation categories but also direct app download functionality
without requiring a running Android device. In this manner,
we built a dataset containing about 3,200 apps.

We selected ten different categories of applications, choos-
ing the most popular apps in the store. We did not take into
account applications belonging to the games category since
games may feature a very diverse GUI appearance that would
make it difficult to generalize a testing approach across the
board. An average of more than 300 apps was downloaded
for each of the selected categories. Table 2 shows the selected
categories and the number of applications for each category.

3) Model Architecture
In our approach, we considered a variety of statistical learn-
ing methods for our classifier. In the end, we chose a
fully connected Deep Neural Networks (DNNs) because this
method yielded higher accuracy results than the remaining

4http://apkpure.com

TABLE 3: Selected Hyper-parameters for the APK classifi-
cation architecture.

Hyper-parameter Selection

Number of layers 2 Dense layers
Number of units per layer 1000 (1st layer), 500 (2nd layer)
Activation function Sigmoid
Number of Epochs 90
Batch size 128
Optimizer Adam
Learning Rate 0.00001
Dropout 0.5

methods that we tried. In Section V we report in detail
the empirical results obtained with DNNs. We also give a
summary of the results obtained with alternative methods.
We have sufficient data to assure it over performs classic
classifiers, however a clear understanding of the generality
of this network is only possible with sample numbers in the
order of millions. Our findings on DNNs are consistent with
results obtained by other authors. Reyhani et al. [32], who
also tried K-Nearest Neighbors (KNN), Naive Bayes (NB),
and Support Vector Machines (SVM), also concluded that
DNNs outperform the other alternatives for app classifica-
tion.

We tuned the DNN’s hyper-parameters using the Hand
Tuning (trial and error) technique. Each parameter is tuned
individually and assigned its optimal value in terms of the
resulting DNN accuracy. Table 3 lists each hyper-parameter
and its assigned value.

• Number of layers: The optimal value of this parameter
depends on the number of dimensions in the training
data. We chose two dense layers. A higher number of
layers may lead to over-fitting.

• Number of Units per Layer: This parameter defines the
number of cells that are used in each layer of the Neural
Network.

• Activation function: This function defines the output of
each DNN cell based on its input. Possible alternatives
are ReLu, TanH, and Sigmoid (chosen).

• Optimizer: This is the algorithm used by the model to
update the weighs of each layer, after every iteration.
The most popular algorithms are Adam (chosen) and
Stochastic Gradient Descent (SGD).

• Learning Rate: This parameter determines the speed of
convergence of the DNN.

• Batch Size: This parameter defines the number of data
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points used in each training iteration before updating the
weights.

• Number of epochs: This parameter defines the number
of times the training data is passed through the model.

• Dropout: This parameter is a regularization technique
that prevents weight to be updated with certain proba-
bilities, and is used to avoid over-fitting.

A final detail of the DNN implementation is related to the
Data Scaling of the Feature Vector, which contains mixed
data (i.e., both binary and continuous features). Data scaling
is performed assigning to each sample a normalized value
z = (original_value−mean)/std, with std being the standard
deviation of the distribution of samples. Performing the stan-
dardization allows us to reorganize the distribution of values
in the data set so that it has a zero mean and unit standard
deviation. The complete pipeline of the architecture is shown
in Figure 4.

C. ACTIVITY CLASSIFICATION
This section describes the second classification step of the
proposed architecture. The activity classifier is responsible
for assigning a category to each activity in a given Android
app. The main assumption behind this classification is the
fact that many activities—even of different applications—
share several common features, as they follow very specific
patterns in both their structure and design. These design
patterns can be exploited for functional testing purposes: for
instance, many applications feature a Settings activity that is
often structured similarly, with a so-called ListView element
containing a set of clickable elements and toggles. This
implies that those activities might require a similar approach
to testing. In the remainder of this section, we report the
selection of features that we used to classify activities, the
classes of activities, and the structure of the classifier that we
developed.

1) Composing the Feature Vector
An activity can be considered a container and a manager of
UI elements, which can be either visible (i.e., that can be
seen and interacted by the user) or invisible (e.g., layouts that
are responsible for the arrangement and the behaviour of UI
elements contained therein). The type of attributes and their
number should be taken into consideration when classifying
an Android activity. Also, the attributes of some UI elements
have a value that can change over time. Hence the presence
of those attributes can be crucial in the classification process
(e.g., the isPassword=true attribute for an EditText element).
Since the attributes of the UI elements can change at run-
time, we leveraged the dump command of the UI Automator
testing framework (called through the AndroidViewClient
Python library5) to obtain the representations of the UI el-
ements present on screen at any moment. (See Figure 5 for a
dump example).

5https://github.com/dtmilano/AndroidViewClient

In addition to the types of widgets and their attributes,
we also take into consideration the different areas where the
widgets are located. As stressed by Rosenfeld et al. [33]
many apps expose the same design patterns with widgets
placed in fixed areas of the screen. We adopted their screen
partitioning, splitting the device screen into three areas: (1)
the top 20% of the screen, where typically the App Bar,
Drawer and Options buttons are located; (2) the mid 60%
of the screen, where the core of the app content is located;
(3) the bottom 20% of the screen, where a Navigation Bar
or a Floating Action Button is typically located. While the
top and bottom areas tend to be very similar among all
classes of activities, the mid-portion might differ a lot for
different classes of activities. Figure 6 provides a graphical
representation of the three areas on a 1920x1080 screen.

As the feature vector of our activity classifier, we selected
an extension of the vector by Rosenfeld et al. [33], who
relied on counters for Clickable, Swipeable, and Text field
elements. In addition to those features, we also took into
account the placement of the widgets on the different areas of
the screen to build our feature vector, consisting of 16 integer
numbers. The features that we considered are summarized in
Table 4 and described in the following:

• Number of clickable elements: the number of elements
with which the user can interact. High numbers may
indicate, for instance, settings or list screens. We split
this value into three counters, one for each partition of
the screen.

• Number of swipeable elements: the number of ele-
ments that can be swiped or scrolled by the user. High
numbers may indicate list or message screens.

• Number of edit text boxes: the number of elements
where the user can input text. High numbers may in-
dicate search bars or login prompts. We split this value
into three counters, one for each partition of the screen.

• Number of long-clickable elements: the number of
elements providing a secondary form of input. High
numbers may indicate message activities or pop-up
menus.

• Number of focusable elements: the number of ele-
ments with the focusable attribute (i.e., an indicator that
the widget is supposed to be interacted by the user) set
to true. High values may indicate activities providing the
user with high interaction. We split this value into three
counters, one for each partition of the screen.

• Number of ImageViews: the number of elements of the
screen hosting image files. High values may suggest the
presence of chat or browsing activities.

• Number of password elements: the number of ele-
ments where the password attribute (i.e., an attribute
that hides input text) is set to true. A value different
from zero of this counter suggests the presence of login
activities.

• Number of checkable elements: the number of ele-
ments that can be checked with a tick-mark, mostly
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FIGURE 4: Overview of the APK Classification pipeline.

FIGURE 5: Complete set of attributes for the dump of a UI element.

FIGURE 6: Sectioning of a 1920x1080 screen into the identified three areas.

appearing to settings and to-do list screens.

• Presence of a side drawer: a binary indicator that
indicates the presence of a drawer containing additional
menu options.

• Total number of UI elements on screen: the total
number of widgets in the current layout, even those that
are not visible to the users.

2) Building the Data Set

We could not find an existing data set with labelled activities
that would fit our purposes. Thus, we created a new set of
labelled Android activities on our own. Our set of activity
categories extends the set adopted by Rosenfeld et al. in their
related research [33]. The main objective of the definition of
activity classes was to find a diverse enough set of screens.
We defined the following eight classes:

• Advertisement: This class contains full-screen ads that
must be closed by the user by selecting a specific
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TABLE 4: Set of features used for activity classification.

Feature Name Separation in Three Areas Number of Features

Number of Clickable elements Yes 3
Number of Swipable elements No 1
Number of EditText elements Yes 3
Number of Long-Clickable elements No 1
Number of Focusable elements Yes 3
Number of ImageViews No 1
Number of Password elements No 1
Number of Checkable elements No 1
Presence of a side Drawer No 1
Number of UI elements on screen No 1

Total Features 16

widget.

• Login: This class contains activities with a login form,
typically consisting of two EditText elements including
one with the password attribute set to true.

• Portal: This kind of activity consists of an information
hub used as the main section of the app, very common
in news, music and audio apps.

• List: This class contains activities consisting of a
dynamically-populated list of interactive elements, typ-
ically implemented with the ListView widget. If the lists
are used for settings screens, they typically incorporate
switches or so-called ToggleButton widgets.

• To-Do: This class contains activities that allow the user
to create and modify a list of tasks, typically character-
ized by the presence of multiple checkable widgets.

• Browser: This class contains activities specifically con-
structed to perform internet browsing. These typically
contain a so-called WebView in the central section and a
search bar in the upper part.

• Map: This class contains activities designed to show
the location of a specific point of interest, typically
featuring a very complex layout due to a high number
of icons, textual contents, and images that have to be
shown on screen.

• Messages: This class contains activities characterized
by a central part of the screen with the set of messages
exchanged by the users, and an EditText used to input a
new message.

Once the categories were decided, we created a hand-
crafted dataset of labelled samples. To do so, we crawled the
ApkPure Store for 70 applications, and we traversed most of
their activities. For each activity, we stored a dump of the
screen, and we manually assigned the most plausible cate-
gory among those just described. In this manner, we obtained
100 labelled Activities, equal to 100 labelled vectors of 16
values each, split among the eight defined activity classes.
Table 5 shows the complete composition of the dataset.

TABLE 5: Composition of the activity classification data set.

Activity Category Number of labelled samples

Advertisement 13
Login 12
Portal 13
List 13

To-Do 12
Browser 12

Map 12
Messages 13

3) Model Architecture
In this work, we evaluated seven types of Machine Learning
methods for our classifier. K-Nearest Neighbour, Decision
Trees, Random Forest, Support Vector Machines, Naive-
Bayes, Logistic Regression, and finally Convolutional Neural
Networks (CNNs) have been deeply fine-tuned and their
hyper-parameters evaluated with a grid search approach. In
the end, we chose the logistic regression approach because
of its overall higher performance in accuracy, precision, and
recall that we observed empirically. The logistic regression
used in multi-class classification is the multinomial one. This
approach hypothesizes that all classes are independent of one
another. The problem is thus solved considering the eight
activity classes listed in Table 5 as eight different binary clas-
sification problems. The model outputs a real value in a range
from zero to one, indicating the probability of belonging to
one of the eight classes. The closer the output probability is
to one, the higher the chance the sample belongs to that class.

Suppose that we have just two predictors that are linearly
independent as in equation (1) where the βi’s are the param-
eters of the model.

l = loge
p

1− p
= β0 + β1 ∗ x1 + β2 ∗ x2 (1)

From equation (1) we remove the logarithm obtaining the
odds in equation (2).

p

1− p
= eβ0+β1∗x1+β2∗x2 (2)

From equation (2) we obtain the sigmoid function, which
also indicates the probability of a data point belonging to a
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specific class as described in equation (3).

pY=1(X) =
1

1 + eβ0+β1∗x1+β2∗x2
(3)

The model was trained to find the best set of βi parameters
feeding our feature values and obtaining as output the prob-
ability of the unknown data point belonging to that specific
class. Once we obtained the whole set of probabilities for
each class, we select the highest among the eight, and we
assign the activity to that class.

We also fine-tuned the C parameter which is the most
important tuning parameter in terms of the logistic regres-
sion. This is a penalty term, meant to generalize the data in
the training set. Small values mean that the regularization
will be strong and the model is simpler with the chance of
underfitting the data, while high values are indicative of low
regularization, meaning more complex models and possible
overfitting.

The effect of C on accuracy is depicted in Figure 7.

FIGURE 7: Effect of C normalization parameter on logistic
regression.

Even if the multinomial logistic regression is the best
performing in terms of accuracy, precision and recall, we
analyzed the output from decision trees and random forest to
determine the importance of each input feature in the activity
category attribution, as shown in Figure 8.

This chart presents the number of total UI elements, check-
able elements, and the clickable elements at the bottom of
the activity screen as the most representative features for the
assignment of an activity’s category.

The complete pipeline of the architecture is shown in
Figure 9.

D. TEST ADAPTER
This section describes the Test Executor module that was
developed based upon the two classifications described in the
previous sections.

In the remainder of this section, we report the definition of
our scripting language and the implementation details of the
modules dedicated to test adaptation and execution.

Importance

Fe
at

ur
e

Num Total UI el
Checkable el.

Clickable el. Bot
EditText boxes Bot

Clickable el. Top
Swipeable el

Long-Clickable el.
Clickable el. Mid

Password el.
EditText boxes Mid
EditText boxes Top

Imageviews el.
Focusable el. Mid
Focusable el. Bot
Focusable el. Top

Side Drawer

0.00 0.05 0.10 0.15

FIGURE 8: Level of importance as produced by decision
trees and random forest of the features used in the classifi-
cation process.

1) Test Scripting Language
The main drivers for the design of the test scripting language
were readability and intuitiveness. Therefore we defined
commands that indicate sets of gestures that can be applied
to a specific category of APKs and activities.

The execution of a test case is fired when two specific
preconditions are met:

• The AUT belongs to the specified Application category;
• The current activity belongs to the specified activity

category;
The outcome of a test case (pass or fail) depends on three

post-conditions. The test case is deemed as passing if and
only if all these conditions are met:

• All the commands of the test case are executed without
triggering crashes in the AUT (implicit verification);

• The condition of the assertion commands (if any) are
satisfied (explicit verification);

• The last screen reached after all commands match the
activity category specified by the user.

The proposed syntax allows us to declare multiple test
cases inside a single test suite. A test suite is declared by us-
ing the "When" keyword, which indicates that the following
list of test cases must be executed only in an app of a given
APK category.

After the declaration of the test suite, the user specifies a
list of test cases that will be executed in the same order in
which they are declared. A test case is defined by a header
containing two items: the category of activity in which the
test case must be executed (indicated with the "In" keyword),
and the state in which the test case must end, according to the
extracted state graph of the app. If the test case must end in
the same state, the "check for SAME state" post-condition is
used. If the test case must end in a different state, the "check
for DIFFERENT state" post-condition is used, followed by
the category of the screen in which the test case must end.

The commands that compose the test scripts are divided
into two families. Activity-specific commands are developed
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FIGURE 9: Overview of the activity Classification pipeline.

1 When COMMUNICATION app :
2 In LOGIN check f o r SAME s t a t e :
3 INPUT NAME " ar t u ro@gmai l . com " ;
4 INPUT PASSWORD " abcd123 " ;
5 CLICK NEXT;
6
7 In TODO check f o r DIFFERENT s t a t e PORTAL:
8 ADD TASK " t i t l e " ;

FIGURE 10: A sample test suite script containing two test
cases.

specifically for each of the eight activity categories in which
each screen can be classified. The full list of activity-specific
commands is detailed in Table 6. Generic commands can be
used in any activity category, as they perform actions that can
be usually executed in every context. The full list of generic
commands is detailed in Table 7.

A sample test suite script is shown in Figure 10. The
example defines a test suite for an AUT classified as a
communication app. The test suite is composed of two test
cases. The first test case starts in a login activity, in which the
name and password are given as input, and the next button is
pressed; the test case passes if the app stays in the same state.
The second test case starts in a ToDo activity, where a task is
added; the test case passes if the app has moved to a different
layout state, in an activity of the PORTAL category.

2) Implementation
To implement a test runner capable of understanding the test
scripting language, we have built an interpreter that creates
Python code capable of performing the actual testing actions.
The interpreter contains the following components.

• Lexer: Also called tokenizer, the lexer allows the con-
version of sequences of characters into tokens that can
be used by the following parse tree. In our implemen-
tation, we have developed the tokenizer to be case-
insensitive, to recognize quoted strings as parameters of
the commands, and to ignore any type of whitespace.

• Parser: The parser is responsible for analyzing the
syntax of the language. We created a Context-Free
Grammar (CFG or type-2 grammar), indicating that our

production rules are in the form S− > γ, where S
is always a non-terminal symbol, and γ is a string of
both Terminals and Non-Terminals in any order. The
complete grammar is then given as input to the ANTLR
tool6, which is capable of producing as output a working
parser written in Python, which will automatically build
a parse tree. The parser that we produce is a LL(*)
Parser [36], i.e., a type of top-down parser that parses
the input provided from left to right, deriving first the
leftmost non-terminal symbol. LL(*) parsers also allow
us to retrieve an arbitrary number of look-ahead symbols
to preventively solve conflicts in identifying the rules to
follow.
In Figure 11, we report as an example the Abstract
Syntax Tree (AST) produced by the parsers after having
encountered the sample script previously provided. (See
Figure 10.)

• Code Generator: The purpose of the Code Generator
module is to translate the logical structure of the test
suite into pure Python code. We have modelled a test
suite as a sequence of test cases, and each test case
as a sequence of operations to be executed along with
conditions for the test to succeed.

• Widget Identification: The final and most important
step for the execution of the generated Adaptive Test
Cases, is the identification of the actual UI elements on
which to perform the interactions. To do so, the dump
of the entire screen GUI is parsed. Four different factors
are kept in consideration for the identification of the
widget:

– Textual hints: text content, content descriptions, and
resource IDs are the primary type of information
that can be used to verify the compatibility of a
given widget with a desired kind of interactions;
e.g., text content containing the "next," "submit" or
"confirm" keywords are likely compatible with the
CLICK NEXT operation.

– Class type: each widget class can be compatible
with a limited amount of interactions, e.g., the

6www.antlr.org
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TABLE 6: Description of activity-specific commands

Command name A
dv

.

L
og

in

Po
rt

al

L
is

t

To
-D

o

B
ro

w
se

r

M
ap

M
es

s.

Description

ADD TASK "String" x Adds a new entry with the given title
ASSERT LINECOUNT EQUALS number x Checks the number of entries in the list
CLEAR FIELDS x Delete the text in all editable fields
CLICK AD x The advertisement banner is clicked
CLICK CENTER x Clicks the center of the activity
CLICK CLOSE x The advertisement is closed by the "close" button
CLICK NEXT x Submits login credentials
CLICK LINE number x x Clicks one of the entries in a list
INPUT MESSAGE "String" x Writes a new message with the given string
INPUT NAME "string" x Inputs the string as user-name in the login form
INPUT PASSWORD "string" x Inputs the string as the password in the login form
INPUT SEARCH "string" x Writes the string as URL in the search bar
INPUT URL "string" x Writes the string as URL in the navigation bar
LONG CLICK ALL x Long-clicks all lines with spinners in a list
LONG CLICK CENTER x Long-clicks the center of the activity
LONG CLICK LINE number x Long-clicks a line with a spinner menu in a list
PRESS BACK x x x The Android "back" button is pressed
PRESS ENTER x Presses the enter Action key of the keyboard
SWIPE LEFT x x Performs a default swipe left operation
SWIPE DOWN x x x x x Performs a default swipe down operation
SWIPE RIGHT x x Performs a default swipe right operation
SWIPE UP x x x x x Performs a default swipe up operation
TICK ALL x Mark all entries in a to-do list
TICK LINE number x Marks a specific entry as completed
TOGGLE LINE number x Toggles the switch if present on a line of the list

TABLE 7: Description of Generic commands

Command name Description

CUSTOM ASSERT TEXT EQUALS "String" Checks whether an element on screen contains the given string
CUSTOM CLICK x y Clicks the screen at the given coordinates
CUSTOM CLICK TEXT "String" Clicks a UI element containing the given string
CUSTOM DRAG FROM x y TO x y DURATION number Performs a custom gesture from start to destination
CUSTOM LONG CLICK x y Long-clicks the screen at the given coordinates
CUSTOM PRESS DEVICE BACK Presses the Android back button
CUSTOM SLEEP number stops the execution of the script for the given amount of ms
CUSTOM TYPE "String" Inputs the given text in the first EditText found in the screen hierarchy

suite

when apptype app : testlist

COMMUNICATION

testtype3
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FIGURE 11: Abstract Syntax Tree resulting from sample input test suite.
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toggle instruction is compatible with spinners but
not with buttons.

– Attribute values: the compatibility of a widget with
a certain type of interaction can be verified by con-
sidering the values of attributes defining the action
that can be performed on it; e.g., the isPassword
attribute is used to identify the widgets were to
perform the INPUT PASSWORD command.

– Locational hints: the screen dump provides the
boundaries for each element. It is hence possible
to infer if a given widget is located in an area of the
screen that is compatible with the desired type of
interaction.

We adopted the heuristic of selecting the widget fea-
turing with a higher number of compatible factors. For
each identified widget, we leverage its unique ID to
interact with it inside the Python test cases.

• Test Executor: The final module of the test adapter
performs the actual execution of the tests. The system
starts from the State Graph Model of the activity run on
the device, and at each node, it runs the activity classifier
to understand the category of the current screen. Then,
each test case in the test suite written for that activity
category is fired.
At the end of the execution of a test case, its outcome
is evaluated, and then the application is brought back
to the original state in the SGM; if other test cases are
available for the current type of activity they are fired,
otherwise the exploration of the app model proceeds to
a new state.

V. EVALUATION
To validate our framework, we evaluated it in isolation from
other components. The following sections report the results
of each evaluation.

A. STATE GRAPH MODELING
As anticipated in Section III, the building process of the State
Graph Model can also be deemed a form of automated testing
of the correct functioning of the app’s User Interface. In this
case two forms of implicit oracles can be used to verify
whether the UI elements of the app’s GUI behave correctly:

• An Unhandled Exception (or Crash) stops the execution
of the app;

• A Freeze of the app GUI, which does not respond to any
input anymore.

To compare the bug-finding capabilities of the State Graph
Modeler we adopted, we compared it with Monkey11, the
official Android Random testing tool, that comes embedded
with the Android Studio IDE and that feeds the GUIs of the
AUT (application under test) with pseudo-random inputs.

We used the Fault Injection technique, manually modify-
ing the code of four different open source apps by injecting

11https://developer.android.com/studio/test/monkey

nine different faults; we then (1) verified whether the bugs
were spotted; (2) we compared the time to find such faults
with our State Graph Modeler and with the Monkey random
input generator. Details about the considered application,
injected faults, and times to find the bugs are reported in
Table 8. For every measurement, we started the execution
from the Main Activity of the app, and we instructed the
Monkey tool to always stay inside the application package
(i.e., not navigating to other applications by sending intents).

We made the following observations:
• Our State Graph Modeler and the Monkey tool were

both able to find all 9 injected faults.

• The times to find a fault varied significantly, especially
in relation to the place where the faults were injected.
When the faults were injected in the Main Activity,
the random input generation of the Monkey tool was
able to find the fault in less time than our framework;
however, when the faults were injected in screens that
were reachable after navigation in the app, the SGM
building process was able to find them in less time.

We can hence assume that the time required to find a GUI
fault is dependant on the size of the state graph and on the
number of transitions required in the input sequence to reach
the Activity where the fault is required. The ability to find all
the injected faults suggests that the SGM creation itself is a
reasonable means to perform a basic round of UI testing with
the usage of implicit oracles, on all the widgets of the AUT.

B. APK CLASSIFICATION
We performed APK classification using a Deep Neural Net-
work (DNN) choosing the hyper-parameters as stated in
Table 9. The output layer of the net has 10 nodes, matching
the number of APK categories. Category selection is per-
formed by a Softmax activation function. The loss function
is a Kullback-Leibler divergence that predicts how well the
predicted data distribution approximates the real data one.

The resulting network structure is shown in Figure 12. We
defined this structure by hand-tuning the hyper-parameters
listed in Section IV-B3 through extensive empirical studies.

Evaluation scores are obtained using the hold-out ap-
proach. In this work, 10% of the entire dataset is left out to
be used as the final test set, while the remaining 90% of the
dataset is processed with stratified 10-fold cross-validation.
The results on the 90% of the dataset are exploited to fine-
tune the DNN hyperparameters, while results on the test set
are presented in the following.

Given the DNN above, we can reach 58.46% accuracy with
a standard deviation of 2.88%. Precision is 81.36%, with a
standard deviation of 9.31%. Finally, recall is 54.05%, with a
standard deviation of 7.75%. We obtained these results using
only the initial group of 60 permissions. When we use the full

8it.feio.android.omninotes.alpha
9com.esoxjem.movieguide
10net.frju.flym
11naman14.timber.dev
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TABLE 8: Time to find an injected bug with State Graph Model building procedure, and with the official Android Monkey
pseudo-random input generator.

Application Name Injected Bug Time to find - SGM Time to find - Monkey

Omni Notes7 Opening side drawer causes a crash 36.21s 61.60s
Opening the ’Camera’ option inside the FAB menu causes a crash 78.01s 191.2s

Opening FAB, selecting ’New Note’ and changing the Reminder Date causes a crash 173.32s 204.64s

MovieGuide8 Pressing the ’Like Button’ in the details page of a movie causes a crash 64.11s 29.59s
Changing the movies Sorting Order causes a crash 93.15s 47.93s

Flym9 Clicking on the GitHub link of the ’About’ page of the app causes a crash 597.96s 747.45s
Opening the Search Bar causes a crash 49.74s 19.15s

Timber Music Player10 Opening the side drawer, then settings, and clicking on a specific line causes a crash 1726.57s 2194.07s
Selecting the ’Artists’ tab causes a crash 65.38s 6.44s

FIGURE 12: Structure of neural network for APK Classification.

TABLE 9: Hyper-parameters chosen after an empirical fine
tuning phase. They describe the DNN architecture and the
choice made in the classification optimization.

Deep Neural Network hyper-parameters

Parameter Value

Dropout 0.5
Output Layer Nodes 10

Output Layer Activation Function Softmax
Loss Function Kullback-Leibler Divergence

Optimizer Adam
Learning Rate 0.00001

set of 158 permissions, the accuracy score is 58.18%. The
accuracy so computed indicates that every single requested
permission is offset by a wider feature array and this situation
makes the classification process more challenging.

We assess the validity of our model comparing its perfor-

mances with state of the art solutions in application clas-
sification. ClassifyDroid [31] tries to classify apps into 10
categories as well using a modified version of Multinomial
Naïve Bayes, but it uses a much bigger dataset consisting of
15590 samples coming from the Chinese MM App Market12.
However, ClassifyDroid also presents the accuracy trend for
different percentages of labelled samples used, and for 3118
apps (20% of the whole dataset, perfectly comparable with
our dataset of 3196 data points), it reaches an accuracy of
55%, lower than ours.

The Lacta approach [30] classifies apps into 8 categories
using a dataset containing only 42 apps. The authors report
only precision measures, omitting accuracy. If we use the
same number of categories, we reach 88% precision, in line
with their precision of 89%. However, using hand-picked
apps for constructing the dataset may have artificially biased

12http://mm.10086.cn/
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FIGURE 13: Effect of Number of APK classes on model
Accuracy.

Lacta’s performance. AndroClass [32] uses a Neural Network
to classify apps retrieved from the same source (APK Pure)
as ours, with about 277 apps per category, which is similar to
our ratio. The authors report 48% accuracy, 45% precision,
and 41% recall. Our approach clearly outperforms those
results.

We have also conducted empirical studies with different
feature vectors by removing some components to verify that
all components help in reaching our results. Table 10 shows
that removing the word vector representation of the hard-
coded strings reduces performance by about 9% in terms of
accuracy, while removing the permission component reduces
the performance even further, up to 13%. These results show
that none of the elements constituting our feature vector are
superfluous; all components have a semantic meaning that is
a key to the success of the classification process.

Finally, we checked the number of APK categories and
their effects on the variation on the accuracy of the model.
Figure 13 represents the effect of the number of APK classes
on model accuracy. On the left side, the accuracy is 73.57%
with 4 categories. Next, the accuracy linearly decreases with
the number of categories. If we restrict the number of cat-
egories to 5, we obtain an accuracy score of 71.22%. In our
experiment, our model classifies APK classes according to 10
categories. We conclude that, even if the accuracy decreases
with the number of categories, the incremental loss is modest.

In conclusion, our fully connected Deep Neural Network
architecture yields satisfactory results in the APK classifica-
tion problem. Evidently, the success of classification depends
on the chosen dataset for any given classifier structure. For
instance, AndroClass [32] reaches an accuracy of 48% using
the APK Pure13 dataset (same source as ours), 57% using the

13https://apkpure.com/

Google dataset14 and even 85% using a hand-made dataset.
These results imply that the choice of training applications
and their assignment to APK classes (i.e., the“ground truth")
affects the performance of the classifier.

On the one hand, misclassifying ambiguous applications
in the training dataset misleads the entire training process.
On the other hand, using APKs that belong to just one class
improves the process. Ideally, we would have a manually-
labelled dataset that has a reduced yet disjoint set of cat-
egories. AndroClass is clear proof of this fact; by “cherry-
picking" apps in the training set, their accuracy improved by
37%. All of this highlights how the manual categorization
of Android applications performed on some app stores can
lead to ambiguities. In our case, due to time and resource
constraints, it was possible to just crawl the APK Pure
repository, but it would be interesting to see what happens
with a dataset consisting of thousands of manually-labelled
applications.

C. ACTIVITY CLASSIFICATION
Logistic regression is the best performing machine learning
algorithm in activity classification among the algorithms we
tested, as shown in Table 12. It has the highest scores in ac-
curacy, precision, and recall. Assuming independence among
activity classes, we exploit multinomial logistic regression to
perform 8 different binary classifications. Activity selection
is performed by choosing the highest positive probability
among the 8 classifications. The eight categories are listed
in Table 5, while the features exploited to classify them are
listed in Table 4. The architecture behind the multinomial
logistic regression is depicted in Figure 14.

The evaluation score is obtained with a 10-fold cross-
validation. We also compute scores with the “leave one
out" approach for a clearer comparison with other research
projects in this field. The most notable measurements are
the 91.01% accuracy using 10-fold cross validation. It is
important to notice the high scores in precision 96.54% and
recall 95.25%. The precision score highlights the ability of
our model to discriminate among the 8 classes of activities.
In addition, the high recall scoring suggests that most of the
relevant samples are detected, meaning that the number of
false negatives is negligible.

Other than multinomial logistic regression, we tried three
Convolutional Neural Networks (CNN) to classify activities
and to compare their score with the existing baseline cre-
ated by previous approaches. The first CNN uses as input
1920x1080 pixel screenshots of activities. Some screenshot
pixels are cropped to remove the bottom Android OS Action
Bar, and the top OS Status Bar, which are both graphical
elements identical in every Activity; therefore, it is no use to
consider those areas in the classification process. The screen-
shot is then converted to grey-scale to reduce the dimension
of the image thanks to the removal of the colour channels.
After a first pooling operation, the size of the input is (778,

14https://play.google.com/
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TABLE 10: Comparing final APK Classification results with different Feature Vectors

Feature Vector Accuracy Precision Recall

Standard (API+Perm.+WV) 58.46%± 2.88% 81.36%± 9.31% 54.05%± 7.75%
No WordVector 49.29%± 2.91% 61.02%± 15.11% 45.37%± 11.41%
No Permissions 45.49%± 3.95% 54.82%± 11.75% 45.96%± 10.44%
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FIGURE 14: Our multinomial logistic regression exploits 16 input features listed in Table 4, then performs 8 different binary
logistic regression and finally selects the category with the highest positive probability and assigns the input activity to that
category.

486, 1). At this stage, the image is fed to the network. The
architecture is made of a Convolutional layer (kernel 11x11,
stride 4), Max Pooling (kernel 3x3, stride 2), Convolutional
(kernel 5x5, stride 1), Max Pooling (kernel 3x3, stride 2),
3 Convolutional Layers (kernel 3x3, stride 1), Max Pooling
(kernel 3x3, stride 2), and finally a Dense Relu Layer of
100 units. The output is given as input to the third network
concatenation layer.

The second network tested has one Relu (Rectifier Linear
Unit) layer that sends the 16 inputs of the Features Vector
to the next concatenation layer. The third network joins the
first two models: their tensors are concatenated into a single
input. One dense layer has been added (Relu Dense of 50
units) at the end. The output layer has a Softmax activation
function that outputs the conditional probability of the 8
classes. Categorical cross-entropy has been chosen as the
loss function, together with a stochastic gradient descent
optimizer with a learning rate of 0.001.

Unfortunately, that model never converges during the
training phase, remaining stuck at around 16% accuracy
scores after 100 epochs. We have about 988,000 parameters

in our classifier, too many variables with few data points (100
labelled samples). Therefore, using Activity’s screenshots to
aid us in the classification process did not have any beneficial
effects.

The reference with other research projects confirms that
our DNN classifier outperforms the existing baseline in this
field. Rosenfeld et al. classify Android activities into 7 cat-
egories using a 10-fold validation procedure [33]. They use
80 training activities versus our 100 samples. They report ac-
curacy scores with different approaches, so we compare our
work with their best accuracy score of 86.25% using a KStar
algorithm. We outperform this model with an increment in
accuracy of 4.76%. A second comparison is with the work
of Hu et al. [34]. In their approach, they classify Android
Activities retrieving text with an OCR (Optical Character
Recognition) starting from activity screenshots. We compare
our results with best result that they obtained with leave-one-
out cross-validation. They classify activities in two categories
reaching a top accuracy of 87.3%. Even with the leave one
out approach and classifying a greater number of categories,
our approach reaches an accuracy of 89%, improving their

VOLUME 4, 2016 17



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3029735, IEEE Access

Ardito et al.: Automated Test Selection for Android Apps Based on App Domain

Activity Class Precision Recall

Advertisement 83.88% 92.46%
Login 96.82% 94.03%
Portal 93.08% 80.49%
List 75.37% 73.33%

To-Do 76.97% 87.20%
Browser 89.62% 83.25%

Map 81.54% 71.53%
Messages 95.94% 95.04%

TABLE 11: Per-class evaluation in terms of precision and
recall.

result by 1.7%.
A deeper analysis is presented by results in Table 11. These

scores are obtained with a 10-fold cross-validation with the
logistic regression algorithm, retrieving a confusion matrix
at each iteration, and calculating precision and recall at each
round, then averaging the whole scores at the end of the
process. The top scores are yielded by Login, Messages, and
Portal activities, showing that they maintain their character-
istics switching between different Android applications. This
means that they appear similar in terms of widgets and UI
elements. Moreover, most widgets are located in the same
screen areas across different apps. In conclusion, we outper-
form existing baselines with an accuracy score of 91.01%, but
we also obtained high scores in precision 96.54% and recall
95.25%, thereby setting a new state of the art baseline.

D. TEST ADAPTATION
To evaluate the testing Adaptation phase—and, in general,
the testing process with our tool as a whole—we focused on
three different research questions:

• RQ1: Can widgets with a specific semantic value be
found correctly by using textual hints and layout at-
tributes?

• RQ2: How often do the generated test cases lead to the
expected (pass or fail) result?

• RQ3: How much does the approach help developer-
s/testers in saving labour for the creation of test scripts?

The motivation behind the first research question is to
understand whether textual hints and layout attribute values
are sufficient to identify widgets with the same semantic
value but located in different contexts and applications. To
answer RQ1, we applied some commands of the scripting
framework to a diverse set of applications, to evaluate their
versatility. We tested the most complex commands supported
by the scripting module, in terms of lines of Python code
required for their implementation. In Table 13 we report the
results of the application of the (sequences of) commands
to different AUTs, the outcome (success or failure of the
command execution) and, in case of failure, its cause.

In total, we have defined 4 different sets of commands to
be applied to 32 different applications.

The ADD TASK "NoteTitle" command led to 6 out
of 8 correct executions. The implementation of the command

searches for a wide set of textual hints to find the button that
can be used to add a new note (e.g., new, create, write); for
the Cute ToDo List AUT, the test failed because no textual
hints, content descriptions or ids were added in the layout
for the confirmation button. Hence the operation could not be
performed. The second failure, for the ToDo AUT, was due to
the way the addition of a task was implemented. In two cases,
the commands proved to be versatile even in unexpected
situations: for the ToDo List AUT, an unpredictable pop-up of
an advertisement could happen after entering the title of the
note, forcing the testing engine to press the confirm button
twice; for the Checklist AUT, the Add New Note button was
uncommonly placed inside a drawer menu.

The second set of experiments involved a full login se-
quence, which was executed in 7 out of 8 cases; the only
failure happened when the Polito App was selected as AUT.
However, this failure was due to the missing translation
to the English language of one of the applications. Future
implementations of the testing framework may overcome this
issue by taking into consideration multiple translations of the
keywords used to identify the widgets to execute the desired
operations.

Similar results were obtained for the CLICK LINE 3
command, which was executed correctly in all but one of the
List activities; the one failure that happened for the Expedia
App AUT was due to the use of a custom layout instead of a
typical ListView structure. In the case of the Google Chrome
AUT, the test produced a slightly different behaviour than
expected since the first element of the ListView in the app is
a Login button, thereby incrementing the line indexes by 1.

Finally, the command INPUT MESSAGE "Test String"
led to 8 out of 8 correct executions, in Message activities.
The command also worked for the Messages AUT, which
presented an unusual structure of the Message Composition
screen, featuring multiple EditText boxes instead of a single
one; clearly, only a single one was filled with information by
the INPUT MESSAGE command.

Overall, 28 out of 32 executions (87.5%) of the commands
were correctly translated to actual inputs on the activities
of the applications under test, proving very high versatility
of the abstract commands to the actual implementation of
Android apps. The tests did not require access to the source
code or the compiled code of the applications under test and
involved applications with very complex user interfaces, thus
corroborating the applicability of the approach to real-world
Android applications.

To answer RQ2, we verified the capability of the test
cases to provide the correct positive or negative results when
applied to Android applications (i.e., whether a test fails if it
is supposed to fail, and passes if it is supposed to pass).

We selected for that purpose 8 different apps 15. On top
of those 8 apps, we defined 14 testing scenarios that were

15The number of AUTs is compatible with the one that emerges in
a literature review of Android automated testing approaches by Kong et
al. [37]
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TABLE 12: Comparison of a machine learning algorithm for activity classification. In the first three rows we show our top-
performing algorithms, in the last two rows we compare with other research projects results.

10-Fold Leave One Out

Accuracy Precision Recall Accuracy Precision Recall

Logistic Regression 91.01% 96.54% 95.25% 89.00% 89.00% 89.00%

Random Forest 87.98% 95.67% 92.26% 87.00% 87.00% 87.00%

SVM - Linear Kernel 88.08% 95.40% 94.57% 84.00% 84.00% 84.00%

Rosenfeld et al. [33] 82.5% - - - - -

AppFlow [34] - - - 87.3% - -

TABLE 13: Results of the evaluation of the commands versatility.

Command Application Outcome

ADD TASK N̈oteTitle;̈ Todo List Easy Success
ToDo List Success

Tasks Success
Cute ToDo List Failure

Reminder Success
ToDo Failure

inception List Success
Checklist Success

INPUT NAME ẗestemail@gmail.com;̈ Turo Success
INPUT PASSWORD "password"; KAYAK Success

CLICK NEXT; Polito App Failure
TEDx App Success

TripAdvisor App Success
Just Eat Success

Postmates Success
GRUBHUB Success

CLICK LINE 3; YouTube Success
Google Maps Success

Google Chrome Success
Android Settings Success

Expedia App Failure
BBC News App Success

Booking.com App Success
LinkedIn App Success

INPUT MESSAGE "Test String" Stock Android Messaging App Success
Message Classic Success
Pulse Messaging Success

QKSMS Success
Apple Message Success
Messages GO Success

Messages Success
Messages App Success

built to test the core functionalities of the Activity Category
to which they belong. To test different possible situations in
test executions, we tailored some tests to generate a failure
by inserting erroneous explicit assertions; also, we used the
Fault Injection technique again, by accessing the source
code of some of the apps to inject simple, functional bugs
that should lead correct test cases to fail. The full scripts
are reported in Appendix A of this manuscript. Table 14
reports the details of all the scripts that we developed, the
applications that were used, the explanation of each test case
(i.e., its operations), the expected and actual outcomes of the
test execution, and the explanation of the test outcome. By
comparing the expected outcome with the actual one, it is
possible to evaluate the capability of the testing framework

to provide the correct test outcomes.
The scripts correctly led to failures when wrong assertions

about the final screen were formulated, or when bugs were
injected in the AUT. Test scripts 2 and 9 were supposed to
fail because bugs were injected in the AUTs (ToDo List and
Amaze File Manager); they indeed led to failure, respectively,
because of the inability to execute a tap command on a note
that was not correctly saved, and because of a mismatch in the
text given in input by the user and that shown in the GUI. Test
Script 1 was supposed to fail because a wrong assertion was
added at the end of the script, checking that a different state of
the application is reached while the application is supposed
to remain in the same state after the addition of note.

In a single case out of 14 (script 12 for the DuckDuckGo
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TABLE 14: Quality evaluation of the functional testing procedure.

Starting Activity Script App Name Test Explanation Expected Outcome Actual Outcome

ToDo Script 1 ToDo List (OS) Adding a single note and then
removing it

Fail Fail

Script 2 ToDo List (OS) Same as script 1; a bug pre-
venting the insertion of a new
note was injected

Fail Fail

Script 3 ToDo List (OS) In a list with 2 notes, add a new
one, and check that 3 notes are
displayed

Pass Pass

Ad Script 4 Ads Toolbox Open an advertisement, thenk
check it

Pass Pass

Login Script 5 Patreon App Login without correct creden-
tials

Pass Pass

Script 6 Patreon App Login with wrong credentials Pass Pass
Script 7 Patreon App Login with correct credentials Pass Pass

List Selection Script 8 Android Stock Mes-
saging App

Send a message to the most
recent contact

Pass Pass

Script 9 Amaze File Man-
ager (OS)

Create a new folder; a bug
making all names lowercase
was injected

Fail Fail

Portal Script 10 Expedia App Try to visit all the tabs of the
application

Pass Pass

Script 11 Expedia App Change app country Pass Pass

Browser Script 12 DuckDuckGo Check whether the current
website is loaded after in-
putting the URL

Pass Fail

Map Script 13 Google Maps Search for a specific city, and
then enter Street View

Pass Pass

Messages Script 14 QKSMS Check if the string content of a
message is displayed correctly
after the message is sent; a bug
changing random characters is
injected in the app.

Fail Fail

AUT), the outcome of the execution of our script did not
match the expected one. The behaviour was due to an appli-
cation that presented a very uncommon behaviour in deleting
the user’s input after the keyboard is closed.

To summarize, the combination of the Activity Classifier
and the script creation framework proved to be a versatile
tool, able – in our evaluation phase – to generate correctly
functioning test script in more than 90% cases.

As a preliminary answer to RQ3, we report the code
saving that can be obtained by adopting our high-level com-
mands instead of utilizing common layout-based scripting
languages. Each of the adaptive commands we defined em-
beds 27.1 lines of Python code using the UIAutomator library
(with a maximum value of 89 lines for the ADD TASK
command for a ToDo activity).

This measure suggests that the proposed approach and
the current set of adaptive commands can be considered
an excellent starting point to achieve higher simplicity in
creating test cases, and a significant reduction of the labour
needed by testers in the creation of the test scripts.

VI. DISCUSSION
The evaluation we performed yielded positive results for
all the individual models of our proposed framework. All
the evaluation steps involved real-world published Android
applications (either open-source or not). Hence, it can be

considered a preliminary demonstration of the applicability
of the framework in existing projects and industrial contexts.

The complete framework showcases bug-finding features
already in the exploration phase, where the State Graph
Model of the application is constructed (with a fault-finding
capacity and a fault-finding time that was comparable to that
of state of the random art testers). The high-level commands
that we defined in the framework were applicable in near 90%
of the cases we tested, and the scripts based upon them led
to more than 90% correct test executions (in terms of correct
pass or fail outcome).

The main limitations of the proposed approach depend on
the design choices of the individual modules, which may
affect the generality of the results.

Regarding the model creation phase, we observe that the
main limitation of the State Graph Modeler we adopted
is the slow-building process, mainly impacted by the time
necessary to capture the dumps of every traversed screen. In
some cases, we observed that wrong layout structures were
yielded by the UI Automator tool in a non-deterministic way.
Possible ways to increase the precision and the speed of the
approach can be investigated, starting with evaluating other
tools and/or libraries to retrieve layout structures and dumps.

With respect to the components of our frameworks per-
forming APK and Activity classification, we have used ap-
plication and activity datasets already available and validated
in the literature. Of course, we cannot guarantee that any app
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and activity in the universe can be filed under the categories
that we used. Another limitation to our generality can be
represented by the use of the 10-fold cross-validation in the
Activity classification phase. This limitation can be overcome
by extending the size of the adopted dataset.

Regarding the test script generation module of the frame-
work, the present study has not investigated the coverage
provided by the commands on the use of cases exposed by
the tested applications. Extensive empirical experiments are
needed to verify the efficiency in finding real bugs in Android
apps.

VII. CONCLUSION AND FUTURE WORK
We have described a machine-learning-based framework for
creating high-level test scripts for Android applications. Test
scripts are defined based on a target application and activity
category; scripts can be launched adaptively regardless of the
specific implementation details of the individual AUT. We
propose a syntax that allows the creation of test suites and
the definition of simple assertions based on the current state
and type of the Android Activity.

Our framework complements the existing literature by
providing a higher accuracy with respect to state-of-the-art
APK and activity classifiers and defining a high-level mean of
writing implementation-agnostic Android test cases. In that
aspect, it allows developing low-weight test scripts that are
generalizable to multiple activities and multiple applications
of the same type.

We regard the generality mentioned above of test scripts
as a significant added value for a testing framework, given
the labour-intensive nature of the development of test scripts
for mobile apps and the typically high maintenance they need
during the normal evolution of the AUTs. High-level activity-
related commands, detached from the specific layout proper-
ties, can alleviate the tedious and error-prone backtracking
of the AUT use cases to the layout properties of individual
widgets while ensuring higher readability of test code.

The automated association performed at run-time by the
framework between high-level commands and specific layout
properties (i.e., content descriptions, ids, and textual content
of the widgets) can also move the definition of the test cases
to the preliminary steps of the development process. Test
cases can be defined during the definition of AUT require-
ments before the activity layouts are defined, facilitating
the application of test-driven development practices in the
Android domain.

As our immediate future work, in addition to addressing
the limitations discussed in the previous section, we plan
to set up additional empirical studies to evaluate the whole
framework, measuring its capability to adapt entire test suites
over large sets of similar applications.

Regarding the classifiers, we plan to evaluate other feature
vectors, datasets of applications and activities, and other
architectures to improve the performance of the classifiers.

Finally, we envision the design and execution of empirical
experiments to evaluate the Testing Framework’s capacity to

generate test cases able to provide high coverage of the GUI
widgets and high fault-finding capacity. Also, it is worth in-
vestigating the labour that testers can save using our Scripting
Approach instead of traditional script-based testing.

As a further improvement of our framework, we plan
to develop a semantic-aware conversational agent able to
interact with the output of this working framework and with
human test developers. The agents will look for flaws in
the test procedure and will suggest corrections. This kind
of approach will require much more data, especially labeled
data. Therefore, we will build a dataset following standards
in APK and activity description to expand the amount of
available data for a community based shared dataset used as
a baseline for future developments.
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APPENDIX. SCRIPTS FOR TESTING FRAMEWORK
EVALUATION

• Script 1:

1 In TODO check f o r DIFFERENT s t a t e TODO:
2 ADD TASK " T i t l e " ;
3 CUSTOM SLEEP 2000 ;
4 TICK LINE 1 ;
5
6 In TODO check f o r DIFFERENT s t a t e PORTAL:
7 ADD TASK " t i t l e " ;

• Script 2:

1 In TODO check f o r SAME s t a t e :
2 ADD TASK " T i t l e " ;
3 CUSTOM SLEEP 2000 ;
4 TICK LINE 1 ;

• Script 3:

1 In TODO check f o r DIFFERENT s t a t e TODO:
2 ADD TASK " T i t l e " ;
3 CUSTOM SLEEP 2000 ;
4 ASSERT LINECOUNT EQUALS 3 ;

• Script 4:

1 In AD check f o r DIFFERENT s t a t e AD:
2 CLICK AD;
3 PRESS BACK;
4 CUSTOM SLEEP 3000 ;
5 CLICK CLOSE ;

• Script 5:

1 In LOGIN check f o r SAME s t a t e :
2 CLICK NEXT;

• Script 6:

1 In LOGIN check f o r SAME s t a t e :
2 INPUT PASSWORD " wrongPassword " ;
3 INPUT NAME " c o r r e c t E m a i l @ g m a i l . com " ;
4 CLICK NEXT;
5 CLEAR FIELDS ;

• Script 7:

1 In LOGIN check f o r DIFFERENT s t a t e PORTAL:
2 INPUT PASSWORD " c o r r e c t P a s s w o r d " ;
3 INPUT NAME " c o r r e c t E m a i l @ g m a i l . com " ;
4 CLICK NEXT;

• Script 8:

1 In LIST check f o r DIFFERENT s t a t e MESSAGES:
2 CLICK LINE 0 ;
3 CUSTOM SLEEP 1000 ;
4 CUSTOM CLICK TEXT " Text message " ;
5 CUSTOM SLEEP 1000 ;
6 CUSTOM TYPE " Hel loWor ld " ;
7 CUSTOM SLEEP 1000 ;
8 CUSTOM CLICK TEXT " send " ;
9 CUSTOM SLEEP 1000 ;

10 CUSTOM ASSERT TEXT EQUALS " Hel loWorld " ;

• Script 9:

1 In LIST check f o r DIFFERENT s t a t e LIST :
2 CUSTOM CLICK TEXT " Download " ;
3 CUSTOM SLEEP 2000 ;
4 CUSTOM CLICK 940 1640 ;
5 CUSTOM SLEEP 1000 ;
6 CUSTOM CLICK TEXT " F o l d e r " ;
7 CUSTOM SLEEP 1000 ;
8 CUSTOM CLICK TEXT " E n t e r Name " ;
9 CUSTOM SLEEP 1000 ;

10 CUSTOM TYPE " ThisIsAName " ;
11 CUSTOM SLEEP 2000 ;
12 CUSTOM CLICK TEXT "CREATE " ;
13 CUSTOM SLEEP 1000 ;
14 CUSTOM ASSERT TEXT EQUALS " ThisIsAName " ;

• Script 10:

1 In PORTAL check f o r SAME s t a t e :
2 SWIPE RIGHT ;
3 CUSTOM SLEEP 1000 ;
4 SWIPE RIGHT ;
5 CUSTOM SLEEP 1000 ;
6 SWIPE LEFT ;
7 CUSTOM SLEEP 1000 ;
8 SWIPE LEFT ;

• Script 11:

1 In PORTAL check f o r DIFFERENT s t a t e PORTAL:
2 SWIPE RIGHT ;
3 CUSTOM SLEEP 1000 ;
4 SWIPE RIGHT ;
5 CUSTOM SLEEP 2000 ;
6 CUSTOM CLICK TEXT " Count ry " ;
7 CUSTOM SLEEP 3000 ;
8 CUSTOM CLICK TEXT " Canada " ;

• Script 12:

1 In BROWSER check f o r SAME s t a t e :
2 INPUT URL " bbc . co . uk " ;
3 PRESS ENTER;
4 CUSTOM ASSERT TEXT EQUALS " bbc " ;

• Script 13:

1 In MAP check f o r DIFFERENT s t a t e MAP:
2 INPUT SEARCH " San F r a n c i s c o " ;
3 CUSTOM SLEEP 1000 ;
4 CUSTOM LONG CLICK 226 1220 ;
5 CUSTOM SLEEP 1000 ;
6 SWIPE UP ;
7 SWIPE DOWN;
8 SWIPE LEFT ;
9 SWIPE RIGHT ;

10 CUSTOM PRESS DEVICE BACK;

• Script 14:

1 In MESSAGES check f o r DIFFERENT s t a t e MESSAGES:
2 INPUT MESSAGE "A s e n t e n c e " ;
3 INPUT MESSAGE " Another s e n t e n c e " ;
4 PRESS ENTER;
5 CUSTOM ASSERT TEXT EQUALS " s e n t e n c e " ;

VOLUME 4, 2016 23


