
Received September 10, 2018, accepted October 26, 2018, date of publication November 19, 2018,
date of current version December 19, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2882245

Gait Anomaly Detection of Subjects With
Parkinson’s Disease Using a Deep Time
Series-Based Approach
GIOVANNI PARAGLIOLA AND ANTONIO CORONATO
Institute for High-Performance Computing and Networking, National Research Council, 80131 Naples, Italy

Corresponding author: Giovanni Paragliola (giovanni.paragliola@icar.cnr.it)

This work has been partially supported by both the eAsy inteLligent service Platform for Healthy Aging (ALPHA) Project and the
project named ‘‘Realization of services and tools for Public Administrations for the implementation of the Electronic Health Record’’, a
Convention between the Agency for Digital Italy of the Presidency of the Council of Ministers and the National Research Council of Italy.

ABSTRACT Parkinson’s disease (PD) is a cognitive degenerative disorder of the central nervous system that
mainly affects the motor system. The earliest symptoms evidence a general deficit of coordination and an
unsteady gait. Current approaches for the evaluation and assessment of gait disturbances in PD have proved
to be expensive, inconvenient and ineffective in the detection of anomalous walking patterns. In this paper,
we address these issues by defining a deep time series-based approach for the detection of anomalouswalking
patterns in the gait dynamics of elderly people by analyzing the acceleration values of their movements. The
results show a training accuracy and testing accuracy of over 90% with an accuracy improvement of 4.28%
in comparison with related works.

INDEX TERMS Deep learning, convolutional neural network, long short-term memory, human behavior
recognition, gait classification, neurodegenerative, diseases, deep neural network.

I. INTRODUCTION
Parkinson’s disease (PD) is a cognitive degenerative disorder
of the central nervous system that mainly affects the motor
system. The earliest symptoms that arise consist in problems
with mood or mental abilities. A general deficit of coordina-
tion and an unsteady gait are also involved [1].

Gait disorders are one of the main constituents contributing
to a deterioration in the quality of life in patients with PD.

It has been proved that changes in gait dynamics can be
interpreted as a warning of gait impairment above and beyond
gait speed. These changes involve alterations or anomalies in
thewalking pattern, which does not present as consistent from
one step to the next [2].

These changes are not always easily quantifiable in clinical
procedure assessment but become apparent when the gait is
evaluated quantitatively using a gait analysis system.

This observation means that the gait analysis is considered
an important task for an early detection of developing symp-
toms of PD.

The sooner an anomalous walking pattern is detected,
the sooner it is possible to predict the onset of an early stage
of the disease.

Current approaches for the evaluation and assessment of
gait disturbances in PD require that patients attend a medical
center under a clinician’s supervision. As a consequence,

these approaches have proved to be expensive, inconve-
nient and generally ineffective in the detection of anomalies
in walking.

In this paper, we aim at overcoming these issues by
defining a deep time series-based approach for the detec-
tion of anomalous walking patterns in the gait dynamics
of elderly people by analyzing the acceleration values of
movements.

Currently, the gait dynamics of a subject are evaluated
by means of analyzing the acceleration values along the
(x,y,z) axes.

These data have the structure of a temporal time series (TTS)
with the X axis measuring the time and the Y axis measuring
the acceleration value. The temporal time series is, therefore,
a sequence of values indexed in time order.

The novelty of this paper consists in the presentation of an
innovative and more efficient way of analyzing the TTS
for the detection of anomalous walking patterns in the gait
dynamics.

In Table 1 we have reported the related works that
address the issue of walking pattern identification in the gait
dynamics using state-of-the-art methods (e.g. SVM, Decision
Tree, etc. [3]) for the classification problems.

All these relatedworks analyze the TTS by applying classic
pattern recognition based approaches to the gait dynamics;

73280
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0003-3580-9232
https://orcid.org/0000-0001-8177-032X


G. Paragliola, A. Coronato: Gait Anomaly Detection of Subjects With PD Using a Deep Time Series-Based Approach

TABLE 1. Summary of the related works.

the training of the machine-learning methods adopted is
sample-based.

These approaches do not take into account the fact that the
values of the TTS have the property of being ordered by time.

Our approach does not rely on a sample-based pattern
recognition process; instead, we have analyzed the whole
TTS in order to evaluate the ordering by time of the data.

This is the aspect that most significantly distinguishes our
solution from other works concerning the gait analysis of
subjects with a cognitive disease (e.g. PD or Huntington’s
disease).

In order to analyze the TTS, a hybrid deep neural net-
work (NN) has been defined, where the term hybrid indicates
that our NN is a combination of three different types of neural
network algorithm.

The architecture of the hybrid NN consists in two compo-
nents (Figure 7):
1) a Reduction Layer (RL) in charge of producing a coded

version of the input TTS in order to improve the classi-
fication performance.

2) a Classification Layer (CL) in charge of classifying a
gait as normal or anomalous on the basis of the coded
representation of the TTS.

TheRL is defined as a Convolutional Neural Network (CNN),
while the CL is a hybrid neural network, built by combining
a Long Short-Term Memory (LSTM) and a Deep Neural
Network (DNN)

An general diagram representing our solution is shown
in Figure 1.

FIGURE 1. In-house self gait assessment.

The main contributions of this presented work consist in
two aspects:

- The definition of a deep time series-based approach for
the detection of a walking anomaly by analyzing the
whole TTS of the gait dynamics.
The results show an increase in the classification accu-
racy of up to 4.28% in comparison with related works
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- A comparative analysis among different reduction
approaches to address the coding of a TTS for
classification.

The final objective of our research will be to overcome the
problems of the traditional approaches by defining an easy
in-house self-test mobile solution able to detect anomalies in
the gait dynamics of elderly people.

In Section II a description of the state-of-the-art relating
to the assessment and classification of the gait dynamics of
a patient with PD is presented. In Section III we describe the
proposed approach, highlighting the dataset and the definition
of the hybrid neural network. In Section IV we present the
results of our work, while in Section IV we provide a discus-
sion of our research and indicate our future plans.

II. RELATED WORKS
This section includes the following contents:

- The most relevant ICT-based and clinical approaches for
the assessment and classification of the gait dynamics of
patients with PD

- The limitations of all ICT-based approaches
- - The advantages of our approach in comparison with the
related works

A. CLINICAL APPROACHES
Currently, the state-of-the-art for the assessment of the gait
dynamics and balance of PD patients relies on clinical
approaches based on rating scales, questionnaires, and timed
tests [4].
TimedUp andGo Test [5], Functional Gait Assessment [6],

and Balance Evaluation Systems Test [7], are examples of
gait assessment methods showing good results in the evalua-
tion of the gait dynamics and risk analysis; all these methods
are ambulation-based performed under the supervision of a
clinician and expert.

Additionally, most clinical units adopt a personal gait
assessment, such as the Unified Parkinson Disease Rating
Scale (UPDRS) [8] or patient self-reports of function, such
as the Parkinson’s Disease Quality of Life Questionnaire
(PDQ-39) [9].

These approaches are qualitative assessments with a pos-
sible large variability, where variability means that different
supervisors may give a different assessment in relation to the
same subject

These limitations make these methods expensive and less
precise and, in some cases, require that the patients attend a
medical center.

Furthermore, all these approaches are performed after the
onset of the disease.

B. TRADITIONAL ICT-BASED APPROACHES
Gait Recognition is a type of classification problem where
training examples currently consist of sequences of value
which model the movements and the kinematics of a subject
(Figure 2) [10].

FIGURE 2. Phases of the human gait [10].

Figure 4 shows the main differences between our approach
and the related works from the point of view of input data
point.

At the top of the figure, generic (x,y,z) acceleration values
of the gait dynamics are shown.

A features extraction process is performed over the values.
A set of temporal windows is extracted from the signal. The
choice of the length of the window and the overlapping rate
between two consecutive windows is a typical engineering
problem which, generally, makes such a process complex and
time-consuming.

From eachwindow a set of engineered features is extracted.
This defines a generic sample as a tuple of values. A sample
is a basic unit for the training of a generic machine learning
algorithm.

All the extracted samples define a set of samples
(A-Figure 3).

The ICT-based approaches adopt machine-learning-based
algorithms in which a NN learns by casually batching the
sample set.

This procedure is repeated many times during the learning,
defining the so-called training stage.

In relation to the ICT-based approaches, we introduce the
most relevant works (Table 1) aimed at classifying walking
patterns using the Hausdorff et al dataset [11].

In Table 1, we report the following information:

- Technologies: the algorithms used for the analysis of the
gait dynamics

- Results: a list of the results achieved
- Classification Model: a description of how the gait
dynamics are analyzed

In [12], an approach based on the combination of Support
Vector Machine (SVM) and wavelet analysis is explored to
classify PD and healthy subjects using their gait cycle vari-
ability. Although the accuracy of the classification is 90.32%,
the wavelet analysis increases the cost of the computations.

Shetty and Rao [13] apply a Gaussian-based kernel with
an SVM classifier to successfully distinguish PD from
healthy subjects. The SVM classifier achieves a good accu-
racy (83.33%).

Khorasani and Daliri [14] use the Hidden Markov
Model (HMM) with Gaussian Mixtures to distinguish
patients with PD from healthy subjects. They achieve an
accuracy of over 90%. The authors use the raw gait data
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FIGURE 3. Overview of the classification model [10].

instead of the extracted features. Although the accuracy
is good, the HMM involves certain factors which limit its
application to the evaluation of a sequence of data, such as
the assumption that successive observations are independent
of each other whereas, in reality, they rarely are [15].

Ren et al. [16] adopt a machine-learning-based approach
for further analysis. They use three types of classifier: mul-
tilayer perception (MLP), random forest (RF) and Naive
Bayes (NB). The dimensionality of the data has been reduced
using a PCA technique.

Yang et al. [17] investigate three feature selection tech-
niques and one feature constructionmethod for the analysis of
a gait dataset of neurodegenerative disease patients and adopt
an SVM-based classifier to assess the prediction.

Baby et al. [18] deal with the application of wavelet trans-
form to the gait data of PD patients, with the aim of dis-
tinguishing PD patients from healthy controls. Statistical
features extracted from wavelet coefficients are used to clas-
sify the subjects. The authors evaluate two types of classifier,
namely an SVM classifier and a Naive Bayes’ classifier.

Other time series classification methods include the
series similarity ( [19]) approaches. These are appropriate
when there may be discriminatory features over the whole
series [20]. However, this observation is not necessarily cor-
rect in respect of the gait dynamics signal of patients with a

FIGURE 4. Logic view of the proposed approach.

neurodegenerative disease [4]. For this reason we have not
adopted this approach in our experiments.

It is worth performing an analysis of the strengths and
weaknesses of our proposed solution in comparison with the
other ICT-based approaches in order to highlight the advan-
tages and limitations.

1) LIMITATIONS OF ALL ICT-BASED APPROACHES
Figure 4 shows a logic view of our approach compared to
classic approaches.

The property of being a temporal sequence is quite difficult
to model in classic supervised machine-learning algorithms.
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The traditional approaches do not pre-elaborate the whole TS.
Instead, they train a generic classifier (e.g. SVM or Decision
Tree) by feeding the signal sample-by-sample (A - Figure 3).
However, in relation to gait recognition, this kind of training
has certain limitations due to the fact that it does not take
into account the temporal-sequential ordering of the whole
sequence during the training of the classifier.

On account of the casual batching of the sample set,
the ordering by time of the values of the sequence is absent
during the training stage.

On the other hand, in our solution the LSTM network
performs the sequence data pre-processing step in which the
entire TS is taken into account and analyzed as awhole. In this
way, the temporal-sequential order is maintained unaltered.

The output of the LSTM is then used to feed a classifier
that in our solution is a DNN.

The gait dynamics exhibit a significant sequential corre-
lation which should be exploited to improve the prediction
accuracy of the classifiers rather than requiring them to learn
each sample independently [21].

In relation to the issue of gait classification, this character-
istic, which also contributes to improving the accuracy of the
classification process, represents the most significant differ-
ence between our solution and the state-of-the-art approaches

2) ADVANTAGE OF OUR APPROACH
Anomalous gait detection is a type of classification problem
where the training examples currently consist of the whole
sequence of values [10]

In order to address the issue of modeling the sequential
correlation of the gait dynamics, we have designed our hybrid
NN for the classification of the trend of the features values
over the time-points (B - Figure 3).

Our hybrid NN learns the whole trend of the features’
values over all time-points (B - Figure 3) in order to classify
it as normal or, if an anomalous walking pattern is detected,
anomalous.

The soundness of our approach is also highlighted in
Figure 2 which shows that a gait is a sequence of temporal
phases describing the movements of the subject.

In order to classify the gait dynamics, it is necessary to take
into account all these temporal phases from the beginning,
at time t=0, to the end.

Our approach performs a time-series classification of the
whole sequence of samples ordered by time-points instead of
making an independent sample-by-sample classification.

In the classification, our classifier recognizes as normal or
anomalous the whole TTS of the gait dynamics, instead of
classifying each sample one at a time as the state-of-the-art
methods do.

III. PROPOSED APPROACH
In this section, we will present our proposed approach.

First of all, we will describe the Hausdorff’s
dataset [[11]– [22]] downloaded from PhysioNet
(www.physionet.org) used for the training and testing stages

of our NN. Next, we will present both a comparative analysis
dealing with the problem of the dimensionality reduction of
a time series and then, the classification process.

A. DATA DESCRIPTION
The dataset has been created by observing a set of more than
60 subjects, including patients with PD (age: 66.8 10.9 (SD)
years), and healthy controls (age: 39.3 18.5 (SD) years).

In accordance with the experimental protocol, each subject
was asked to walk at their normal pace along a 77-meter long
hallway for 5 minutes.

Each subject performed one experiment.
Accelerometers were placed in the subject’s shoes, the out-

put of these sensors providing a raw TTS relating to the
subject’s movements.

In accordance with Figure 3, a feature extraction process
was set and a sequence of temporal windowswas applied over
the TTS [22]. The length of each window was one second,
each window defining a time-point.

From each window, a vector of engineering spatial-
temporal features was extracted.

∀x ∈ TTS, x = [F1,F2, . . . ,Fn], n = 0, . . . , 12

where Fn is characterized by the following:
- Left Stride Interval (sec)
- Right Stride Interval (sec)
- Left Swing Interval (sec)
- Right Swing Interval (sec)
- Left Swing Interval (% of stride)
- Right Swing Interval (% of stride)
- Left Stance Interval (sec)
- Right Stance Interval (sec)
- Left Stance Interval (% of stride)
- Right Stance Interval (% of stride)
- Double Support Interval (sec)
- Double Support Interval (% of stride)

Each vector defines a sample. The total dataset counts more
than 15k samples extracted during the experiments.

Figure 5 shows a portion of the dataset where each row is
a sample.

A machine learning-based approach is trained by learning
sample-by-sample, aimed at classifying a generic sample as
normal or anomalous at the testing time

In a different way, in our approach, we evaluate the set of
samples of each patient as a sequence of pairs (time-point,
sample) so defining a multivariate time series (MTS), where
each series is related to a single feature. The total number of
features is 12.

An MTS describes the trend of the features values over the
time-points for a subject (B - Figure 3).

Figure 6 shows an example of two MTS, the one at the top
relating to a healthy subject, the second one to a subject with
early stage PD.

Each MTS had a different length and therefore we decided
to pad each one to the maximum length of about 300 time-
points.
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FIGURE 5. Sample set.

FIGURE 6. Trending of the Features values over time of a subject with early PD and a healthy subject.

Our approach relates to the learning of the whole MTS,
aimed at classifying each MTS as normal, if it belongs to
a healthy patient, or anomalous, if it belongs to a subject
with PD.

B. PROPOSED APPROACH
Figure 7 shows an overview of the hybrid NN.

The hybrid NN is composed of two logical layers: aClassi-
fication Layer (CL) responsible for classifying a sequence of
values as normal or anomalous and a Reduction Layer (RL),
responsible for producing a coded version of the MTS to feed
the CL.

1) CLASSIFICATION LAYER
The CL is a neural network, built by combining a Long Short
Term Memory (LSTM) and a Deep Neural Network (DNN).

- the Long Short-Term Memory consists of NNs for the
processing of sequential data x(1), . . . , x(t) with the time
step index t ranging from 1 to T, with T being the length
of the sequence [23].
Each value xi at a time-point i is handled by a unit cell.
The information has to sequentially travel through all the
cells before arriving at the cell at time T.

This behavior enables the network to learn the informa-
tion of the whole sequence of values.

- the Deep Neural Network, also called multilayer per-
ception (MLPs) [24], is the quintessential deep learning
model. The goal of an MLPs is to approximate some
functions f (x).
For example, for a generic classifier, y = f (x), it maps an
input x to a category y. ADeepNeural Network defines a
mapping y = f (x; θ ) and learns the value of the parame-
ters θ that result in the best function approximation [23].

The LSTM is fed with the sequence of values, providing as
output a numerical vector. The LSTM’s output has the impor-
tant property of having been defined taking into account the
property of the input values to be ordered by time. The LSTM
output is used as input for the DNN.

Next, the DNN classifies the input as normal walking
or anomalous walking, if an anomalous gait dynamics is
detected

In our first experiments, the hybrid NN was composed of
only the CL.

TheMTS (Figure 6) submitted directly into the LSTM and,
as a consequence, the network had to analyze a sequence
of 300 time-points.
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FIGURE 7. Overview of the proposed hybrid neural network.

TABLE 2. Performace classification without reduction layer.

This approach did not produce satisfactory results.
These experiments achieved a classification accuracy

lower than of the related works, an average training accuracy
of 94% and an average testing accuracy of 70% (Table 2).

The gap between the training and testing accuracy also
indicates a strong over-fitting.

In our opinion, these relatively poor results can be
explained in terms of the excessive dimensionality of
the MTS.

Feeding a LSTM layer with very long sequences makes
the problem of vanishing and exploding gradients occur
when back-propagating errors across the entire time-points
sequence [25].

The training of a LSTM is based on the well-known
gradient-based back propagation algorithm [26].
During the training stage, the gradients may vanish or

explode exponentially with respect to the number of time
steps [23].

This causes the NN to produce badly trained models.

This unwanted behavior brings to light the need to feed the
CL with a smaller but loss-less representation of the MTS.

The RL component is responsible for addressing this issue.

2) REDUCTION LAYER
The necessity of analyzing the whole MTS makes the clas-
sification process more complex than a typical pattern-
recognition problem in which a network tries to identify
those portions of the signal characterized by a specific pat-
tern ([27]–[30]).

The high dimensionality of a TTS may make many
machine learning-based approaches inefficient and ineffec-
tive [31] when being applied to very large datasets.

This is a well-known issue sometimes referred to as the
curse of dimensionality [32].

In most TTS problems, there is a requirement for a dimen-
sionality reduction in order to define a new representation of
the data series.

Dimensionality reduction (either of the number of time
points or the number of features), can effectively reduce
the computational overhead on condition that the new rep-
resentation safeguards sufficient information to solve the
specific TTS problem correctly, in our case a classification
problem [33].
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In general, a dimensionality reduction problem can be
stated in terms of whether, given a TTS of an arbitrary
length M (e.g. 300 time-points), it can be reduced to another
representation of the data series of length K, with K < M.
In our case, with the maximum length of a MTS being

300 time-points; the aim of the RL is to provide a reduced
version of the MTS to feed the CL.

We have carried out a comparative analysis of four
approaches [34] for dimensionality reduction in order
to improve the classification accuracy: Under-sampling,
Fourier Transformation, Autoencoder and Convolutional
Neural network.

For each approach, we have evaluated the improvement
of the classification performance compared with the results
achieved without applying a reduction process (Table 2).

FIGURE 8. Overview of the under-sampling reduction process.

The input of each reduction approach is the MTS where
each MTS has a length of 300 time points and each value is a
sample described by 12 features (Figure 6).

- Under-sampling: This is the simplest method [35],
in which a rate of M/K stands for the compression rate.
However, the shape of the compressed TTS may be
roughly similar.
In our experiments, we defined a windows-based under-
sampling reduction approach.
Given the input MTS, we extracted a portion of the
values as the length of the window; from each window,
we applied an aggregation function to reduce the win-
dow of values to a single value (Figure 8).
There is no overlapping between two consecutive
windows.
The sequence of these aggregated values defines the
reduced version of the MTS (Figure 8) with a length
at K time-points where each value is still described by
12 features (Figure 5)
The parameters of interest of this approach are the length
of the window, and the aggregation function.
Figure 10-A, shows a list of the parameter configurations
in relation to this approach, which we have tested to

improve the classification performance. The length of
the window was set to 10 or 5 time-points whereas the
aggregation function was set as the average function or
the random function.
Each row describes the value of the parameters for a
specific configuration.
The column Length of Reduced Signal states the length
of the reduced TTS. As an example, for the configuration
UCc4 we achieved a reduced version of 60 time-points.

- Fourier Transformation: Representing the data series in
the transformed domain is another approach.
One of the most frequently used transformation tech-
niques is Discrete Fourier Transform (DFT) [36].
DFT maps a discrete periodic sequence f to a discrete
sequence of coefficients F, representing the Fourier
Transform of the sequence.
In our experiment, the sequence f was the MTS.
It was transformed by means of a Fourier Function
F(TS)− > TSf . Next, we filtered a subset of coefficients
F from the transformed signal and used this for the
classification.
The parameter of interest of this approach is the
Fourier Coefficients, F, that states the number of filtered
coefficients.
Figure 10-D shows the ranges of values of the Fourier
coefficients F used during the experiments.
The reduction process produces a code version with a
length of F coefficients where each value is equal to the
module of the coefficient.
The time duration of the reduction process of both the
DFT and Under-sampling approaches was in the order
of seconds.

- Autoencoder : Autoencoder networks are a specific type
of NNs where the input is the same as the output.
These NN compress the input into a lower-dimensional
code and then reconstruct the input from that represen-
tation to obtain an output signal equal to the input with
a reconstruction error as small as possible. The code is a
compact summary or compression of the input [23].
We built our autoencoder network using a pair of MPLs,
named the encoder and decoder, where the decoder is the
mirror image of the encoder.
We experimentally evaluated that reducing the whole
MTS into a smaller version was time-consuming and
that the level of the error between the MTS and the
reconstructed MTS was considerable.
In order to address this issue, we applied a windows-
based approach. We extracted sequential windows of
values from the MTS and reduced them using the
autoencoder nets (Figure 9). There was no overlapping
between two consecutive windows.
The sequence of the reduced windows defines an output
sequence with a length of K time-points, where each
value is still described by 12 features (Figure 9)
Figure 10-B shows the parameters of interest for the
tuning of the autoencoder.
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FIGURE 9. Overview of the autoencoder-based reduction process.

The window size states the length of the window. The
compression rate is the compression rate to apply over
the window (e.g. a reduction rate of 0.80 produces a
window of 30 time-points to obtain a size of 6 time-
points)
The reconstruction error assesses the error between the
input MTS and the reconstructed MTS.
Concerning the structure of the autoencoder, the hyper-
parameters of both the encoder and decoder are:
- Number of layers: 4
- Number of units per layer: 1024 units
- Learning Rate: 0.01
- Training Epochs: 1000
- Number of Iterations: 500

The time duration of the reduction process was in the
order of days
A grid search approach was adopted setting the range of
the values as:
- Number of the layers: {1;2;3;4;5}
- Number of units of the layers:{512;1024;2048;4096}
- Learning rate: {0.01;0.05;0.001;0.005;0.0001}
- Training Epochs: {500; 1000; 1500}
- Number of Iterations: {250; 400; 500;800}

A grid search approach is an exhaustive searching
through a manually specified subset of the hyperparam-
eter space.

- Convolutional Neural network: The CNN structure is
formed of two basic layers: a convolutional layer (C),
and a polling layer (P).

The convolutional layer is in charge of applying a con-
volutional operator over the input. The pooling layer
performs a filtering operation from the results of the
convolutional layer.
A convolutional layer uses a set of filters that process
small local regions of the input where these filters are
replicated along the whole input space.
A subsampling step (pooling) generates a lower reso-
lution version of the convolution layer activations by
taking the maximum (or average) filter activation from
different positions within a specified window.
The CNN takes as its input a MTS of 300 time-points
and returns a reduction version.
It is important to note that each time-point of both the
input and output TTS is still modeled as a vector of
features, and that the CNN does not change the dimen-
sionality of the space of features.
Figure 10-C shows the parameters of interest for the con-
volutional network: the kernel size specifying the length
of the convolution window; the filter size dimensionality
of the output space; and the pooling size of the pooling
windows.
We determined the parameters by using a grid search
approach.
The range of values was:
- Window size: {10, 11, 12}
- Filter size: {4, 5, 6}
- Pooling size: {10, 5}

For each configuration we adopted an average pooling
layer

IV. RESULTS
In this section, we present the results of the final configuration
of the hybrid NN and the experiments.

The classification layer is composed of two neural net-
works, a LSTM and a DNN. The final configuration of the
hyperparameters of both NNs is reported above. For each
network, we have performed a search grid approach in order
to find the best configuration of the parameters.

For each network also, we have adopted a search grid
approach in order to find the best parameters’ configuration.

- Number of the units of the Layer of the DNN: 2048
- Number of fully-connected layers of the DNN: 5
- Number of units for each cell of the LSTM: 10
- Learning Rate: 0.005
- Training Epochs: 1000
- Number of Iterations: 1000

We randomly partitioned the whole dataset into training,
validation and testing datasets, respectively. For the train-
ing stage, we defined a training set as 70% of the original
set whereas the validation set was defined as 10%. For the
testing stage, we defined a testing set as 20% of the whole
dataset.

First, we describe the overall results of the classification
process and then we present the contribution of the reduction
layer to the results.
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FIGURE 10. Overview of the configuration parameters for the input reduction process.

For the evaluation of our model, three metrics have been
used: precision, recall and accuracy [37].

These measurements are defined as follows:

Recall =
TP

TP+ FN
(1)

Precision =
TP

TP+ FP
(2)

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(3)

where TP is the number of true positives, FN is the number
of false negatives, TN is the number of true negatives and FP
is the number of false positives.

Figure 12 shows the classification results related to all
reduced approaches for each configuration.

Interesting results were achieved by the CNN and AE
approaches.

The best results were achieved by the CNN-based reduc-
tion approach, where the classification accuracy at the testing
stage ranged from 89% - 95%.

The configuration CNNc3 achieved both a training
accuracy and testing accuracy over 90%, respectively
94% and 95%, with an accuracy improvement of 4.28%
compared with related works.

The quality of the solution is also confirmed by the small
gap between the accuracy of the training stage and that of the
testing stage which demonstrates a lack of over-fitting.

Moreover, the values of recall and precision, both up
to 85%, also suggest that this is a highly effective method.

These results rate our model as the best solution among the
presented ICT-based related works.

Additionally, the Autoencoder approach shows good
results. The accuracy increases as the window size increases
achieving the best results with awindow size at 30 time-points
and a compression rate of 0.8.

FIGURE 11. Improvement contribution of the reduction layer to the
classification accuracy.

This configuration reaches a classification accuracy
of 75%,with a small gap between this results and the accuracy
of the training step. This demonstrates that the model is not
significantly affected by over-fitting.

TheUndersampling and Fourier transformation approaches
do not achieve results comparable with related works. The
accuracy classification is about 60% and also recall and
precision obtain results lower than 70%.

The improvement contribution of the reduction layer is
reported in Figure 11 and Table 3.

The accuracy achieved without reducing the MTS is
reported in Table 2, the testing accuracy being about 70%.
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TABLE 3. Summary of the improvement for each reduction approach.

FIGURE 12. Overview of the classification results.

It is possible to note that by applying the CNN-based
reduction approach, the classification process improves by an
average of 32.38% (Table 3).

The best configuration is the CNNc3 which brings an
improvement of 35.75%, achieving an accuracy classification
of 95% (Figure 11).

The Autoencoder-based approach achieves the best
improvement with the configuration AEc5 increased
by 7.14%, achieving an accuracy classification of 75%. The
average improvement, however, is -0.83%.

The Under-sampling and Fourier approaches do not show
any improvement in accuracy.

V. DISCUSSION
In this section, we will present some points for discussion
relating to our solution emerging from the training and testing
processes.

The experiments concerning the gait classification have
brought to light some interesting points.

The CNN-based approach achieved the best results with a
testing accuracy ranging from 89% to 95%.

The classification of the gait dynamics without applying
any reduction approach achieved an average training accu-
racy of 94% and an average testing accuracy of 70%. Com-
paring these results with those of the CNN-based approach
the improvement ranges from 27% to 35% (Figure 12).

The use of a reduction layer has brought a definite benefit
to the overall classification process.

The drawback of the usage of CNN is the training time
which is in the order or days

Additionally, the Autoencoder-based approach shows a
less positive trend of improvement ranging from -11.43%
to 7.14%.

This approach provides better results as the window size
increases, but the larger the window size is, the higher
the compression rate needs to be in order to reduce the
input MTS.

This aspect makes the Autoencoder-based approach
time-consuming and computationally heavy for the achieve-
ment of a low value of reconstruction error.

FIGURE 13. Tread of the reconstruction error.

Figure 13 shows the increasing trend of reconstruction
error as the window size and compression rate increases.

Both the Under-sampling and Fourier approaches show
negative improvements.

These results suggest an interesting consideration relating
to the reduction process.

Although the effectiveness of the training of the LSTM
is correlated to the number of time steps of the MTS [23],
the results show that the property of a reduced MTS of being
smaller than the original is not alone sufficient to guarantee a
good classification performance

For example, all the approaches produce a reduced MTS
with a length equal to 60 time-points but the improvement
of the classification accuracy is quite different, ranging from
−10% for the Under-sampling to +27.14% for CNN.
This evidence indicates that, notwithstanding the fact that

the various reduced approaches are able to produce MTSs of
comparable size, the classification accuracy varies according
to the approach adopted.

A. LIMITATIONS
An honest discussion about the weaknesses of our solution is
also presented.

1) The main issue in relation to our approach is the effect
of the dimensionality of the TTS over the whole classi-
fication process.
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The training time of the CNN-based reduction approach
increases as the dimensionality increases. This behavior
makes our solution time-consuming.
The total duration time of the experiments including
both the reduction (using CNN or Autoencoder) and
classification has been in the order of one week.

2) For the training and testing of our experiments we have
used public data [11] produced by using accelerometers
placed in the subject’s shoes.
In order to realize our final objective, that of defining
an in-house self-test mobile solution, we will set new
experiments in which the data will be collected from the
subject’s smartphone.
This aspect is extremely challenging, since accelerome-
ters embedded into a smart-phone do not have the same
quality as those used in Hausdorff’s dataset [11].

3) Another weak point is connected to the consideration
that the classification process is performed off-line.
Our idea is to transfer the classification process onto a
mobile device in order to make it available everywhere.

B. FUTURE WORK
The experiments performed have enabled us to learn a few
lessons which will help us to define certain interesting
research activities.
1) Defining a novel approach able to scale the training time

of the CNN as the dimensionality of the TTS increases.
2) Defining a structured approach for the evaluation of the

effectiveness of the reduction approaches.
3) Improving the dataset by collecting data from a larger

population of patients. A larger set would enable us to
improve the accuracy of our model.

4) Setting new experiments for the evaluation of our solu-
tion in a mobile environment in order to train and eval-
uate our model using the accelerometer values acquired
by the sensors embedded in a smartphone.

VI. CONCLUSIONS
In this paper we have addressed the problem of the gait
analysis of elderly subjects for the detection of the onset of a
cognitive impairment disease such as PD.

In order to achieve this objective, we have defined a deep
learning-based approach for the classification of the gait
dynamics by using as input data a well-known public dataset.

The core of our solution is a hybrid Neural Network built
by combining three types of NN algorithm: a Convolutional
Neural Network (CNN) a Long Short TermMemory (LSTM)
and a Deep Neural Network (DNN).

Our solution achieves a classification accuracy better
than that of related works with an accuracy improvement
of 3.9%.

The CNN proved to be the best algorithm for the reduction
of the dimensionality of the input TTS, enabling the LSTM
and DNN networks to produce a better classification of the
input. The final objective of our research is to overcome the
limitations of the traditional approaches by defining an easy

in-house self-test mobile solution able to detect anomalies in
the gait dynamics of elderly people.

In accordance with a specific test protocol, a patient
will walk for a few meters inside his/her house, and a
mobile app will acquire his/her movements by means of a
smartphone’s embedded accelerometers. These values will
describe the gait dynamics of the patient (Figure 1) and will
be analyzed to assess whether or not an anomalous walking
pattern has been detected.
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