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When small triangular prisms are arranged in arrays which have an overall

appearance like an hourglass (in Italian: clessidra) they can focus X-rays owing

to a combined action of diffraction and refraction. From the optical point of

view these objects can be regarded as a Fresnel variant of concave transmission

lenses. Consequently they can provide larger apertures than purely refractive

lenses. However, one has to recognize that clessidra lenses will strongly diffract

as the lens structure is periodic in the direction perpendicular to the incident

beam. In experiments the diffraction is reduced because it is difficult to

illuminate the large apertures with a full spatially coherent wavefront. So the

illumination is at best partially coherent. In order to interpret available

experimental data for this condition, diffraction theory has been applied

appropriately to the clessidra structure, taking into account the limited spatial

coherence. The agreement between the theoretical simulations and experi-

mental data is very good, keeping the lens properties at their projected values

and allowing for only two free model parameters. The first is the lateral spatial

coherence; the second is a lens defect, a rounding of all edges and tips in the

structure. Both values obtained from the simulations have been found to be in

agreement with expectations.
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1. Introduction

Clessidra prism array lenses fall into the category of X-ray

transmission lenses. This category is presently studied exten-

sively after the first practical X-ray transmission lenses were

introduced in 1996 by Snigirev et al. (1996). A systematic

comparison of the properties of lenses of different concepts in

this field is presented by Jark et al. (2006). The construction

concept for the simplest clessidra lens is shown in Fig. 1. For

the purpose of this paper we should note that the structure is a

kinoform lens (Lesem et al., 1969). In fact it is obtained from a

purely refractive lens of concave shape (Lengeler et al., 1999)

by removing blocks of optically passive material (Jark et al.,

2004). These latter blocks are dimensioned for shifting the

phase of the transmitted wavefronts compared with the

adjacent structures such that wavefront contiguity is main-

tained in the transmitted longitudinally periodic wavefield.

This strategy was first proposed for the focusing of X-rays by

Suehiro et al. (1991).

In most of the technical realisations the absorption

was minimized, leading to decreasing segment heights with

increasing distance from the optical axis (Aristov et al., 2000;

Nöhammer et al., 2003; Evans-Lutterodt et al., 2003, 2007;

Nazmov et al., 2004). In clessidra lenses (Jark et al., 2004) the

absorption losses grow linearly with distance from the optical

axis. The same holds true for the prism array of slightly

different shape presented by Cederström et al. (2005). Any

kinoform concept will provide larger apertures than purely

refractive lenses of concave shape with the same focal length

(Jark et al., 2006). This provides a twofold advantage for the

focusing of X-rays; firstly it will allow for the collection of

more photon flux, and secondly it will permit a smaller

diffraction-limited focus size. The drawbacks are that kino-

form lenses function optimally only at single wavelengths and

Figure 1
Construction principle of the clessidra lens composed of identical
triangular prisms.



that present state-of-the-art lithographic production techni-

ques can only produce one-dimensionally focusing objects

(Aristov et al., 2000; Nöhammer et al., 2003; Evans-Lutterodt

et al., 2003, 2007; Nazmov et al., 2004; Pérennès et al., 2005;

Cederström et al., 2005).

An advantageous feature of the simple clessidra structure

is the relatively simple control of the shape fidelity even in

optical microscopes. However, we have to recognize that the

clessidra lenses, as well as the Cederström prism arrays, are

highly periodically structured perpendicularly to the incident

beam. So these lenses are diffracting the incident radiation

like linear transmission gratings. The diffractive focal length of

such objects for the photon wavelength � is (Jark et al., 2006)

fdiff ¼ h2=m�; ð1Þ

where m is a multiple of 2� phase shifts in the transmitted

radiation along any prism base compared with travel in air,

and h is the prism height perpendicular to the incident beam.

The immediately obvious question for this simplified

structure in Fig. 1 is then: can it really concentrate most of the

incident photon flux into a single line, and can the related line

width s be smaller than h, once the demagnified source image

is expected to be smaller than h? A theoretical study by De

Caro & Jark (2008) answered this question affirmatively with

very promising perspectives for the present lens concept. As

long as the incident wave can be assumed to be a spatially

coherent plane wave over the whole aperture of the lens in the

focusing direction, the photon flux distribution in the focal

plane of a prism array can be derived from an analytical

expression. The solution can be expressed even for general-

ized unitless distance parameters and is thus rather universally

applicable. As long as the distortion introduced by the straight

prisms into the transmitted wavefield remains below the

Rayleigh quarterwave criterion (Born & Wolf, 1980), more

than 80% of the transmitted photon flux is diffracted into the

principal diffraction peak. This is the case for |m | � 2. The

missing photon flux is diffracted into well separated secondary

diffraction peaks, which can be suppressed by appropriately

positioned apertures between the lens and the focus. Under

these conditions the full width at half-maximum (FWHM) of

the principal peak of the photon flux distribution coincides

with the diffraction-limited spot size obtainable with the

chosen lens aperture. The line width is thus completely inde-

pendent of the shape and the dimensions of the single prisms.

Interestingly the secondary diffraction peaks can even be

eliminated by curving some prism side walls appropriately.

As far as obtainable line width is concerned, a clessidra

would be competitive for X-ray microfocusing if it could

provide a focal length of the order of 0.1 m for wavelengths

below � = 0.154 nm. From Jark et al. (2006) we would then

expect a state-of-the-art diffraction-limited line width of the

order of 50 nm (Schroer et al., 2005) for a relatively large

geometric aperture of A = 0.4 mm. However, according to (1)

this requires prism heights of the order of h = 4 mm. In order

to predict whether straight prisms can be realised by use of

lithography with this size and without systematic defects, that

might dominate the transmission losses, we produced proto-

type lenses with larger prism heights of the order of 20 mm,

in which the shape fidelity could be guaranteed to a large

amount. The final lenses have apertures in the millimeter

range, which is much larger than the spatially coherently

illuminated areas at reasonable source distances even from

particularly small synchrotron radiation sources. In this case

we deal with only partially coherent illumination and the focus

size is thus source size limited. In fact, all the reported tests for

kinoform lenses were made under these conditions (Aristov et

al., 2000; Nöhammer et al., 2003; Evans-Lutterodt et al., 2003,

2007; Nazmov et al., 2004; Jark et al., 2006; Cederström et al.,

2005). So in order to be able to derive the lens imperfections

from the focusing defects, we need to include the limited

spatial coherence in the theoretical treatment. This problem

will be treated rigorously in the theoretical part of this study.

More commonly used approximations and simplifications will

not allow us to maintain the correlation between the nature of

a lens defect and an observed focus defect. In order to better

model real lenses, we also added for this purpose an eventually

possible rounding of the prism tips and shallow angles (edges),

the only identifiable defect visible in light microscopes. The

experimental part will then compare the expectations with the

measured data.

2. Theoretical part

2.1. Phase shift introduced by a clessidra lens made of real
prisms

As in our previous study (De Caro & Jark, 2008), we will

treat the diffraction of partially coherent X-ray wavefields by

one-dimensionally focusing clessidra lenses as a one-dimen-

sional problem. The beam travels in the y direction and is

focused in the x direction; x = 0 refers to the optical axis of the

experimental set-up. Moreover, we assume to be in a thin

lens situation, where the overall object extension in the beam

direction (longitudinal lens size Lsize) is significantly smaller

than its focal length f. In fact, as long as Lsize /f is much less

than 10�1, one can use a local approximation for the modifi-

cation of the incident wavefield caused by the lens, assuming

the lens to be simply a planar object (Snigirev et al., 1998;

Kohn et al., 2003).

Introducing the unitless off-axis distance �xx = x/h, where h is

the prism height in the jth row of a clessidra lens constructed

of perfect prisms, we can write the lens propagator P( j, �xx) as

follows (De Caro & Jark, 2008),

Pð j; �xxÞ ¼ exp �i�m�xx2
� �

exp i�mð�xx� jÞ
2

� �
exp i�m j 2

� j j j
� �� �

� exp i2�m �wwðx; jÞ½ �

¼ Pidð j; �xxÞ exp i2�m �wwðx; jÞ½ �: ð2Þ

Here, the dimensionless parameter m = b�/� is defined as m =

m0 + �m � im0�/�, where b is the prism base length. At the

correct operation energy one would find the ‘ideal’ value bid

such that m0 is an integer value, i.e. the number of 2� phase-

shifts in any prism. �m is introduced in order to allow for an

incorrect photon energy setting. The imaginary part is related

to the absorption. The four phase terms of (2) are due,
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respectively, to (i) the ideal parabolic profile; (ii) the correc-

tion between the clessidra with straight side walls and the

parabolic profile; (iii) the missing blocks of optically inactive

material; (iv) the material distribution �wwð j; �xxÞ = wð j; �xxÞ=bid

caused by the presence of a spherical meniscus of curvature

radius R, between the tips of prisms of the ( j � 1)th row and

the bases of prisms of the jth row, as shown in the inset of

Fig. 2. The first three contributions define the propagator of an

ideal clessidra lens Pid( j, �xx). The last phase contribution is

due to the finite size and shape of real tips. For R! 0 one has

P! Pid.

The amount of extra material owing to the spherical menisci

shown in the inset in Fig. 2 is calculated under the condition

of a tangent circle of radius R on the prism side walls. Thus,

putting �RR = R/h and �ww = w/bid, from tan’ = 2h/bid and simple

geometrical relations it follows (see Fig. 2) that

�ww ¼

�RR
tanð’=2Þ �

�RR2 � �xx� �RR
� �2

h i1=2
� �

tan ’ if 0 � �xx � �RRð1þ cos ’Þ;

0 elsewhere;

8>><
>>:

ð3Þ

where ’ is the nominal angle between the lateral sides and

bases of prisms in different rows, which is identical to the angle

of grazing incidence of the incident beam onto the inclined

prism walls. Let us note that the coefficient tan’ is needed for

the conversion from the h scale to the bid scale when using

unitless variables.

2.2. Focusing of partially coherent radiation by a clessidra
lens

In the following we assume a sufficiently monochromatic

(wavenumber 2�/�) and a partially coherent incident wave-

field on the lens. Thus, the field entering it can be theoretically

described by the mutual optical intensity (MOI) function

(Williams et al., 2007),

J0 x1 � x2ð Þ ¼  x1ð Þ 
� x2ð Þg x1; x2ð Þ; ð4Þ

where the wavefield spatial coherence length can be specified

by the characteristic width of the coherence factor g(x1, x2).

The above equation is valid for any kind of source, even

partially coherent. Only for fully incoherent sources one

has g(x1, x2) = g(x1 � x2) and the MOI formalism becomes

equivalent to the simple convolution of the result, obtained for

a (coherent) point source, with the Fourier transform of the

geometrical source shape. On the other hand, for partially

coherent sources this simplification is not possible since it

cannot account for the interference of diffraction effects

owing to the finite source size with those related to the finite

size of the prisms (Shina et al., 1998).

Let us note that for undulator sources the synchrotron

radiation emitted by the whole electron beam is determined

by the ensemble average in phase space of the two-point

product of the X-ray field amplitudes (Wu & Liu, 2005) and,

consequently, the X-ray radiation is partially coherent at the

source level. Nevertheless, even an undulator can be assimi-

lated to a fully incoherent source of Gaussian shape when the

sample-to-source distance is much larger than the source size

(Coisson, 1995). Furthermore, assuming that the beam size is

sufficiently larger than the coherence length lc , the incident

waves can be approximated as planar ones with uniform

amplitude  (x) = A0 and the coherence factor can be written

as g(x1 � x2) = exp[�(x1 � x2)2/2l 2
c ]. Thus, from (2) and (4), in

terms of unitless variables, the MOI at the lens exit will be

given by (Marathay, 1982)

J0 �xx1 � �xx2ð Þ ¼ A0

�� ��2exp �
�xx1 � �xx2ð Þ

2

2�ll 2
c

� 	
P j1; �xx1ð ÞP� j2; �xx2ð Þ; ð5Þ

where the indexes j1 and j2 and the corresponding off-axis

distances �xx1 = x1 /h and �xx2 = x2 /h will, in general, belong to

different lens rows; �llc = lc /h.

As we deal with an optical component for synchrotron

radiation, we can assume its aperture to be significantly

smaller than its distance p from the source. We will also

assume it to be small compared with its focal length f. Then we

can use the paraxial approximation for the Fresnel propaga-

tors, which allows us to calculate the wavefield intensity to any

arbitrary distance y from the lens and any off-axis distance

x� y, using the standard paraxial propagation rules (Born &

Wolf, 1980; De Caro & Jark, 2008),

I �xx; að Þ ¼
m0

�yy

X
j1; j2

Rj2þ1=2

j2�1=2

P j2; �xx2ð Þ exp
i�m0

�yy
�xx2 � �xxð Þ

2

� 	
d�xx2

�����
�

Rj1þ1=2

j1�1=2

exp �
�xx1 � �xx2ð Þ

2

2�ll 2
c

� 	
P� j1; �xx1ð Þ

� exp �
i�m0

�yy
�xx1 � �xxð Þ

2

� 	
d�xx1

����: ð6Þ

Here, the unitless variable �yy = y/(h2/m0�) has been introduced,

which has �yy = 1 for y = f. The row extremes are individuated by

the unitless coordinates �xxk = 1/2 + k, with k 2 {�N, �N +

1, . . . , �2, �1, 0, 1, 2, . . . , N � 1, N}, with NT = 2N + 1 being

the total number of rows constituting the lens. For normalized
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Figure 2
Micrograph from the center part of a clessidra lens of the type in Fig. 1
with parameters identical to those studied in this report. Prism height and
width are h = 25.67 mm and b = 73.3 mm, respectively. The white rectangle
indicates a position where the rounding was modeled according to the
details in the inset. Inset: schematic drawing of the spherical meniscus
with radius of curvature R formed at the intersection between tips and
bases of prisms belonging to different rows. ’ is the angle between the
lateral sides and bases of prisms belonging to different rows.



�llc values, which are significantly smaller than NT, the double

integral of (6) needs to be solved numerically. This is done for

all theoretical predictions, which are compared in the next

chapter with experimental data. Instead for �llc � NT the

coherence factor would be g = 1 for all |�xx1 � �xx2| and (6) will

then refer to the full coherent case. This case was discussed

earlier (De Caro & Jark, 2008) with an analytical solution. The

present numerical solution gives results which are consistent

with it.

3. Experimental data and discussion

3.1. Shape of photon flux distribution in focus

The experiments were performed at BM05 at the ESRF

(http://www.esrf.eu/UsersAndScience /Experiments / Imaging /

BM05/) with the lens positioned at q = 53 m source distance.

The experimental data were obtained for a clessidra lens

composed of 58 rows of pmma (polymethylmethacrylate,

C5H8O2, with density 1.19 g cm�3) prisms with straight side

walls and with ’ = 35	; h = 25.67 mm. For m0 = 2 the latter

values result in the optimum operation energy E = 7.9 keV,

if we use the refractive index from the LBL tabulation

� = 4.18 � 10�6(8.0/E)2 = 4.29 � 10�6 (Henke et al., 1993). We

then have � = �/435; bid = m0�/� = 2�/� = 73.2 mm and fdiff =

h2/m0� = frefr = h tan(’)/2� = 2.10 m. A slit with an opening of

1 mm in the focusing direction was put just in front of the lens.

The diffracted photon flux was registered by use of a high-

resolution X-ray camera with 0.645 mm equivalent pixel size.

For the analysis the diffracted photon flux was integrated over

20 mm in the non-focusing direction covering depths in the

lens structure between 20 and 40 mm. Data were taken for

vertical as well as for horizontal focusing. In both cases the

lens was first aligned in angle. Then the optimum photon

energy providing minimum photon flux in the secondary peaks

was determined, and finally the detector was moved to the

position with minimum line width. The independent alignment

in both orientations resulted in identical optimum position

within the operated increments of 0.1 keV and 0.01 m. In fact,

minimum photon flux in the secondary maxima was found for

a photon energy of 7.9 keV, consistent with the expectation for

the present lens structure. The minimum line width was found

for y = 2.16 
 0.01 m which is compatible with the expected

image position. In Fig. 3 we compare these experimental data

(open circles) with the results obtained from our model

(continuous curves). The agreement is very good, especially if

we consider that it has been obtained assuming the projected

values in the theoretical model for all parameters, except for

the finite spatial coherence and the presence of finite spherical

menisci. The calculations then use m0 = 2, �m = 0, �yy = 1 and

s = 0. Note that we have assumed a planar incident wavefield

and thus we cannot take into account corrections of the focus

position owing to the finite distance between the source and

lens. Theoretically the best image is thus to be found in the

focal plane for �yy = 1. From the simulations we find �llc;ver = 0.95


 0.05 and �llc;hor = 0.55 
 0.05 for the vertically and horizon-

tally focusing configuration, respectively. These results corre-

spond to coherence lengths of about 24.0 
 1.5 mm and 14.0


1.5 mm, respectively.

During our experiments with exposure times of t > 200 s

the vertical source size appeared to be virtually doubled

compared with the electron beam size to about S = 170 mm.

This was due to unidentified aperiodic vibrations in the beam

transport system with frequencies in the hertz range (Jark et

al., 2008). In the horizontal direction the source size was S =

269 mm. Then, according to Attwood (1999), lc = 0.44�q/S, and

the estimated lateral coherence lengths of the incident beam

at the lens position orthogonal to the optical axis are about

21.5 mm in the vertical direction and 13.6 mm in the horizontal

direction. Considering the uncertainty, especially in the

vertical source size, the simulations and the experiments are in

rather good agreement. As far as the measured peak width is

concerned, it has to be noted that significantly smaller FWHM

values were found in earlier experiments, when we used larger

spatial coherence lengths for lenses with identical focal length

(Jark et al., 2004). For the radius of the menisci we find R =

2.8 
 0.2 mm, which is a reasonable number, compatible with

measurements made with an optical microscope on the lens

surface.
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Figure 3
(a) Open circles represent the measured intensity distribution in the best
image plane for the vertical configuration. The line is the related
simulation for (see main text for symbol explanation) m0 = 2.0; �m = 0; �yy =
1.0; R = 2.8 mm; �ww = 0; �ss = 0 and �llc = 0.95. The intensities are given in
arbitrary units and are made to coincide in the maximum. (b) Same as in
(a) but for the horizontal configuration. The simulation (line) is for the
same parameters except �llc = 0.55.



Although some small differences between simulated and

measured intensities are evident in Fig. 3, the good agreement

with the experimental data obtained by using only two free

parameters is an important validation of the theoretical

model. Our simulations indicate that (i) the coherence length

mostly affects the width of the peaks; (ii) the intensity in the

first secondary peaks is mostly due to the field distortion in the

straight prism side walls; (iii) the presence of the menisci

mostly affects the intensity in higher-order peaks and in

interpeak positions.

3.2. Focusing performances of a clessidra lens

According to Liouville’s theorem the density in phase

space, i.e. the number of photons per unit of time, energy, solid

angle and area, is constant along a photon beam in a vacuum

(Arndt, 1990). For any collimating system, whether focusing

or not, this theorem gives us the possibility to define the

enhancement Ei of the angular divergence owing to the lens as

follows,

Ei ¼ NAlens =NAsource: ð7Þ

NA denotes the numerical aperture which, in respect to a

given point P, depends on the half-angle of the maximum cone

of radiation that can enter or exit an optical object, as seen by

P. In fact, the action of the lens can be described as a change in

phase space of the beam angular width. According to Liou-

ville’s theorem, this finding causes a change of the maximum

intensity, leading to a focusing behaviour. Since the real source

profile used in the experiment is actually unknown, we put

NAsource ’ Si /q, where Si is the vertical (horizontal) FWHM

of the source. Furthermore, for the NA of the lens, we can

put NAlens ’ Aeff /2f. The effective aperture Aeff is the lens

transmission function t(x) integrated over the lens aperture

and it is given for a clessidra by Jark et al. (2004). We can also

define an effective number of lens rows NT, eff = Aeff /h = �AAeff ,

which is a unitless parameter expressing the effective aperture.

Thus, from (7) and the definition of the lens diffractive focus

distance [equation (1)], we find for Ei ,

Ei ¼
mlc;i NT;eff

0:88h
¼

lc;i

dcoh

; ð8Þ

where dcoh is the minimum lens focus size obtainable for full

coherent incident radiation (De Caro & Jark, 2008). This

quantity will be related to either the effective aperture of the

lens or to the size of any slit put just before the lens. When

lc,i > NT,eff h, we deal once more with a full coherent incident

beam. In this case the lens focusing efficiency according to (8)

is limited by the effective number of rows constituting the lens,

and it is thus better written as Ei = min(NT,eff, �llc;iÞ= �ddcoh. The

usefulness of the quantity defined in (8) is related to the

possibility to directly evaluate the effects of the lens defects

and of the finite coherence on the lens focusing performance.

The experimental results described in the previous section

refer to a 1 mm slit in front of the lens. In this case, with R =

2.8 mm, m0 = 2, one has NT,eff ’ 0.73 � 39 ’ 28.5 (Jark et al.,

2004). This leads to dcoh = 0.0154h and Ei ’ 64.8�llc;i. For full

coherent incident radiation and perfect lenses one would

have an upper limit of �llc;i = NT,eff and, therefore, a maximum

value for the angular-divergence enhancement given by

Ecoh(1 mm) = 1846. The experimental data instead lead to only

partially coherent illumination in the 1 mm aperture with
�llc;ver= 0.95 
 0.05 in the vertical direction and �llc;hor = 0.55 


0.05 in the horizontal, for which we would thus expect ideally

Ev,theo ’ 62 
 3 and Eh,theo ’ 36 
 3. On the other hand, the

measured values are found to be smaller with Ev,exp ’ 39 
 1

and Eh,exp ’ 23 
 1. As would have to be expected, the ratios

Ev,exp /Ev,theo = 0.63 
 0.04 and Eh,exp /Eh,theo = 0.64 
 0.06 are

identical within their errors, and they should be caused by the

lens defects, such as the spherical menisci and the deviation

from the perfect parabolic lens profile, which diffract the

transmitted radiation away from the main maximum.

In Fig. 4 we show the maximum intensity in the center of the

diffraction pattern (�xx = 0, �yy = 1) obtained from (6), normalized

with respect to m0N2
T, as a function of �llc. All parameters are

identical to those used for the simulations in Fig. 3. We have

considered m0 = 2. The continuous and dashed curves have

been obtained for R = 0 mm and for R = 2.8 mm, respectively.

We can note that for R = 0 (continuous curve) the normalized

maximum reaches about 0.80 of the value predicted by the full

coherent theoretical model (De Caro & Jark, 2008) for the

ideal parabolic lens. This reduction is caused by the deviation

of the clessidra profile with straight prisms from the parabolic

profile. For R = 2.8 mm (dashed curve) the normalized

maximum is further reduced by another factor of about 0.8 to

0.65. This latter value is now in agreement with the measured

ratios Ev,exp /Ev,theo and Eh,exp /Eh,theo within the experimental

errors.

4. Conclusions

We have presented a numerical theoretical attempt for the

prediction of the diffracted intensity in the image plane of a

clessidra lens, when the latter is only partly coherently illu-

minated. Currently experimental data for kinoform (Fresnel)

X-ray lenses are mostly taken in this condition. Related
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Figure 4
Maximum intensity in the focus (�xx = 0, �yy = 1), normalized with respect to
m0N 2

T , as a function of �llc. The calculations are for the material and lens
properties used in Fig. 3 and for NT = 7. The continuous and the dashed
curves have been obtained for R = 0 and R = 2.8 mm, respectively.



experimental data are thus confronted with the calculations

with this numerical model. In the experiment the spatial

coherence length could be varied. The simulations show that

the presented experimental data are consistent with operation

of the lens in the optimum conditions for photon energy and

detector position. Also the refractive index for the lens

material pmma from tabulations is applicable to our samples

and the projected lens parameters ’ = 35	 and h = 25.67 mm

are confirmed. Only two more free parameters were needed in

order to simulate well the experimental intensity distributions.

The first is the spatial coherence length, which is directly

correlated with the image size. This parameter is found in very

good agreement with the expectations for the two orthogonal

source sizes. The second parameter is a rounding of the tips

and edges of the prisms during the production. In this case a

radius of curvature of R = 2.8 mm for a spherical meniscus

needs to be assumed. These numbers lead not only to the best

qualitative agreement between the measured and the calcu-

lated intensity distribution but also to the best quantitative

description of the focusing performances of clessidra lens.

Then if we would like to stay with the straight prism concept,

the only loss mechanism assignable to a lens defect is the

presence of the rounding of all tips and shallow corners in the

prism structure. The present result of R = 2.8 mm will make

clessidra lenses with the earlier discussed h = 4 mm for f =

0.1 m unfeasible. However, if we can improve our production

technique to state-of-the-art in lithography with values of the

order of R = 1 mm (Nazmov et al., 2004), the same data set will

be feasible with acceptable losses. It should be noted that

the aperture of such lenses will still be difficult to fill with

completely spatially coherent radiation. When this is possible

the focus size will be very competitive with those which can be

obtained with other focusing devices. However, until X-ray

sources of new generation are available, focusing by use of a

clessidra will continue to be source size limited and the data

interpretation will still require the presented treatment for

partially coherent illuminations.

We gratefully acknowledge the help provided during the

experiment by I. Snigireva and A. Snigirev from ESRF.
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