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The self-consistent laser evolution of an intense, short-pulse laser exciting a plasma wave and
propagating in a preformed plasma channel is investigated, including the effects of pulse steepening
and energy depletion. In the weakly-relativistic laser intensity regime, analytical expressions for the
laser energy depletion, pulse self-steepening rate, laser intensity centroid velocity, and phase velocity
of the plasma wave are derived and validated numerically.

I. INTRODUCTION

Understanding the propagation of short and intense
laser pulses in a plasma is a topic of fundamental im-
portance in the field of laser-plasma interactions. For
example, in laser-plasma accelerators (LPAs) [1], which
have demonstrated the production of multi-GeV electron
bunches in cm-scale plasmas [2–4], the dynamics of elec-
tron bunch production and acceleration is strongly af-
fected by the properties of the laser-generated plasma
wave. More specifically, the plasma wave velocity de-
termines the dephasing length (distance for a relativis-
tic particle to move out of an accelerating phase of the
plasma wave) and, hence, the maximum energy gain for
the electrons [1], as well as the threshold for self-injection
of background plasma electrons [5]. The plasma wave
velocity driven by a short and intense laser pulse is re-
lated to the laser driver and background plasma density
properties. Unfortunately, a general analytical theory de-
scribing, in three dimensions (3D), the phase velocity and
its dependence on the laser-plasma parameters is lacking.
However, a calculation of this and other quantities (such
as laser energy depletion rate, self-steepening rate, and
laser centroid velocity) characterizing the laser evolution
in an underdense plasma is essential for the design and
optimization of present and future LPA experiments.
In an LPA, the plasma wave (or wakefield) generated

by the laser driver is the result of the gradient in laser
field energy density providing a force (i.e., the pondero-
motive force) that creates a space charge separation be-
tween the plasma electrons and the neutralizing ions. Ef-
ficient plasma wave excitation requires a laser driver with
a pulse length L ∼ k−1

p , where kp = ωp/c, c being the

speed of light in vacuum and ωp = (4πn0e
2/m)1/2 the

electron plasma frequency for a plasma with density n0

(m and e are, respectively, the electron mass and charge).
For a fixed pulse length, the wakefield amplitude depends
on the amplitude of the peak normalized laser vector po-
tential defined as a0 = eA0/mc

2, where A0 is the peak
amplitude of the laser vector potential. For a linearly po-
larized pulse a20 ≃ 7.32× 10−19(λ0[µm])2I0[W/cm

2
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λ0 = 2π/k0 the laser wavelength and I0 the peak inten-
sity. In the limit a0 ≪ 1 the phase velocity of the plasma
wave, vp = cβp, is equal to the group velocity of the laser,
vg = cβg, namely βp ≃ βg ≃ 1− k2p/2k

2
0 (or, introducing

the Lorentz factor for the velocities, γp ≃ γg ≃ k0/kp)
[1]. Current LPA experiments operate at relativistic in-
tensities I0 & 1018 W/cm2, corresponding to a0 & 1
with λ0 ≃ 1 µm. As shown in Refs. 5–8, in this nonlin-
ear regime, the assumption that the wake phase velocity
equals the group velocity of the laser (βp ≃ βg) is a poor
approximation.
In Ref. 8, Schroeder et al. analyzed, for the one-

dimensional (1D) case, the propagation in underdense
plasmas of high intensity (a0 ∼ 1) laser pulses. Calcu-
lations for the nonlinear intensity transport and group
velocities of the laser pulse, and for the nonlinear phase
velocity of the excited plasma wave are presented. It was
shown that, in the weakly-relativistic regime, a0 < 1,
the wake phase velocity is approximately the intensity
transport velocity, namely γp ≃ (k0/kp)[1 + 0.1 a20] (as-
suming a resonant Gaussian laser pulse). In the nonlinear
regime, a0 > 1, the phase velocity depends on the details
of laser evolution (laser self-steepening, redshifting, and
depletion). More specifically, the phase velocity is ini-
tially (i.e., in the early stages of the laser-plasma interac-
tion, before significant depletion takes place) dominated
by the nonlinear increase in the plasma wavelength owing
to the laser steepening. For instance, if a0 ≫ 1, and for a
resonant Gaussian pulse, the phase velocity of the peak
accelerating field in the mp-th plasma period behind the

driver is [8] γp ≃ 0.45(k0/kp)m
−1/2
p .

In 3D, approximate expressions for the wake phase ve-
locity valid in limited regions of the parameter space have
been proposed. For instance, in Ref. 7, Lu et al. used
particle-in-cell (PIC) simulations to estimate a constant

phase velocity γp ≃ k0/
√
3kp in the bubble regime [9].

In Ref. 5, Benedetti et al. showed, also by means of PIC
simulations, that for an intense laser (a0 & 3) impinging
on a (transversally) uniform plasma the corresponding
bubble wake phase velocity is not constant during laser
propagation in the plasma. However, the minimum phase
velocity measured at the center of the bubble wake, γ(min)

p ,
is independent of the laser intensity and follows the (em-
pirical) scaling law γ(min)

p ≃ 2.4 · (k0/kp)1/2.
In this paper, we investigate, in 3D, the propagation
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of an intense, short-pulse laser in a preformed parabolic
plasma channel. We analytically derive in the weakly-
relativistic regime, a0 < 1, expressions for the laser en-
ergy depletion rate, the laser self-steepening rate, the in-
tensity centroid transport velocity, and the phase velocity
of the excited plasma wave, valid in the early stages of the
laser-plasma interaction (i.e., before significant depletion
takes place). These are calculated by using an envelope
description for the laser pulse and the linearized quasi-
static approximation for the (cold, collisionless) plasma
response. The analytical solutions are shown to be in
good agreement with simulation results obtained with
the 2D-cylindrical, ponderomotive PIC code INF&RNO
[10, 11]. We find that the correct expressions, valid in
3D, characterizing the laser evolution and the plasma
wave phase velocity cannot be inferred from 1D results,
and that the difference between 1D and 3D results is not
simply given by a pre-determined geometric factor. This
is due to the interplay between longitudinal and trans-
verse effects in the laser evolution, which, in turn, depend
on the functional form of the laser intensity profile. In
fact, we find that, for a laser pulse with a longitudinal
and transverse Gaussian intensity profile in the limit of a
very broad pulse, the expression for the energy depletion,
self-steepening rate, and intensity transport velocity are
different, in general, from the corresponding expressions
obtained in the 1D case discussed in Refs. 8 and 12, while
the 3D expression for the phase velocity reduces to the 1D
case. We also study the dependence of the phase veloc-
ity on laser driver evolution. In this respect, we identify
and discuss the role of transverse pulse evolution (due to
mismatched propagation, self-focusing, or plasma wave
guiding) and longitudinal evolution (self-steepening, en-
ergy depletion, and redshifting).
The paper is organized as follows. In Sec. II we de-

scribe the basic equations for the laser evolution and for
the plasma response. In Sec. III we derive the analyt-
ical expressions for the laser energy depletion, the self-
steepening rate, and the laser intensity centroid velocity.
Analytical results are compared with PIC simulations re-
sults. Calculations and numerical results for the phase
velocity of the laser-driven plasma wave are presented in
Sec. IV. Conclusions are presented in Sec. V.

II. LASER EVOLUTION AND PLASMA WAVE

EXCITATION IN THE WEAKLY-RELATIVISTIC

REGIME

We consider a linearly-polarized laser pulse propagat-
ing in a parabolic plasma channel with a transverse den-
sity distribution, n0(r), parametrized as

n0(r)/n0,0 = 1 + α r2, (1)

where r is the transverse coordinate, n0,0 is the on-axis
(i.e., r = 0) electron plasma density, and α is a parameter
describing the depth of the channel (α = 0 corresponds to
a transversally uniform plasma). Throughout the paper

we use dimensionless units, normalizing the time to ω−1
p

(plasma frequency corresponding to the on-axis density
n0,0), and the lengths to k−1

p = c/ωp.
The laser pulse is represented via the transverse com-

ponent of its (normalized) vector potential, A⊥, accord-
ing to

a⊥(ζ, r, s) ≡
eA⊥

mc2
=
â(ζ, r, s)

2
exp

(

i
k0
kp
ζ

)

+ c.c., (2)

where â(ζ, r, s) is the (complex) laser pulse envelope, and
the exponential term describes the (fast) laser oscilla-
tions. In Eq. (2) we introduced the variables ζ = z − t
and s = t, which are, respectively, the longitudinal co-
moving variable and the propagation distance. Given the
transverse component of the vector potential, the longitu-
dinal component can be derived from the Coulomb gauge
condition, ∇·a = 0. Assuming a short-pulse laser plasma
interaction, i.e., a pulse length ∼ k−1

p and propagation in
an underdense plasma such that kp/k0 ≪ 1 [this condi-
tion enables a separation between fast, (ck0)

−1 (laser os-
cillation), and slow, ∼ (ckp)

−1 (laser envelope/plasma),
time scales], the wave equation for the laser envelope
reads [1]

[

∇2
⊥ + 2

(

i
k0
kp

+
∂

∂ζ

)

∂

∂s

]

â = ρâ, (3)

where ρ = n(ζ, r)/[n0,0γ(ζ, r)] is the normalized proper
density, n(ζ, r) and γ(ζ, r) being, respectively, the elec-
tron density (including the laser-induced perturbation)
at a given location and the relativistic factor associated
with the local plasma fluid velocity. Associated with
Eq. (3) is the following adiabatic invariant (wave action)
[13],

A =

∫

dζ

∫

dr r

[

|â|2 + i
kp
k0

(

â
∂â∗

∂ζ
− â∗

∂â

∂ζ

)]

, (4)

such that ∂sA = 0.
In the following we will consider as an initial condition

a laser pulse with a transverse Gaussian profile, namely

â(ζ, r, s = 0) = a0 exp(−r2/w2
0)f(ζ), (5)

where a0 is the normalized field strength, w0 is the laser
spot, and f(ζ) describes the longitudinal (temporal) pro-
file of the laser (0 ≤ f(ζ) ≤ 1). The laser pulse defined
in Eq. (5) is (linearly) matched in the parabolic channel
given by Eq. (1), i.e. it propagates without spot (and
intensity) oscillations, if α = 4/w4

0. This is true in the
low-intensity and low-power limit, namely a0 ≪ 1 and
P/Pc = w2

0a
2
0/32 ≪ 1 (P and Pc[GW] ≃ 17k20/k

2
p being,

respectively, the laser power and the critical power for
self-focusing) [1]. If the laser intensity and/or power are
not negligible (i.e., a0 ∼ 1 and/or P/Pc ∼ 1), the match-
ing condition needs to be modified to take into account
plasma-wave guiding and relativistic self-focusing effects
as discussed in Ref. 14. For simplicity, in the remainder
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of the paper we will consider a linearly matched laser
pulse.
For a slowly-varying laser envelope, namely

|(k0/kp)â| ≫ |∂ζ â|, and in the early stages of the
laser-plasma interaction, the leading order term de-
scribing the evolution of the envelope is given by
∂sâ ≃ (kp/k0)[ρâ − ∇2

⊥â]/(2i). Therefore we have
2∂2s,ζ â ≃ −i(kp/k0)∂ζ [ρâ − ∇2

⊥â], and so Eq. (3) can be

approximated as [15]

∂â

∂s
≃ − i

2

kp
k0

[

ρâ−∇2
⊥â+ i

kp
k0
∂ζ
(

ρâ−∇2
⊥â
)

]

. (6)

For any given laser pulse configuration, the evaluation
of the proper density requires solving Maxwell’s equa-
tions coupled with the cold plasma fluid equations, ex-
ploiting the quasi-static approximation (i.e., we assume
that individual plasma particles are passed over by the
laser pulse and the associated wake in a short time com-
pared with the time over which the laser pulse, or the
wake, evolve) [16–18]. In the nonlinear (relativistic)
regime, |â|2 & 1, the proper density can be evaluated
numerically. Analytical solutions can be obtained in the
weakly-relativistic limit, |â|2 < 1, where the laser contri-
bution can be treated as a perturbation. In this limit,
we have

ρ(ζ, r) = ρ0(r) + δρ(ζ, r), (7)

where ρ0(r) = n0(r)/n0,0 is the unperturbed background
density [in our case the parabolic plasma channel Eq. (1)],
and the laser-induced perturbation, δρ, satisfies [1, 19]

(

∂2

∂ζ2
+ 1

)

δρ = −
(

1−∇2
⊥

) |â|2
4
. (8)

In the derivation of Eq. (8) we assumed a broad plasma
channel [i.e., α ≪ 1 for the background plasma density
Eq. (1)]. The Green function solution to Eq. (8), valid
at early times of the laser-plasma interaction, when the
laser envelope is described by Eq. (5), reads

δρ(ζ, r) =
a20
4

[

1 +
8

w2
0

(

1− 2r2

w2
0

)]

e−2r2/w2
0

×
∫ ∞

ζ

dζ′ sin(ζ − ζ′)f2(ζ′). (9)

The self-consistent coupling of the laser-driven density
perturbation, Eq. (9), to the laser evolution, Eq. (3), de-
scribes the laser propagation as discussed in Sec. III.

III. CHARACTERIZATION OF LASER

PROPAGATION: ENERGY DEPLETION RATE,

SELF-STEEPENING RATE, AND INTENSITY

CENTROID VELOCITY

In this section we present analytical expressions, valid
at early times of the laser-plasma interaction, in 3D and

in the weakly-relativistic limit, for three quantities char-
acterizing the propagation of a short and intense laser
pulse matched in a parabolic plasma channel, namely the
energy depletion rate, laser self-steepening rate, and in-
tensity centroid velocity. Analytical results obtained for
a laser pulse with a Gaussian longitudinal and transverse
intensity profile are compared with numerical results per-
formed with the ponderomotive code INF&RNO.

A. Laser energy depletion rate

During propagation, the laser driver deposits its en-
ergy into the plasma, where a wakefield is created, by
means of the transverse plasma current associated with
the electron quiver motion in the laser field. This cur-
rent will do work extracting energy from the laser pulse.
An expression for the normalized laser energy, E , as a
function of the laser envelope is given by

E =

∫

dζ

∫

drr

[

∣

∣

∣

∣

(

1− i
kp
k0

∂

∂ζ

)

â

∣

∣

∣

∣

2

+
1

2

(

kp
k0

)2 ∣
∣

∣

∣

∂â

∂r

∣

∣

∣

∣

2
]

,

(10)
where the integral is taken over the whole laser domain.
Note that, with the definition of E given above, the laser
energy in physical units is Ulaser = (m2c4k20/4e

2k3p)E .
The evolution equation for the normalized energy
Eq. (10) can be obtained by using Eq. (3), rewritten
as ∂s[1− i(kp/k0)∂ζ ]â = −i(kp/k0)[ρâ−∇2

⊥â]/2, and by
making use of the operatorial expansion Eq. (6):

∂E
∂s

≃−
k2p
2k20

∫

dζ

∫

drr
∂ρ

∂ζ
|â|2

+ i
k3p
4k30

∫

dζ

∫

drr
∂ρ

∂r

[

∂â

∂r
â∗ − â

∂â∗

∂r

]

, (11)

where terms O[(kp/k0)
4] have been neglected. We note

that Eq. (11) is valid at early times of the laser-plasma
interaction for any laser intensity. If we assume for â
the Gaussian laser envelope defined in Eq. (5), we have
that the second integral in Eq. (11) vanishes [since â =
â∗, then (∂râ)â

∗ = â(∂râ
∗)]. With this assumption the

expression for the initial rate of change of the laser energy
Eq. (11) then reads [8, 20]

∂E
∂s

∣

∣

∣

∣

s=0

≃ −
k2p
2k20

∫

dζ

∫

drr
∂ρ

∂ζ
|â|2. (12)

For a short laser pulse ∂ζρ > 0 in the region of the driver,
yielding ∂sE|s=0 < 0, and so energy is extracted from the
laser.
The mean laser wave number (normalized to the initial

value) can be expressed as a function of the normalized
energy and the wave action as 〈k/k0〉 = E/A. From
action conservation we have that A ∂s〈k/k0〉 ≃ ∂sE , and
so, as the laser depletes, the mean wavenumber decreases
(redshifts). The rate of redshifting equals the rate of
energy depletion [8, 21].
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An analytical expression for the initial (i.e., at early
times) laser depletion rate can be obtained in the mildly
relativistic regime for a laser with a transverse Gaussian
intensity profile matched in a parabolic plasma channel,
where the proper density can be expressed as in Eq. (7).
We have ∂ζρ = ∂ζδρ, where δρ is given in Eq. (9), and
so the initial rate of change of the laser energy is

∂E
∂s

∣

∣

∣

∣

s=0

≃ −
k2p
k20

a40w
2
0

64

(

1 +
4

w2
0

)

F , (13)

where F , which depends only on the longitudinal profile
of the laser pulse, is defined as

F =

∫ +∞

−∞

dζ

∫ ∞

ζ

dζ′ cos(ζ − ζ′)f2(ζ)f2(ζ′). (14)

For a laser pulse with a longitudinal Gaussian intensity
profile, namely f(ζ) = exp(−ζ2/L2), where L is the pulse
length, the initial (normalized) laser pulse energy is

E0 ≃
√

π

2
La20

w2
0

4
, (15)

where we assumed L≫ kp/k0, and w0 ≫ kp/k0, and

F =
π

4
L2 exp(−L2/4). (16)

Using Eqs. (13), (15), and (16), we obtain the following
expression for the initial laser energy depletion rate for a
matched bi-Gaussian laser driver,

ηE ≡ 1

E0
∂E
∂s

∣

∣

∣

∣

s=0

≃ − 1

32

√

π

2

k2p
k20
a20

(

1 +
4

w2
0

)

Le−L2/4.

(17)
An expression for ηE for a half-sine longitudinal laser
profile can be found in Ref. 22. The laser energy pump
depletion length may be defined as Lpd = −η−1

E
(i.e., the

initial laser energy evolution is E(s)/E0 ≃ 1 − s/Lpd, for
s/Lpd ≪ 1).
In the very broad pulse (and channel) limit, w2

0 ≫ 4,
the energy depletion rates is

η(3D, broad pulse)

E
≃ − 1

32

√

π

2

k2p
k20
a20Le

−L2/4. (18)

In 1D, the energy depletion rate is [12] η(1D)

E
=

2η(3D, broad pulse)

E . The difference between 1D result and
3D broad pulse result is due to the fact that, in 3D,
the laser intensity, and so the transverse current that
mediates the energy exchange between the laser and
the plasma, is transversally changing due to the laser
radial profile, while, in 1D, no transverse laser en-
velope effects are included. As a consequence, the
exact value of the ratio η(1D)

E
/η(3D, broad pulse)

E
depends

on the details of the transverse intensity distribution.
Namely, if the initial laser transverse envelope is de-
scribed by a(ζ, r, s = 0) = a0g(r)f(ζ), where g(r) is a
generic (smooth) function [we assume that g(r) satisfies
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FIG. 1. Initial energy depletion rate, ηE , as a function of
the laser spot, w0, for different values of the normalized laser
strength, a0 = 0.1 (red circles), a0 = 0.2 (green dots), and
a0 = 0.5 (blue circles). The longitudinal laser profile is Gaus-
sian with L = 2, and k0/kp = 20. The black dotted lines are
the theoretical predictions Eq. (17).

g(0) = 1, and
∫

drrg(r) < +∞ (finite laser power)], we

have that η(1D)

E /η(3D, broad pulse)

E ≃
∫

drrg2(r)/
∫

drrg4(r).

We compared the prediction for the initial energy de-
pletion rate Eq. (17) with numerical results obtained with
the 2D-cylindrical, ponderomotive, quasi-static PIC code
INF&RNO [10, 11]. The resolution of the computational
grid used for the numerical calculations was ∆z = 1/40
(longitudinal direction), and ∆r = 1/30 (transverse [ra-
dial] direction). The electron plasma distribution was
represented with 5 numerical particles per (transverse)
cell. The time step for the laser envelope advance was
∆s = 0.2. The error tolerance in the iterative quasi-static
solver was set to 10−6. Numerical parameters have been
varied to check for numerical convergence. The numerical
results are presented in Fig. (1), where we show the ini-
tial energy depletion rate as a function of the laser spot,
w0, for different values of the normalized laser strength:
a0 = 0.1 (red circles), a0 = 0.2 (green dots), and a0 = 0.5
(blue circles). The longitudinal laser profile is Gaussian
with L = 2, and k0/kp = 20. The black dotted lines are
the theoretical predictions Eq. (17) for the three laser
intensities. The PIC results are in good agreement with
theory. The discrepancy between numerical and theoreti-
cal energy depletion rate observed at higher laser intensi-
ties can be ascribed to the fact that the linear description
for the wake amplitude [see Eqs. (7, 8)] loses its validity.
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B. Laser self-steepening rate

The laser self-steepening of a short laser pulse can be
described using the integrated normalized intensity of the
laser pulse [8, 20, 23], defined as

Q =

∫

dζ

∫

drr|â|2 . (19)

Alternatively, the self-steepening rate can be studied by
examining the skewness of the laser energy distribution,
as shown in Ref. 24. The initial rate of change of Q is
obtained by means of the operatorial expansion Eq. (6).
We obtain

∂Q
∂s

≃
k2p
2k20

∫

dζ

∫

drr
∂ρ

∂ζ
|â|2. (20)

We note that for a matched laser pulse (i.e., with flat
phase fronts) ∂sQ = −∂sE . We recall that for a short
laser pulse matched in a plasma channel ∂sE < 0, then,
as the laser depletes, the quantity Q increases. An in-
crease in the value of Q is related, as in 1D, to the in-
crease of the peak laser normalized field strength, a0 (i.e.,
laser self-steepening). In fact, owing to the transverse
(radial) integral in the definition of Q, the evolution of
this quantity is rather insensitive to the transverse re-
distribution of the laser energy from laser (self-)focusing
and/or diffraction, but is sensitive to longitudinal pulse
evolution.

In the mildly relativistic limit, and for the Gaus-
sian laser pulse defined in Eq. (5), assuming, as be-
fore, matched propagation in a parabolic plasma chan-
nel and a longitudinal Gaussian intensity distribution,
f(ζ) = exp(−ζ2/L2), we obtain the following expression
for the initial self-steepening rate,

ηQ ≡ 1

Q0

∂Q
∂s

∣

∣

∣

∣

s=0

≃ 1

32

√

π

2

k2p
k20
a20

(

1 +
4

w2
0

)

Le−L2/4,

(21)
where Q0 = (π/2)1/2La20w

2
0/4. Note that ηQ = −ηE .

We compared the prediction for the initial laser self-
steepening rate Eq. (21) with quasi-static PIC results
obtained with the code INF&RNO. Simulation results
are presented in Fig. (2), where we show the initial self-
steepening rate as a function of the laser spot, w0, for
different values of the normalized laser strength: a0 = 0.1
(red circles), a0 = 0.2 (green dots), and a0 = 0.5 (blue
circles). The longitudinal laser profile is Gaussian with
L = 2, and k0/kp = 20. The black dotted lines are
the theoretical predictions Eq. (21) for the three laser
intensities. The PIC results are in good agreement with
theory. As noted in the previous section, the discrepancy
between numerical and theoretical energy depletion rate
observed at higher laser intensities can be ascribed to the
fact that the linear description for the wake amplitude
loses its validity.
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FIG. 2. Initial energy depletion rate, ηQ, as a function of
the laser spot, w0, for different values of the normalized laser
strength, a0 = 0.1 (red circles), a0 = 0.2 (green dots), and
a0 = 0.5 (blue circles). The longitudinal laser profile is Gaus-
sian with L = 2, and k0/kp = 20. The black dotted lines are
the theoretical predictions Eq. (21).

C. Laser intensity centroid velocity

The normalized-intensity-weighted laser centroid posi-
tion, ζi, is defined as

ζi =

∫

dζ
∫

drrζ|â|2
∫

dζ
∫

drr|â|2 =
1

Q

∫

dζ

∫

drrζ|â|2, (22)

and the laser intensity centroid velocity, βi, is given by

βi − 1 =
dζi
ds
. (23)

By using the operatorial expansion Eq. (6) in Eq. (22),
and assuming that, initially, ζi = 0, we obtain the fol-
lowing expression valid at early times of the laser-plasma
interaction for the laser intensity centroid velocity

βi − 1 ≃− 1

Q0

k2p
2k20

∫

dζ

∫

drr

[

ρ

(

2|â|2

+ ζ
∂|â|2
∂ζ

)

+
∂â

∂r

∂â∗

∂r

]

. (24)

Note that Eq. (24) is valid for any laser intensity. The
last term in the integral, which is not multiplied by ρ, is
the contribution to laser velocity due to laser diffraction.
The initial value of the laser intensity centroid velocity,
βi,0, computed choosing for â the Gaussian laser envelope
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defined in Eq. (5) is

βi,0 − 1 =
k2p
k20

{[
∫

dζf2

]−1 ∫ ∞

0

du e−u

×
∫

dζρ

(

ζ, w0

√

u

2

)

[

f2 + ζf∂ζf
]

+
1

w2
0

}

. (25)

An analytical expression for the initial laser inten-
sity centroid velocity can be obtained in the weakly-
relativistic regime for a Gaussian laser pulse matched into
a parabolic plasma channel. In this case, using Eq. (7)
for the proper density, where δρ is given by Eq. (9), and
choosing, as before, f(ζ) = exp(−ζ2/L2), we obtain

βi,0 − 1 ≃ −
k2p
2k20

(

1 +
4

w2
0

)

×
{

1− a20

√
2

16
L

[

3

2
P0(L)− P2(L)

]

}

, (26)

where Pm(L) =
∫∞

0
dx sin(xL)xm exp(−x2). We note

that the factor (1 + 4/w2
0) is the contribution to the

laser velocity coming from the channel, while the term
in the curly brackets is the contribution from the laser-
induced wakefield. For a very short pulse, L ≪ 1, we
have Pm(L) ≃ LΓ(m/2+1)/2, where Γ(x) is the gamma
function. In this limit, the intensity transport velocity
reads

βi,0 − 1 ≃ −
k2p
2k20

(

1 +
4

w2
0

)

(

1−
√
2

64
L2a20

)

. (27)

For a very long pulse, L ≫ 1 (adiabatic limit), we have
that P0 ≃ 1/L and P2(L) ≃ −2/L3, and so

βi,0 − 1 ≃ −
k2p
2k20

(

1 +
4

w2
0

)

(

1− 3
√
2

32
a20

)

. (28)

For a resonant pulse, L = 2, the coefficients Pm can be
computed numerically, and we obtain

γi,0 ≃ k0
kp

(

1 +
4

w2
0

)−1/2
(

1 + 0.05a20
)

, (29)

where we introduced the Lorentz factor for the veloc-
ity, namely γi,0 = (1 − β2

i,0)
−1/2. The intensity trans-

port velocity grows linearly with the laser intensity for
a20 ≪ 1, with the coefficient determined by the spe-
cific longitudinal and transverse laser profile. In the
limit of a very broad pulse (and channel), w2

0 ≫ 4,
the Lorentz factor of the intensity transport velocity
is γ(3D, broad pulse)

i,0 ≃ (k0/kp)(1 + 0.05a20). We note that
the coefficient that determines, in 3D, and in the broad
pulse limit, the dependence of the centroid velocity from
laser intensity differs from that in the 1D case [8], where
γ(1D)

i,0 ≃ (k0/kp)(1 + 0.1a20). As in the case of the laser
energy depletion rate, the difference between 1D and 3D
broad pulse limit results can be ascribed to the transverse
laser envelope effect.
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FIG. 3. Lorenz factor of the initial intensity transport ve-
locity, γi,0, as a function of the laser spot, w0, for different
values of the normalized laser strength, a0 = 0.1 (red circles),
a0 = 0.2 (green dots), a0 = 0.5 (blue circles), and a0 = 0.8
(purple dots). The longitudinal laser profile is Gaussian with
L = 2, and k0/kp = 20. The black dotted lines are the theo-
retical predictions Eq. (29).

We compared the prediction for the initial intensity
transport velocity Eq. (29) with quasi-static PIC results
obtained with the code INF&RNO. Numerical results are
presented in Fig. (3), where we show the Lorenz factor of
the initial intensity transport velocity as a function of the
laser spot, w0, for different values of the normalized laser
strength: a0 = 0.1 (red circles), a0 = 0.2 (green dots),
a0 = 0.5 (blue circles), and a0 = 0.8 (purple dots). The
longitudinal laser profile is Gaussian with L = 2, and
k0/kp = 20. The black dotted lines are the theoretical
predictions Eq. (29) for the four laser intensities. The
PIC results are in excellent agreement with theory.

IV. PHASE VELOCITY OF LASER-DRIVEN

PLASMA WAVES

In this section we present analytical expressions, valid
in 3D and in the weakly-relativistic limit, for the initial
value of the wake phase velocity generated by a short
laser pulse with a longitudinal and transverse Gaussian
intensity profile (linearly) matched in a parabolic plasma
channel. Analytical results are compared with numerical
results. We also discuss evolution of the phase velocity
during the laser-plasma interaction, showing its depen-
dence on the details of longitudinal and transverse driver
evolution.
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A. Initial value of the wake phase velocity

In this section we compute, as an example, the phase
velocity of the “back” of the first plasma wave period,
corresponding to the on-axis point behind the laser driver
(i.e., where the laser field is negligible) where the longi-
tudinal wakefield is equal to zero. The velocity of any
other phase (e.g., location of the maximum of the lon-
gitudinal wakefield, etc.) can be computed in a similar
manner. We notice that, in general, the value of phase
velocity depends on the chosen wake phase. However,
in the weakly-relativistic regime, where the nonlinear de-
pendence of plasma wavelength on laser intensity can be
neglected, the phase velocity of any point behind the laser
driver is independent of the wake phase.
Let us denote by Ez(ζ, r, s) the longitudinal wakefield

generated by the laser after a propagation distance s.
We denote by ζp(s) the value of the phase for which
we want to compute the velocity. In our example ζp(s)
satisfies Ez [ζp(s), r = 0, s] = 0 (zero-crossing of the
longitudinal wakefield). At later times, s′ = s + ∆s,
with ∆s ≪ 1, the phase of the zero crossing will be
ζp(s + ∆s) ≃ ζp(s) + [βp(s) − 1]∆s, where βp(s) is the
value of the phase velocity for the phase ζp(s). Since
we are interested in tracking the phase of the zero-
crossing of the longitudinal wakefield, we have, by def-
inition, Ez [ζp(s+∆s), r = 0, s+∆s] = 0. By consider-
ing the Taylor expansion of the latter expression with
respect to ∆s, and by taking the limit ∆s → 0, we ob-
tain the following expression for the phase velocity of the
zero-crossing of the longitudinal wakefield,

βp − 1 = −∂sEz

∂ζEz

∣

∣

∣

∣

ζ=ζp,r=0

= −
∂2ζ,sψ

∂2ζ,ζψ

∣

∣

∣

∣

ζ=ζp,r=0

, (30)

where we have introduced the wake potential, ψ, such
that Ez = −∂ζψ. Similarly, denoting by ζ′p(s) the phase
location of the maximum of Ez behind the laser driver
(i.e., ∂ζEz |ζ=ζ′

p,r=0=0), an expression for the (on-axis)
phase velocity of the maximum of the longitudinal field
is given by

β′
p − 1 = −

∂2ζ,sEz

∂2ζ,ζEz

∣

∣

∣

∣

ζ=ζ′
p,r=0

=
∂3ζ,ζ,sψ

∂3ζ,ζ,ζψ

∣

∣

∣

∣

ζ=ζp,r=0

. (31)

We note that Eqs. (30) and (31) are valid for any laser
intensity. An explicit evaluation of the phase velocity for
any given propagation distance requires the knowledge of
the functional dependence of the longitudinal wakefield
(or wake potential) on spatial coordinates, ζ and r, and
propagation distance, s. Neglecting the transient phase
at the early stages of the laser-plasma interaction where
the wake is begin formed, the wake potential as a function
of the driver properties can be evaluated via the quasi-
static approximation. Its variation as a function of the
propagation distance is determined via Eq. (6), which
describes the evolution of the laser driver.
An analytical expression for the phase velocity can be

obtained in the weakly-relativistic regime. Assuming a

broad plasma channel, and using the quasi-static approx-
imation, the wake potential is given by [1]

∂2ψ

∂ζ2
+ 1 =

|â|2
4
, (32)

where |â|2 < 1. The Green function solution to Eq. (32)
is

ψ(ζ, r, s) = −
∫ ∞

ζ

dζ′ sin(ζ − ζ′)|â(ζ′, r, s)|2/4, (33)

yielding the following expression for the longitudinal
wakefield,

Ez(ζ, r, s) =

∫ ∞

ζ

dζ′ cos(ζ − ζ′)|â(ζ′, r, s)|2/4. (34)

The phase of the on-axis point behind the laser driver
where the longitudinal wakefield vanishes, ζp, is then
given by

∫ +∞

−∞

dζ′ cos(ζp − ζ′)|â(ζ′, 0, s)|2 = 0, (35)

where we replaced ζp with −∞ in the lower integration
extreme owing to the fact that we are considering phases
behind the driver where the laser field is negligible. By
using Eqs. (30) and (33), the phase velocity of the zero-
crossing of Ez reads

βp − 1 =

∫∞

ζp
dζ′ cos(ζp − ζ′)∂s|â(ζ′, r = 0, s)|2

∫∞

ζp
dζ′ sin(ζp − ζ′)|â(ζ′, r = 0, s)|2

. (36)

At early times, the term ∂s|â|2 in the numerator of
Eq. (36) can be evaluated by using the operatorial ex-
pansion Eq. (6), we have

∂|â|2
∂s

≃− i

2

kp
k0

[

â∇2
⊥â

∗ − â∗∇2
⊥â
]

+
k2p
2k20

[

2
∂ρ

∂ζ
|â|2

+ ρ
∂|â|2
∂ζ

−
(

â∇2
⊥

∂â∗

∂ζ
+ â∗∇2

⊥

∂â

∂ζ

)]

. (37)

At s = 0, for the Gaussian laser envelope given in
Eq. (5), and choosing f(ζ) = exp(−ζ2/L2), with L ∼ 1,
we have that the expression for the phase location of the
zero crossing Eq. (35) becomes

cos ζp = 0. (38)

Equation (38) has multiple solutions. For a short laser
pulse the solution corresponding to the phase location of
the zero crossing of Ez at the back of the first plasma
wave period is ζp = −3π/2. We note that at this phase
location the field of the (short) laser driver is negligible.
Since the initial envelope given in Eq. (5) satisfies â = â∗,
Eq. (37) takes the following simplified form for r = 0

∂|â|2
∂s

∣

∣

∣

∣

∣

s=0,r=0

≃
k2p
k20
a20e

−2ζ2/L2

×
[

∂δρ0
∂ζ

− 2ζ

L2

(

1 +
4

w2
0

+ δρ0

)]

,(39)
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where we used Eq. (7) for the proper density, and δρ0 is
given by Eq. (9) evaluated at r = 0. By using Eqs. (5),
(38), and (39) in Eq. (36), we obtain the following ex-
pression, valid in the weakly-relativistic regime, for the
initial value of the phase velocity (βp,0) of a wake gener-
ated by a bi-Gaussian laser driver matched in a parabolic
plasma channel,

βp,0 − 1 ≃ −
k2p
2k20

[

1 +
4

w2
0

− a20
2
K(L)

(

1 +
8

w2
0

)]

, (40)

where the function K(L), which depends on the driver
length, is defined as

K(L) =
eL

2/16

√
2

[

1

L2

∫ ∞

0

dxx sinx sin
x

2
e−x2/L2

+
1

4

∫ ∞

0

dx sinx cos
x

2
e−x2/L2

−
∫ ∞

0

dx cos x sin
x

2
e−x2/L2

]

. (41)

For a short laser pulse, L ≪ 1, K(L) ≃ L2/(8
√
2). For

a resonant laser pulse, K(L = 2) ≃ 0.3853, and so the
Lorentz factor of the initial phase velocity reads

γp,0 ≃ k0
kp

(

1 +
4

w2
0

)−1/2 [

1 + 0.1 a20

(

1 +
4

w2
0

)]

. (42)

Note that in the limit of a broad pulse, w2
0 ≫ 4, the

3D expression for the wake velocity Eq. (42) reduces to
the 1D result [8]. We also note that while in 1D, and
in the weakly-relativistic limit, the wake phase velocity
is approximately the intensity transport velocity, this is
not the case in 3D. This difference can be ascribed to the
fact that in 3D the intensity transport velocity is defined
via an integration over the whole (i.e., longitudinal and
transverse) laser domain, while, as show in Eq. (36), the
phase velocity of the wake depends on the on-axis (r = 0)
behavior of the laser driver.
We compared the prediction for the wake phase veloc-

ity Eq. (42) with quasi-static PIC results obtained with
the code INF&RNO. Numerical results are presented in
Fig. (4), where we show the Lorenz factor of the initial
wake velocity as a function of the laser spot, w0, for dif-
ferent values of the normalized laser strength: a0 = 0.1
(red circles), a0 = 0.2 (green dots), and a0 = 0.5 (blue
circles). The longitudinal laser profile is Gaussian with
L = 2, and k0/kp = 20. The black dotted lines are the
theoretical predictions Eq. (42) for the three laser inten-
sities. The PIC results are in excellent agreement with
theory.

B. Evolution of the phase velocity

As the laser evolves, so do the plasma wave and
its phase velocity. In 3D, the laser driver can evolve
longitudinally or transversally. Longitudinal evolution
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FIG. 4. Lorenz factor of the initial wake velocity, γp,0, as
a function of the laser spot, w0, for different values of the
normalized laser strength, namely a0 = 0.1 (red circles), a0 =
0.2 (green dots), and a0 = 0.5 (blue circles). The longitudinal
laser profile is Gaussian with L = 2, and k0/kp = 20. The
black dotted lines are the theoretical predictions Eq. (42).

(present also in 1D) is due to self-steepening and deple-
tion/redshifting (i.e., energy exchange with the plasma).
Transverse evolution is present every time that, slice-by-
slice along the pulse, the guiding contribution from the
channel, plasma wave guiding, self-focusing, and laser
diffraction are not exactly balanced. Longitudinal and
transverse laser driver evolution are characterized by dif-
ferent characteristic length scales. This can be shown by
performing a scale lengths analysis of the laser envelope
evolution equation Eq. (3). We find that the longitu-
dinal driver evolution occurs over a propagation length
Llong ∼ k20/k

2
p (assuming a short laser pulse, L ∼ 1),

while transverse evolution usually happens over a typi-
cally shorter length scale, Ltrans ∼ (k0/kp)r

2
⊥
, where r⊥

is the characteristic transverse size of the laser. As a
consequence, for laser-plasma parameters of interest for
current and future LPA experiments, and for propagation
distances shorter than the depletion length, the evolution
of the phase velocity will be sensitive to the details of the
transverse evolution of the laser driver (e.g., position of
the laser focus in the plasma, laser mode properties, con-
tributions from self-focusing and plasma wave guiding,
etc.).

To illustrate the laser and wake evolution we consider
the propagation of a short and moderately intense, bi-
Gaussian laser pulse in parabolic plasma channel. The
laser envelope is the one defined in Eq. (5), with a0 = 0.5,
w0 = 4, f(ζ) = exp(−ζ2/L2), and L = 2. The laser is
linearly matched in the channel, and k0/kp = 20. The
modeling of the laser-plasma interaction has been done
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FIG. 5. Evolution of the wake phase velocity, γp(s) (black
solid line) and normalized-intensity-weighted laser radius
w(s) (black dashed line), for a Gaussian laser driver with
a0 = 0.5, w0 = 4, and f(ζ) = exp(−ζ2/L2) with L = 2. The
laser is linearly matched in a parabolic plasma channel, and
k0/kp = 20. The two insets show snapshots of the laser enve-
lope for two propagation distances: (i) s = 0 and (ii) s = 252,
illustrating the compression of the laser driver in the region
towards the back of the pulse. The red solid line and the
red dashed line show, respectively, the evolution of the wake
phase velocity and laser radius for a “super-matched” driver.

with the quasi-static PIC code INF&RNO. The use of
a quasi-static code allows us to neglect the initial tran-
sient corresponding to the generation of the wake, which
depends on the details of the incoupling geometry. The
evolution during laser propagation of the wake phase ve-
locity, measured at the back of the first plasma period,
at the location of the zero crossing of the longitudinal
electric field Ez , is shown in Fig. (5) (black solid line).
The black dashed curve in Fig. (5) is the evolution of
the normalized-intensity-weighted laser radius, defined
as w(s) = [2

∫

dζ
∫

rdrr2 |â|2/Q]1/2. With this defini-
tion, w(s = 0) = w0. As the laser propagates, different
longitudinal slices along the laser driver experience dif-
ferent amounts of self-focusing and plasma wave guiding.
In particular, the slices towards the front of the laser
pulse are well matched in the parabolic plasma channel
since the additional contribution to guiding coming from
self-focusing is canceled by plasma response, while the
slices towards the back of the laser driver experience en-
hanced focusing compared to those in the front. In fact,
for s . 250, w(s) decreases. The two insets in Fig. (5)
show snapshots of the laser envelope for two propagation
distances, (i) s = 0, and (ii) s = 252, illustrating the

compression of the laser driver in the region towards the
back of the pulse.

Owing to the transverse redistribution of the laser en-
ergy, the on-axis intensity profile is also changed. Ini-
tially, the on-axis laser intensity is Gaussian, at later
times it becomes longitudinally asymmetric, with the lo-
cation of the intensity peak slipping back compared to
s = 0. This change in the laser intensity profile induces a
change in the lineout of the longitudinal wakefield, with
the position of the zero crossing of the Ez shifting pro-
gressively towards the back (more negative phases) as
the propagation distance approaches s ≃ 250. This is
the reason why the phase velocity, whose initial value
is given by γp,0 ≃ 18.5 [see Eq. (42)], is always slower
than the initial value for s . 250. The minimum value
of the phase velocity, γp,min ≃ 14, is reached for s ≃ 50.
At s ≃ 250 the driver reaches the maximum compres-
sion, and, afterwards, for 250 . s . 500, the back of
the laser driver expands and the initial laser envelope
configuration is (almost) recovered at s ≃ 500. During
this time span the location of the zero crossing of Ez

moves forward, giving a value for the phase velocity that
is consistently higher than the initial one. The maxi-
mum value of the phase velocity, γp,max ≃ 28, is reached
for s ≃ 430. For s & 500 the cycle described repeats.
We note that the length over which the phase velocity
evolves corresponds to the characteristic scale length for
mismatched oscillations in a parabolic plasma channel,
Zmismatch ≃ π(k0/kp)w

2
0/2 ≃ 500, which is, in these laser-

plasma conditions, the characteristic scale for transverse
laser evolution. The damping of the oscillations in both
w(s) and γp(s) at later times is due to the fact that a
short laser driver, as the one used in this example, is not
monochromatic [25]. Each chromatic component of the
laser is characterized by a different oscillation frequency,
and the decoherence between these modes damps out the
oscillations.

Besides the evolution due to transverse laser dynamics,
the phase velocity evolves, as in 1D, because of the longi-
tudinal evolution of the driver. In particular, we see that
the average value of the phase velocity slowly decreases
during laser propagation. As shown in Ref. (8), this is
due to laser redshifting (i.e., energy depletion).

To further support the point that the large variations
of the phase velocity during the early stages (i.e., for
a propagation length short compared to the depletion
length) of the laser-plasma interaction are due to trans-
verse laser evolution, we considered a second example re-
placing the linearly matched Gaussian laser pulse driver
with a “super-matched” laser driver, fixing all the other
laser-plasma parameters. A “super-matched” laser pulse
(see Appendix A) has a slice-by-slice intensity distribu-
tion adjusted such that, on each slice, laser diffraction,
channel guiding, self-focusing, and plasma wave guiding
are perfectly balanced, yielding an intensity distribution
that does not change during propagation (for propaga-
tion distances much shorter than laser depletion). In
this numerical example we are using a “super-matched”
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driver of order q = 0 (see Appendix A for details), and
we use the same parabolic background density profile uti-
lized in the Gaussian example discussed before. As shown
by the red dashed line in Fig. (5), the quantity w(s) for
the “super-matched” driver simulation is constant. The
evolution phase velocity of the wake generated by the
“super-matched” driver is shown by the red solid line in
Fig. (5). As expected, since there is no transverse evolu-
tion of the driver, the phase velocity does not oscillate.
The slow and steady decrease of the phase velocity is due,
as in the Gaussian case, to longitudinal evolution of the
driver (redshifting/depletion).

V. CONCLUSIONS

In this paper we have investigated the evolution, in 3D,
of a moderately intense (a0 < 1) short-pulse (L ∼ 1) laser
propagating in an underdense (kp/k0 ≪ 1) parabolic
plasma channel, and that of the associated plasma wave.
Understanding the details of the propagation of short and
intense laser pulses in plasmas is a topic of fundamental
importance in the field of laser-plasma interactions and,
in particular, for the design and optimization of LPAs.
For instance, the phase velocity of the laser-generated
plasma waves determines the trapping threshold for par-
ticle self-injection and sets the dephasing length, while
the energy depletion rate determines the maximum laser
propagation distance. We derived analytical expressions,
valid in the early stages of the laser plasma interaction
(i.e., before significant depletion takes place), for the laser
energy depletion rate, the laser self-steepening rate, the
intensity centroid transport velocity, and the wake phase
velocity. These quantities are calculated by using an en-
velope description for the laser pulse and the linearized
quasi-static approximation for the plasma response. An-
alytical results computed for a bi-Gaussian laser pulse
matched in a parabolic plasma channel are found to be
in excellent agreement with results from PIC simulations
performed with the code INF&RNO. A summary of the
quantities computed in this paper is shown in Tab. I,
together with the corresponding 1D expressions valid in
the linear and in the mildly-relativistic regimes. We note
that the correct 3D expressions characterizing the laser
evolution and the plasma wave phase velocity cannot be
inferred from 1D results. This is due to the interplay
between longitudinal and transverse effects in the laser
evolution, which, in turn, depends on the details of the
laser envelope. In fact, the difference between 1D and
3D results is not simply given by a pre-determined ge-
ometric factor. For instance, we find that, for a laser
pulse with a longitudinal and transverse Gaussian inten-
sity profile in the limit of a very broad pulse, the expres-
sion for the energy depletion, self-steepening rate, and
intensity transport velocity are different from the corre-
sponding expressions obtained in the 1D case discussed
in Refs. 8 and 12, while the 3D expression for the phase
velocity reduces to the 1D case.

We also studied the dependence of the phase velocity
on laser driver evolution, identifying and discussing the
role of transverse and longitudinal evolution. We found
that, in 3D, and for laser-plasma parameters of interest
for current and future LPA experiments, the evolution
of the phase velocity is mainly determined by the de-
tails of the transverse laser evolution, whereas changes in
the phase velocity related to longitudinal driver evolution
only play a role over propagation distances comparable
with the depletion length.
All the results presented in this paper are valid in the

weakly-relativistic regime, a0 . 1. The extension of these
3D results to the relativistic regime, a0 & 1, will be the
subject of future work.
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Appendix A: Perfect matching of an intense,

short-pulse laser in a parabolic plasma channel

The laser envelope evolution equation for propagation
distances much shorter than the depletion length is given
by the paraxial wave equation, which can be obtained
from Eq. (3) by dropping the mixed derivative, ∂2ζ,sâ,

(

∇2
⊥ + 2i

k0
kp

∂

∂s

)

â = ρâ. (A1)

Consider solutions to Eq. (A1) of the form

â(ζ, r, s) = a0f(ζ)g(ζ, r, s) exp[iϕ(ζ, r, s)], (A2)

where a0 is the initial peak amplitude, f(ζ) describes
the longitudinal profile (f(0) = 1, and 0 ≤ f(ζ) < 1,
for ζ 6= 0), g(ζ, r, s) describes, for any given longitudinal
slice, ζ, the transverse intensity profile, and ϕ(ζ, r, s) is a
phase. We assume that

∫

drr[g(ζ, r, s = 0)]2 = const,
so the initial longitudinal power profile is determined
uniquely by the choice of f(ζ). By inserting Eq. (A2) into
Eq. (A1), we obtain the following set of coupled equations
for g(ζ, r, s) and ϕ(ζ, r, s),

∇2
⊥g − (∂rϕ)

2g − 2
k0
kp

(∂sϕ)g = ρg (A3)

g∇2
⊥ϕ+ 2(∂rϕ)(∂rg) + 2

k0
kp

(∂sg) = 0 (A4)

A laser pulse propagating in a plasma channel for
which the intensity distribution is, slice-by-slice, con-
stant for propagation distances short compared to the
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Lpd γi,0 γp,0

1D (a0 ≪ 1) ∞ k0
kp

k0
kp

3D (a0 ≪ 1) ∞ k0
kp

(

1 + 4

w2
0

)−1/2
k0
kp

(

1 + 4

w2
0

)−1/2

1D (a0 . 1)
k2
0

k2
p

2
7/2e

π1/2
1

a2
0

k0
kp

(

1 + 0.1a2

0

)

k0
kp

(

1 + 0.1a2

0

)

3D (a0 . 1)
k2
0

k2
p

2
9/2e

π1/2
1

a2
0

(

1 + 4

w2
0

)−1
k0
kp

(

1 + 0.05a2

0

)

(

1 + 4

w2
0

)−1/2
k0
kp

[

1 + 0.1a2

0

(

1 + 4

w2
0

)](

1 + 4

w2
0

)−1/2

TABLE I. This table compares the 1D and 3D expressions for the initial value of the laser pump depletion, Lpd, laser intensity
centroid velocity, γi,0, and wake phase velocity, γp,0, valid in different laser-plasma interaction regimes, namely, linear (a0 ≪ 1)
and mildly-relativistic (a0 . 1). The expressions assume a resonant Gaussian pulse profile.

depletion length (i.e., laser diffraction, channel focusing,
plasma wave guiding, and self-focusing are perfectly bal-
anced) is said to be “perfectly matched” in the channel
(“super-matched” laser pulse). A quasi-matched laser
pulse [14], where the intensity distribution at each lon-
gitudinal slice is assumed to be Gaussian, and the spot
size is ζ−dependent, can be considered an approxima-
tion of a “super-matched” pulse. For the laser envelope
described in Eq. (A2), a constant intensity distribution
during propagation implies ∂sg = 0. Equation (A4) then
gives r(∂rϕ)g

2 = const. Taking into account that ϕ is an
even function of r near r = 0, and so (∂rϕ)|r=0 = 0, and
assuming that g(r = 0) has a finite value, then ∂rϕ = 0
for any r, and the phase fronts of a “super-matched”
driver are flat. Equation (A3) then becomes

∇2
⊥g − 2

k0
kp

(∂sϕ)g = ρg. (A5)

We can solve Eq. (A5) once boundary (asymptotic) con-
ditions for g are specified. For longitudinal phases, ζ,
well ahead of the laser pulse peak, where the laser ampli-
tude and the associated wake are negligibly small, the
proper density coincides with the unperturbed (back-
ground) plasma density, ρ = ρ0. For a parabolic plasma
channel parametrized as ρ0 = 1 + 4r2/R4, where R is
a constant, possible solutions to Eq. (A5) are given by
g(ζ, r) = Lq(2r

2/R2) exp(−r2/R2), where Lq(x) is the
Laguerre polynomial of order q, as shown in Refs. 1
and 26. Similarly, for phases around the laser peak,
but in the limit of r very large, where the laser and
wakefield amplitudes are negligible, we have, as before,
ρ = ρ0 = 1 + 4r2/R4. Invoking continuity with the
phases ahead, we assume that, asymptotically, g(ζ, r) =
Lq(2r

2/R2) exp(−r2/R2). Since ϕ does not depend on r,
we can compute the quantity ∂sϕ using Eq. (A5) in the
limit for large r, where the wakefield vanishes. With the
assumptions on the asymptotic behavior of g, we obtain

−2
k0
kp

(∂sϕ) = 1 +
4

R2
(1 + 2q). (A6)

By inserting the expression for ∂sϕ given by Eq. (A6) into
Eq. (A5), we can rewrite the equation describing, slice-
by-slice, the transverse field amplitude ensuring perfect

longitudinal coordinate, ζ
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FIG. 6. Normalized laser intensity field |â(x, y = 0, ζ)| for
a “super-matched” laser pulse driver in a parabolic plasma
channel. The form of the laser envelope is given in Eq. (A2),
with a0 = 1, and where we choose f(ζ) = exp(−ζ2/L2), with
L = 2. The function g(ζ, r) is the solution of Eq. (A7) with
q = 0 and R = 5.

matching in a parabolic plasma channel as

∇2
⊥g =

[

ρ− 1− 4

R2
(1 + 2q)

]

g. (A7)

Equation (A7) depends on the proper density, hence it
must be solved self-consistently together with the equa-
tion for the wake amplitude. In particular, in the mildly
relativistic regime, we have that ρ = ρ0 + δρ = 1 +
4r2/R4 + δρ, with δρ given by Eq. (8), where |â|2 =
a20f

2g2. In the nonlinear (relativistic) regime the proper
density can be evaluated numerically.
An example of “super-matched” laser profile obtained

solving numerically Eq. (A7) for q = 0, a0 = 1, R = 5,
and choosing f(ζ) = exp(−ζ2/L2), with L = 2, is shown
in Fig. (6). We notice that the laser intensity distribu-
tion of a “super-matched” pulse in a parabolic channel
has a conical shape (narrower towards the back). Phys-
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ically this is due to the fact that the slices towards the
back of the pulse experience larger plasma wave guiding
compared to the slices in the front, so the laser spot has
to shrink to increase diffraction and recover equilibrium.

In the mildly relativistic limit, the phase velocity for
the wake generated by a “super-matched” laser pulse can
be computed by using Eq. (36), where the laser envelope
is given by Eq. (A2), and using the conditions Eqs. (A6)
and (A7) that define the “super-matched” solution. We
obtain the following expression for the wake phase veloc-

ity,

βsuper-matched

p − 1 = −
k2p
2k20

[

1 +
4

R2
(1 + 2q)

]

, (A8)

and so

γsuper-matched

p =
k0
kp

[

1 +
4

R2
(1 + 2q)

]−1/2

. (A9)

We see that for a0 < 1 the phase velocity for the wake
generated by a “super-matched” laser pulse is indepen-
dent on the laser intensity to order a20, and depends only
on the on-axis density, plasma profile and transverse laser
mode (defined via the parameter q). Note that this re-
sult differs from that of a Gaussian laser pulse, and in
the limit of a broad pulse, R2 ≫ 4, we do not recover the
1D limit [8].
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