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Nuclei interacting with electrons in dense plasmas acquire electronic bound states, modify continuum states,
generate resonances and hopping electron states, and generate short-range ionic order. The mean ionization
state (MIS), i.e, the mean charge Z of an average ion in such plasmas, is a valuable concept: Pseudopotentials,
pair-distribution functions, equations of state, transport properties, energy-relaxation rates, opacity, radiative
processes, etc., can all be formulated using the MIS of the plasma more concisely than with an all-electron
description. However, the MIS does not have a unique definition and is used and defined differently in different
statistical models of plasmas. Here, using the MIS formulations of several average-atom models based on density
functional theory, we compare numerical results for Be, Al, and Cu plasmas for conditions inclusive of incomplete
atomic ionization and partial electron degeneracy. By contrasting modern orbital-based models with orbital-free
Thomas-Fermi models, we quantify the effects of shell structure, continuum resonances, the role of exchange and
correlation, and the effects of different choices of the fundamental cell and boundary conditions. Finally, the role
of the MIS in plasma applications is illustrated in the context of x-ray Thomson scattering in warm dense matter.
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I. INTRODUCTION

The ionization state of elements at a given compression and
temperature is an important quantity in plasma physics and
material science. Some applications, such as the analysis of
spectral line shapes, require detailed information about charge
state distributions and their time-dependent fluctuations [1,2].
However, a large class of properties depends only on average
values of certain basic plasma properties. Thermodynamic
properties, linear transport, and optical properties serve as
examples. A parameter that has proven to be invaluable,
especially in models where the plasma is treated as a collection
of charged point ions and electrons, is the mean ionization
state (MIS) Z of the ions (here we take the electron charge as
|e| = 1 and we use hartree atomic units when convenient).
Thus, if the number of ions per unit volume is ni , the
number of free electrons per unit volume in the plasma
ne = Zni . Basic calculations of equation of state and transport
properties require only ne or the average charge Z of ionic
scattering centers. For example, only low-order moments of
the charge state distribution appear in elementary formulas
for the pressure of a dilute plasma, x-ray Thomson scattering
cross sections, bremsstrahlung, electrical resistivity, and the
electron-ion temperature relaxation rate [3–7]. In regimes
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where the point-ion model fails, the mean ionization enters
as an essential parameter of pseudopotentials with finite core
sizes used in quantum calculations [8,9].

For weakly interacting plasmas (low densities and high
temperatures), composition fractions Xi of an element’s
ionization states Zi can be obtained from the Saha equation
[1,4], which is based on a balance of free energies of
ideal gases. However, the ideal gas partition function is not
convergent unless the sums are restricted to a finite number of
states via a physically motivated cutoff. Extending the Saha
equation regime of validity to strongly coupled plasmas (dense,
partially degenerate plasmas or low-density low-temperature
plasmas) in which Rydberg states and continuum states are
occupied requires the formulation of convergent partition
functions by including many-body effects that set natural
bounds to the extent of the density of states. Generalized
Saha equations, which incorporate some phenomenological
modification of energy spectra and the density of states, are
used in the so-called chemical picture [10]; an example is the
Hummer-Mihalas scheme that uses the plasma microfield to
reduce occupation probabilities [11]. Astrophysical opacity
predictions using that model were found to be incorrect,
however, as shown by Rogers and Iglesias [12].

Such phenomenological Saha schemes are unreliable and
fail at strong coupling. Then a physical picture [8,10,13,14]
that views the plasma as a collection of nuclei and elec-
trons supporting delocalized and localized states is needed.
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Activity expansions for effective composite particles [13] and
models based on self-consistent-field calculations (mean-field
approximations) for confined atoms [15] have been used to
treat partially ionized atoms of differing charge states. Another
class of physical picture models [16,17] considers the mean
ionization of a representative average atom (AA), viz., a
spherical cell of plasma centered on one nucleus, instead of
the distribution of actual charge states. A single determinant
is used for the electronic wave function. An average molecule
involving many ionic centers may also be used used in the
calculation, as done in ab initio molecular dynamics (AIMD)
schemes. However, the extension to several determinants (con-
figuration interaction) is currently computationally intractable.
The method of Ref. [8] is a direct generalization of [16,17] to
include a coexisting multiplicity of species of charge states,
using density functional theory (DFT) [18,19] to calculate
the free energies, equation of state (EOS), and transport
coefficients within a fully physical approach. This method
avoids the assumption of a single-determinant model with a
single average 〈Z〉 used in the average-atom model. We will
not address all these alternatives fully, but only to the extent of
their relevance to alternative definitions of the MIS and leading
to differing values of Z.

Density functional theory [20,21] is the language that
most average-atom models are based on, according to which
all equilibrium plasma properties such as internal energy,
pressure, and entropy can be described as functionals of
the total electron density ne(r) and the density ni(r) of
the nuclei. Thus the MIS, defined as the mean charge Z

of an ion, would also be a functional of ne(r) and ni(r).
Then, incorporating Z in pseudopotentials, a simplified DFT
that need not deal with the bound electrons of the core
can be constructed, as is often done in practice for T = 0
problems. From then on, we need not deal with the bound
electrons and the electron density ne(r) now refers only to
the free-electron density, with average densities satisfying
ne = Zni . Thus the use of the MIS simplifies calculations of
equilibrium properties as well as dynamical, nonequilibrium
properties such as stopping of fast charges [5,22], temperature
relaxation [23,24], or ion microfield fluctuations [25,26]. The
reason that such constructions are needed is simply that
all-electron calculations are extremely costly in the context
of time-dependent DFT [27,28]) and other relevant methods.
Similarly, the Kubo-Greenwood relations [29–31] can be used
to calculate linear transport and optical properties either within
an all-electron approach or within a pseudopotential approach
assuming a well-defined core of electrons (thus specifying a
MIS).

The goal of this work is to explore key MIS-related
issues for AA models based on DFT. We employ models
with spherical symmetry around a central nucleus since we
are interested in plasmas with temperatures that far exceed
chemical bond energies associated with cluster formation.

A computationally more expensive alternative is to treat
many nuclei in a periodic cell using either quantum Monte
Carlo or AIMD. The time dependence of the nuclei is included
(in AIMD) on the Born-Oppenheimer surface generated
by the electronic DFT calculation [32]. Here we do not
consider AIMD for three reasons. First, although the AIMD
method can be generalized to finite temperatures, it has been

computationally limited to lower temperatures (T < 10 eV) in
practice. Second, most implementations [32] of AIMD employ
for the core electrons a zero-temperature pseudopotential and
a corresponding prescription for it. That is, the MIS is assumed
and is not computed self-consistently with the bound and
conduction electrons at finite T . Third, single-center models
are known to be quite accurate even for liquid metals and we
are not concerned with systems that form molecular species
at very low temperatures that cannot be described by a single
center. Orbital-free DFT (OFDFT) methods promise to remove
many of these limitations [33–37], but little attention to the
MIS has been given in them.

Methods that are in between AA models and full AIMD
approaches also exist. These approaches include many corre-
lated ions spherically averaged around one nucleus [38–42].
We do not consider these methods that are relatively less
developed, especially in dealing with the MIS, which is
our main focus. Furthermore, in regard to AIMD, all the
thermodynamic results obtained by AIMD variants can be
obtained very cheaply using the multispecies DFT method of
Perrot and Dharma-wardana [8] in which separate AA-like
calculations for different ionization states of an element in
a plasma are combined within an EOS to obtain the lowest
energy composition fractions and the mean ionization.

We begin in Sec. II with an overview of plasma regimes,
dimensionless parameters, and their generalization using MIS
definitions. In Sec. III we present the MIS as formulated in
the three DFT models we employ. Two are based on a single
ion in a Wigner-Seitz cell. The third uses a single nucleus at
the center and many field ions contained in a cell (known
as the correlation sphere) that is at least a 100 times the
volume of the Wigner-Seitz cell. This sphere encompasses
the plasma volume within which ion-ion, ion-electron, and
electron-electron correlations die away. In Sec. IV we present
and contrast various MIS values computed by the different
models for several metals, at densities bracketing normal
solid density, and across a range of temperatures. In Sec. V
we consider implications of these results for x-ray Thomson
scattering. Section VI provides a brief summary and future
directions.

II. CHARACTERIZATION OF DENSE PLASMAS

Dense plasmas are usually characterized by dimensionless
parameters (DPs). Here we display their dependence on the
MIS charge Z. Strictly speaking, appropriate DPs for plasmas
arise naturally in the context of a given physical property
[43,44] where they are used as expansion parameters for
corrections beyond a reference state, as in the Debye-Hückel
theory for weak plasmas. Thus the strong-coupling plasma
parameter � (see below) was initially used for expanding the
free energy of the classical one-component plasma, until it
was shown that such expansions are not really meaningful
in strongly coupled regimes. Thus the use of these DPs are
mainly used now for qualitative characterizations of plasma
conditions.

Often a MIS Z of ions in a plasma is estimated by a
Thomas-Fermi-type theory, which serves to get dimension-
less parameters that are useful in qualitative considerations
[6,43,45]. We write these DPs using a Z that relates the
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average ion density ni to the average free-electron density
ne = Zni and evaluate the DPs as a function of Z to reveal
their ionization dependence. Note that the use of a MIS enables
us to remove bound electrons from the problem, as they are
subsumed in constructing Z. In the discussion that follows in
this section, all electrons ne are free, i.e., delocalized.

The parameter � is a measure of the quantum degeneracy
of the plasma electrons ne, viz.,

� = EF

T
= e2a0

2T
(3π2ne)2/3. (1)

Here T is the plasma temperature (in energy units), EF is the
usual Fermi energy defined in terms of the average density ne

of free electrons, and e2/a0 = 27.21 eV is the atomic unit
of energy. (More will be said about the precise definition
of free in what follows and in this section we use ne to
be a generic choice.) When � � 1 the plasma electrons are
partially degenerate.

Another possible degeneracy parameter is ηe = μe/T ,
where μe is the electron chemical potential for the fully in-
teracting system including finite-T , finite-density, and bound-
state information not captured by (1). These modification of μe

due to electron-ion interactions is sometimes loosely called the
lowering of the continuum. The parameter ηe plays a key role
in the MIS values predicted by DFT. For the homogeneous
electron gas, when ηe = 0, then � = 1 to within 1%. In
the high-density limit (at constant T ), pressure ionization
eliminates all bound states and ηe approaches �. While a
negative η is typical of uniform classical plasmas, note that
this definition, which will be explored below, includes bound
electrons.

The Coulomb coupling parameter is the ratio of the mean
unscreened potential energy, estimated as the Coulomb energy
of a pair of particles with charges Zαe and Zβe at a separation
aαβ , to the mean kinetic energy, estimated classically as T , for
a pair of particles α and β, or

�αβ = ZαZβe2

aαβT
, (2)

aαα = aα = (4πnα/3)−1/3, (3)

aαβ = [4π (nα + nβ)/3]−1/3, α �= β. (4)

Thus α = i, ai = (4πni/3)−1/3 is the Wigner-Seitz radius
(WSR) of ions in a plasma with average ion density ni = ne/Z.
The electron WSR is often denoted by rs in condensed-matter
physics. The �ee defined in this traditional manner does not
correctly reduce to rs as T → 0. The interpair length aαβ is a
measure of the mean separation and other definitions are also
used. These Coulomb parameters satisfy the relations

�ii = Z5/3�ee = {Z/(1 + Z)1/3}�ei.

When �αβ exceeds unity, strong spatial correlations between
particles of type α and type β develop and their pair-
distribution functions deviate significantly from those of weak-
coupling theory, showing oscillatory structures.

Because the electrons are polarized by the ions, the effective
coupling between ions in plasmas tends to be smaller than
the bare parameter of (2). Furthermore, in the domain of
partial electron degeneracy, the effective couplings that involve

electrons are also reduced and one can (approximately) replace
T by an effective temperature T̃e that goes to Tq = 2EF /3 at
T = 0 and tends to T itself at very high temperature. A more
rigorous approach is to use a quantum temperature Tq instead
of 2EF /3, where Tq is determined from a classical map of
suitable quantum properties [46,47]

�̃ei = Ze2

aei T̃e

, T̃e =
√

T 2 + T 2
q . (5)

The use of the classical map Tq in �ee ensures that it reduces
correctly to rs at T = 0. For low-temperature applications in
classical maps near T = 0, the Coulomb interaction e2/ae

itself has to be corrected for diffraction effects associated with
the thermal de Broglie length of the electrons [46]. However,
such corrections are not needed for the regimes used in the
present study.

Using such an effective electron temperature in a screening
length λs , which depends on the density and T̃e, an effective
ion-ion coupling including screening can be given as [48]

�̃scr
ii = Z2e2

aiT̃e

e−ai/λs . (6)

This coupling parameter, which is always smaller than the bare
�ii , is a more realistic measure of the actual ionic coupling in
Yukawa fluids. The numerical value of λs depends on the
physical properties of the plasma under consideration, but a
Thomas-Fermi form is typically used [49].

The plasmas studied in astrophysics, in the laboratory,
or computationally involve temperatures and densities that
change by orders of magnitude as materials are heated,
ionized, and forced into compression or allowed to expand
(see Refs. [50–54] for several familiar examples). Thus one
needs the MIS Z over a wide variety of conditions, even
to identify the regimes accessed by the plasma in terms of
traditional plasma parameters; that is, the value of Z to be
used in (2)–(6) is poorly known. Indeed, the large variations
occurring in these MIS-dependent parameters highlight the
difficulty of plasma theory for partially ionized dense matter.
We display the behavior of these dimensionless parameters as
a function of the MIS Z.

In this study we focus on plasmas having just a single
element of nuclear charge Znuc. We study Be, Al, and Cu,
whose normal solid mass densities are, respectively, ρ0 =
1.85, 2.70, and 8.92 g/cm3. As an example of the complexity
of even this simple case, the top panel of Fig. 1 shows contours
of the MIS for Al over a large range of temperatures and
relative compression ρ/ρ0. The MIS is from More’s fit [55]
to the Thomas-Fermi MIS 〈Z〉, discussed in Sec. III C and
given in (19) below. Note that greater ionization occurs both
as the temperature increases and as the density increases
above ρ/ρ0 ≈ 1, where pressure ionization begins. Figure 1
also shows contours of � in the middle panel, where the
continuum electrons in an Al plasma exhibit strong quantum
effects at high density and low temperature. In the bottom
panel of Fig. 1, contours of the modified electron-ion coupling
parameter �̃ei are shown. Interestingly, the strongest electron-
ion coupling occurs at low temperatures near normal solid
density: Higher densities decrease interparticle separations
but increase the effective temperature [introduced in (5)].
Here we see an interesting effect of the MIS, which occurs
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FIG. 1. (Color online) Surface map of the Thomas-Fermi 〈Z〉
for Al as a function of temperature and relative density ρ/ρ0 (top);
surface map of �, measuring quantum effects, for electrons in Al
plasma, computed using the result from the top panel (middle); and
surface map of the electron-ion coupling parameter for Al plasma
computed using the result from the top panel (bottom).

explicitly in the factor Z and implicitly in both the mean
separation aei and the effective temperature. We see that the
electron-ion coupling is never very large because, if it were,
the plasma would recombine to a lower MIS value, thereby
decreasing the electron-ion coupling. That is, because (5)
refers to free-electron coupling to a composite ion of charge
Z, Z has a complicated temperature and density dependence,
here taken from the More fit. In Fig. 2 we plot contours of
the bare ion-ion coupling parameter �ii , again using (19)
given below, for all three metals investigated here. Contours
in these maps were chosen to reveal important modifications

FIG. 2. (Color online) Surface map of the ion-ion coupling
parameter for Be (top), surface map of the ion-ion coupling parameter
for Al (middle), and surface map of the ion-ion coupling parameter
for Cu (bottom). In all cases, the TF 〈Z〉 definition of (19) was used.

to standard formulas as the MIS varies with temperature and
density. When this coupling is strong, correlations among ions
produce oscillatory radial distributions at distances beyond a
Wigner-Seitz radius. The effect of this on the plasma electronic
structure is included in a statistical way in two-component
correlation-sphere models, discussed in Sec. III E.

III. FINITE-TEMPERATURE DENSITY FUNCTIONAL
MODELS AND MEAN IONIZATION STATE

DEFINITIONS

This section describes two distinct kinds of statistical
models based on DFT. Comprehensive accounts of DFT
concepts are widely available [20,21,32,56], while the review
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by Dharma-wardana and Perrot in [20] is specifically directed
to electron-ion plasmas.

A. Ion-sphere and correlation-sphere models

In both ion-sphere (IS) and correlation-sphere (CS) models
one nucleus is fixed at the origin and DFT is used to
obtain the surrounding electron density. In CS models the ion
densities are also self-consistently obtained via a classical DFT
equation identified to be a modified hypernetted chain equation
(MHNC). Being all-electron models, the total electron density
n(r) includes bound and free states. In IS models, the
surrounding ion distribution is assumed to vanish within the
Wigner-Seitz cell and is not specified outside the cell. That is,
other than the central nucleus, no other nuclei can be found
in the range r < ai . Correlation-sphere models use a large
correlation sphere and include many field ions as well as a
central nucleus within the CS. For a plasma at temperature
T > 0, IS models begin with the grand potential, expressed as
a functional of the electron density


[n(r),T ] = F0[n(r),T ] + Fxc[n(r),T ]

+
∫

d3r n(r){U [n(r)] − μe}. (7)

The first term in (7) represents the Helmholtz free energy of
noninteracting electrons evaluated at the correct interacting
density. The second term represents electron exchange and
correlation (XC) contributions to the free energy. In the third
term, U [n(r)] is the Coulomb energy per particle, which
includes the classical electrostatic energy of electrons with
the central nucleus with charge Znuce and with each other (the
Hartree term), viz.,

U [n(r)] = −Znuce
2

r
+ e2

2

∫
d3r ′ n(r ′)

|r − r′| . (8)

The thermodynamic potential is stationary with respect to
density functional variations

δ
[n(r),T ]

δn(r)
= 0. (9)

This Euler equation gives the equilibrium electron density n(r)
and the grand potential 
[n(r),T ]. The one-body potential
associated with (8), which satisfies the usual Poisson equation,
is obtained through this functional differentiation as

u[n(r)] = −Znuce
2

r
+ e2

∫
d3r ′ n(r ′)

|r − r′| . (10)

In some models, the electron chemical potential μe acts as a
Lagrange multiplier for the conservation of electron number
or, equivalently here, for overall charge neutrality, whereas in
others it is specified and another variable acts as a Lagrange
multiplier. We treat both cases in what follows.

Charge neutrality in IS models is used to specify zero
electric field beyond a distance ai and the second boundary
condition for the Poisson equation becomes

du

dr
= 0, r � ai. (11)

This choice gives rise to a muffin-tin picture of potentials
in the plasma. In a purely quantum mechanical scheme,

boundary conditions must be associated with the orbitals, i.e.,
bound states decaying exponentially and the continuum states
decaying to plane waves; the electrostatic boundary conditions
are needed to ensure overall charge neutrality of the Znuc

electrons in the IS.
Density functional theory equations yield the radial density

distribution n(r) of the Znuc electrons within this charge-
neutral fundamental cell. Result for the ion’s effective charge,
as well as other information such as the density of states of
continuum electrons, can be calculated. The prototype of this
class is the finite-temperature Thomas-Fermi (TF) algorithm of
Feynman, Metropolis, and Teller [57]. Thomas-Fermi theory
provides a basic comparison with improved ion-sphere models
and other improved models of dense plasmas. Below we
identify two MIS definitions within the context of TF theory.
The introduction of orbitals and the addition of exchange and
correlation interactions improve the standard TF description.
Orbitals give rise to bound-state shell structure and continuum-
state resonances and exchange-correlation interactions bring in
the many-body effects as an effective one-electron Kohn-Sham
potential. Liberman’s INFERNO model [17], the nonrelativistic
MUZE [52,58] code used here, and the relativistic PURGATORIO

[59] and PARADISIO [60] algorithms are all of this type and
they offer yet a third MIS definition.

The average-atom model and its different implementations
in the codes mentioned in the preceding paragraph are all
based on a spherical cell with one nucleus. A more general
approach would contain both electron and ion equations,
solved self-consistently, to yield electron and ion density
distributions. This approach has been implemented previously
by several authors within OFDFT [38–40] and in Kohn-
Sham formulations [41]. The ion subsystem obeys classical
statistical mechanics. Here we employ an approach developed
by Dharma-wardana and Perrot [20,61–63].

In the correlation-function-based DFT model of Dharma-
wardana and Perrot [20,61–63], one considers in principle
the entire volume of the plasma surrounding the nucleus at
the origin. Coupled DFT equations for the electron and ion
densities ne(r) and ni(r) are solved out to some distance Rc

(usually, ∼ 5–6 times larger than the radius ai), by which
point the correlations with the central nucleus have died off
and the densities of both species have approached asymptotic
mean values. This Rc is the radius of a different fundamental
cell, the CS, and we use that term to distinguish such two-
component DFT models. The major improvement obtained
are (i) the possibility of calculating electron bound states to
cover the full extent of their exponential decay, (ii) continuum
states to satisfy the Friedel sum rule, and (iii) inclusion of the
influence of neighboring ions on the electrons associated with
a particular nucleus. The neighboring ions introduce features
into the continuum density of states that result from multicenter
scattering [64]; these can be important when �ii is large and
Fig. 2 indicates that this is true for most of the temperature-
density region of interest to us.

Dharma-wardana and Perrot [61] found that the local-
density approximation, which works well for electrons, was
useless for treating the ion-ion correlations. They showed
that the ion distribution was better determined by using
the modified hypernetted chain equations [10] to describe
the nonlocal character of these interactions. It should be

063113-5



MURILLO, WEISHEIT, HANSEN, AND DHARMA-WARDANA PHYSICAL REVIEW E 87, 063113 (2013)

noted that the MHNC equation arises naturally in Ref. [61]
as a classical DFT equation via a functional derivative of
the free energy with respect to the ion density. For many
plasmas of interest it is found that the ion-ion pair correlation
function can be replaced by a simple-cavity model and this
simplification is known as the neutral-pseudoatom (NPA)
model [62]. In this approximation, the nucleus, the cavity,
and the associated electron cloud form a nearly neutral
object having many useful analytical properties. (The NPA
model of Blancard and Faussurier [65] introduces a different
treatment of ionic correlations.) In the NPA approach used
here, where the average density of free electrons is specified
as a boundary condition, one computes the average density
of plasma ions (and hence the Wigner-Seitz radius). This is
done self-consistently as the MIS is determined by assuming
that all plasma ions have this same net charge and that, in the
asymptotic regime, the total charge density vanishes.

For the NPA, we construct three MIS definitions analogous
to those of the orbital-based IS models. However, because of
the different boundary conditions for the IS and CS models,
two of the NPA definitions actually are the same and the third
yields a very similar MIS.

B. Electron exchange and correlation interactions

The electron exchange-correlation potential, calculated as
the functional derivative of the free energy Fxc[n(r),T ] with
respect to the electron density n(r) adds to the effective one-
body potential u[n(r)] of (10); this potential is given by

δFxc[n(r),T ]

δn(r)
≈ ux[n,T ]r + uc[n,T ]r , (12)

where we make the local-density approximation (LDA) in
the final step, as indicated by the suffix [· · ·]r . The separate
exchange and correlation potential energies (per particle)
ux[n,T ]r and uc[n,Tr ] for homogeneous plasmas have been
evaluated by Dharma-wardana et al., [66–68], Ichimaru et al.,
[69] and others [70–72]. Conclusions from these include the
following.

(i) Limiting, low- and high-temperature expressions are
well established for both ux[n,T ] and uc[n,T ]. The exchange
energy often has been approximated by a simple formula that
interpolates between these limits [73]; thus

ux[n,T ] = ux[n,0]

(
1 + 3

2�[n]

)−1

, (13)

with the T = 0 value ux[n,0] = −e2(3n/π )1/3 being Dirac’s
original expression. However, a form that is essentially exact in
all regimes and correctly handles the logarithmic divergences
in the zero-temperature limit is [67]

ux[n,T ] = ux[n,0] tanh(1/t)
N (t)

D(t)
,

N (t) = 1 + 2.8343t2 − 0.2151t3 + 5.2759t4, (14)

D(t) = 1 + 3.9431t2 + 7.9138t4,

where t = 1/�[n]. By comparison, the often used form (13)
may be in error by as much as 50% in the warm dense matter

(WDM) regime 1 < � < 10. We also note that, in this regime,
it is better to treat the XC contributions together because of
strong cancellations that occur in their sum; this is consistent
with a wide body of experience in developing and using
zero-temperature functionals. Parametrization covering both
exchange and correlation from T = 0 to finite T are available
from Ichimaru et al. [69] and Perrot and Dharma-wardana [68].
The exchange potential given by (14) is the form that we
will use here for ion-sphere models, although other forms
have been used for average-atom models previously [58].
The correlation-sphere models reported here use the XC
parametrization of Perrot and Dharma-wardana [68].

(ii) At T = 0 the quantity |uc[n,0]/ux[n,0]| does not
exceed 0.3 for normal solid-state densities and it is even
smaller at higher densities. For T < EF , exchange dominates
over correlation, but a crossover occurs around � = 1 and as
the plasma becomes hotter, exchange becomes unimportant.

(iii) At very low temperatures � 	 1, uxc[n,T ] is not a
monotonic function of temperature. Also, the local degeneracy
is high in high-density regions near ion centers and low in low-
density regions at the edges of ion spheres. Therefore, accurate
parametrizations covering all regimes and including important
cancellations between exchange effects and correlation terms
should be used. That is, the combined quantity uxc[n,T ] should
be used.

(iv) At all densities the magnitude of uxc[n,T ] (itself a
negative quantity) decreases monotonically with temperature
for � < 1/2. Thus, for studies of warm and hot dense matter,
both exchange and correlation at finite T are needed; the zero-
temperature quantity uxc[n,0] is of uncertain validity at best.

These stand in sharp contrast to those applicable to cold,
compressed solids [74,75], where T = 0 values are adequate.
This conclusion is reinforced by Fig. 3, which is a surface map
of |uxc[n,T ]| from Perrot and Dharma-wardana [67] and used
in the MUZE and NPA calculations of this study. Curvature
in the lines of constant |uxc[n,T ]| highlight the temperature
dependence of uxc. Further, for the range of electron densities
explored here (1022 � ne � 1025 cm−3 and 0.544 � rs �

FIG. 3. (Color online) Surface map of the absolute magnitude of
the finite-temperature exchange-correlation interaction of Ref. [67],
in units of eV, for the homogeneous electron gas. Contour lines denote
(from left to right) |uxc| = 0.1, 1.0, and 10 eV.

063113-6



PARTIAL IONIZATION IN DENSE PLASMAS: . . . PHYSICAL REVIEW E 87, 063113 (2013)

5.44 a.u.), exchange-correlation interactions can reduce the
chemical potential of plasma electrons by several eV and
reduce the MIS by a half unit or more (see Tables II–VII
of Sec. IV). The consequences of the exchange-correlation
contribution will be explored in Sec. IV.

C. The OFDFT and the Thomas-Fermi model

In the TF model [21,56] two approximations are made to

[n(r),T ]. (i) The free energy of noninteracting electrons
F0[n(r),T ] is treated in the LDA F0[n|r ,T ], wherein electronic
quantities for the inhomogeneous system are taken to be
those of the homogeneous system at the local value of the
density, viz., n = n|r . (ii) In the original TF model, the XC
contribution to the kinetic energy, as well as to the potentials,
is neglected since Fxc[n,T ] is set to zero. The key advantage
of the TF model is that only an equation for the density needs
to be solved. Such models are realizations of the original
Hohenberg-Kohn-Mermin [18] formulation of DFT rather than
the Kohn-Sham approach discussed below.

The kinetic-energy contribution in TF models is

FT F
0 [n,T ] =

√
2e2

πa0

(
T

e2/a0

)5/2

×
∫

d3r

{
ξ [n]I1/2(ξ [n]) − 2

3
I3/2(ξ [n])

}
,

(15)

where

Iα(t) =
∫

dy
yα

1 + exp(y − t)
(16)

is the Fermi-Dirac integral function and

ξ [n(r)] = −{U [n(r)] − μe}/T . (17)

The approximation (15) is accurate at high density. The Euler
equation for this model leads to the usual finite-temperature
TF result for the local density,

n(r) =
√

2a3
0

π2

(
T

e2/a0

)3/2

I1/2[ξ (r)]. (18)

Once the above (nonlinear) equations are solved and the
chemical potential μT F

e determined through iteration, a MIS
can be computed for the ion in the IS. The simplest prescription
involves only the density at the sphere’s edge where, because
of boundary conditions, electrons experience no electrostatic
forces:

〈Z〉T F = 4πa3
i

3
n(ai)

= 4
√

2

3π

(
ai

a0

)3(
T

e2/a0

)3/2

I1/2

(
μT F

e

T

)
. (19)

Feynman et al. [57] constructed the first hot dense matter EOS
using an electron pressure consistent with this estimate of the
free-electron density and some modern EOS schemes [76] still
do this. (Note, however, that the remaining thermodynamic
quantities, such as the energy, are not constructed from the
edge density.)

An alternative MIS definition for the TF model involves
electrons that have locally negative total energy [39]. One first
determines their density

nT F
b (r) =

√
2a3

0

π2

(
T

e2/a0

)3/2

×
∫ −U (r)/T

0
dy

y1/2

1 + exp[y − ξ (r)]
(20)

and then sums all such bound electrons within the ion sphere
to obtain

Z∗
T F = Znuc −

∫
d3r nT F

b (r). (21)

It is easy to see that Z∗
T F > 〈Z〉T F because not all of the

enhanced density at small r values represents electrons with
negative total energy. This is illustrated in Fig. 4 for Al at
normal solid density and 30 eV. Thus, counting these additional
unbound electrons increases the MIS by about 20% (see
Sec. IV for details).

Attention has been given to adding XC interactions to
the original finite-T TF scheme [56,77]. It is worthwhile
to note subtleties that arise when one considers the MIS
definitions for TF calculations (TFXC) that include these
terms. Our first Thomas-Fermi MIS definition 〈Z〉T F uses
the fact that Coulomb forces vanish at r = ai and hence
that all electrons there are free. The quantity uxc[n(ai),T ],
however, does not vanish at the edge of this sphere, but we
reestablish the condition that all electrons at r = ai are free,
viz. nT Fxc

b (ai) = 0, by identifying this boundary value of uxc

as the exchange-correlation contribution uxc to the chemical
potential of the interacting electron gas outside the cell. Since
uxc < 0, it follows that 〈Z〉T Fxc < 〈Z〉T F . Our second TF MIS
definition Z∗ identifies electrons with negative total energy,

FIG. 4. (Color online) Behavior of bound (negative-energy) and
free (positive-energy) electron densities, in atomic units, within
an IS, for Al at normal solid density and T = 30 eV. There are
fundamental differences between orbital-based and OFDFT models,
here illustrated by MUZE and TF calculations. In particular, with
orbitals, the bound electron density can extend beyond the sphere and
the orthogonality of bound and continuum orbitals imposes obvious
structure on the free-electron density near the nucleus.
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viz.,

nT Fxc
b (r) =

√
2a3

0

π2

(
T

e2/a0

)3/2

×
∫ −U ′(r)/T

0
dy

y1/2

1 + exp[y + uxc(r) − ξ (r)]
,

(22)

where now −U ′(r)/T = −[U (r) + uxc(r)]/T . However, as
defined in DFT, the exchange-correlation functional includes
not only true potential-energy terms arising from XC, but
also the part of the kinetic energy neglected when the
true free-energy functional is replaced by a functional of
noninteracting particles taken at the interacting density. Thus,
in both definitions, we see an ambiguity arising from the
fact that kinetic- and potential-energy contributions cannot
be disentangled in the context of DFT.

With regard to our MIS definition (21) for TF models, we
see by the negative sign of uxc(n,T ) at all r values that it adds
to the nuclear attraction; thus the fraction of bound electrons
is increased, leading to the result Z∗

T Fxc < Z∗
T F , obtained

by substituting (22) into (21). This conclusion is consistent
with MIS calculations reported in Ref. [77], wherein an
approximate, but different, T -dependent exchange interaction
was used.

D. Orbital-based DFT and the MUZE model

With XC interactions included in the TF model, further
improvements result from adding gradient corrections to the
noninteracting free energy F0[n,T ]. Such models, which
attempt to retain n(r) as the basic variable, fall into the category
of orbital-free DFT [35–37]. New, more reliable forms for the
kinetic energy as a functional of the electron density ne(r)
have recently been developed [78]. Thus OFDFT methods
have been overshadowed by finite-temperature orbital-based
DFT models. Kohn and Sham [19] presented a solution to the
kinetic-energy problem (extendable to finite T as well) through
the introduction of a special set of one-electron orbitals {ψs(r)}
that enables the noninteracting energy to be computed exactly
if the exact XC free-energy functional is known. These orbitals
satisfy a one-body Schrödinger equation[

− h̄2

2m
∇2 + U (r)

]
ψs(r) = εsψs(r). (23)

The orbitals are constrained to be orthogonal via Lagrange
multipliers, which are the Kohn-Sham (KS) eigenvalues. The
ground-state density of an N -electron system is constructed
from the sum of the orbital densities |ψs(r)|2 having the N

lowest eigenvalues. This scheme exhibits shell structure that
is missing in OFDFT models.

Mermin [79] extended the theory to nonzero temperatures.
Here bound-state solutions, with εs < 0, again give rise to
shells (although high plasma pressure severely limits the
number of bound states) and continuum-state solutions εs � 0
yield distorted plane waves. The eigenvalues εs , the Lagrange
multipliers in the KS scheme, differ substantially from true
eigenenergies. Similarly, the KS orbitals are not true electronic
states. However, in most applications εs are used as energy
eigenvalues and ψs(r) are used as one-electron orbitals without

further discussion. The electron density n(r) is constructed
from a sum over the KS orbitals and Fermi occupation
probabilities

n(r) =
∑

s

f (εs,μe)|ψs(r)|2, (24)

f (ε,μ) = {1 + exp[(ε − μ)/T ]}−1. (25)

Mermin noted that in the high-density limit, the TF form of
the electron density is regained.

In the present work, we use the code MUZE [52,58], which is
an IS model, to explore the importance of both orbitals and XC
interactions for improving Thomas-Fermi estimates of the MIS
in ion-sphere models. For a specified nuclear charge, tempera-
ture, Wigner-Seitz radius, and choice of exchange-correlation
interaction, MUZE computes KS orbitals and eigenvalues from
the nonrelativistic, single-electron Schrödinger-like equation[

− h̄2

2m
∇2 + U (r) + uxc[n(r),T ]

]
ψs(r) = εsψs(r). (26)

The electron chemical potential μMUZE
e is found by an

iteration involving (24), from the requirement of overall charge
neutrality for the ion sphere.

One benefit of an orbital-based DFT is its treatment of
the largest portion of the kinetic-energy operator. Relative
to OFDFT formulations, this circumvents the need for ap-
proximate gradient corrections to the kinetic energy F0[n,T ]
that are often used to obtain reasonable cusps near the
nuclei [21,35–37,56]; however, gradient corrections are still
necessary in the exchange-correlation potential. Orbitals also
lead to new physics not occurring in the TF model. Because
MUZE chooses boundary conditions in which the exponentially
decaying tails of bound orbitals can extend beyond the IS
radius, a portion of the density at r = ai (and beyond) actually
represents electrons with negative energy, i.e., bound electrons
not entirely confined to the IS. This phenomenon is illustrated
in Fig. 4, which shows bound and continuum densities for Al
at normal solid density and 30 eV. The contrasting behavior
of (orbital-free) TF and (orbital-based) MUZE densities is
evident. For this reason, comparisons of the orbital-based MIS
expression

ZIS
MUZE = 4πa3

i

3
n(ai) (27)

and the TF quantity 〈Z〉T F are of limited value because the
density in (27) includes an unspecified contribution from
bound (negative-energy) electrons.

In contrast, an analog of Z∗
T F can be obtained by summing

the density of negative-energy electrons within the ion sphere
(model A of Ref. [17]). Using only the few bound orbitals
contained in the summation of (24), one identifies the bound
electron density nb(r). Hence we have

Z∗
MUZE = Znuc −

∑
εs<0

{
ω(εs)f (εs,μe)

∫
IS

d3r|ψs(r)|2
}
,

(28)

where now the sum is over energy states and ω is the
degeneracy. Any bound electron density outside the ion sphere
is excluded.
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When a bound state is pressure ionized and moves into the
continuum, the resulting resonance electrons close to the edge
of the continuum retain much of their bound-state character
and contribute narrow peaks to the continuum density of states
[35,55,59,64]. Although a proper treatment of new resonances
ensures that the plasma pressure varies smoothly [80–82], Z∗
for orbital-based, ion-sphere models can undergo an abrupt
unphysical increase. Various ideas have been proposed to
overcome this behavior [8], which is seen and discussed in
Sec. IV.

As regards this second MIS definition, if instead of a
summation of bound-state orbital terms an energy integration
is performed with respect to the continuum KS orbital terms
in (24) (s → ε,ν, with ν representing any additional quantum
numbers needed for specificity), one can reorder integrations
to obtain

Z∗
MUZE =

∫
d3r

{∫ ∞

0
dεf (ε,μe)

∑
ν

ων |ψε,ν(r)|2
}

=
∫

dεf (ε,μe)

[∫
d3r g(ε,r)

]
, (29)

where g(ε,r) is an effective local density of states (DOS) per
unit volume. If we replace this effective DOS in (29) by g0(ε),
the DOS for an ideal gas

g(ε,r) → g0(ε) = 1

2π2

(
2m

h̄2

)3/2√
ε, (30)

we obtain a MIS having the same form as 〈Z〉T F in the
sense that the MIS is obtained from a Fermi-Dirac distribution
with no interactions; however, this distribution involves the
chemical potential of an orbital-based calculation in place of
μT F

e , viz.

〈Z〉MUZE = 4
√

2

3π

(
ai

a0

)3(
T

e2/a0

)3/2

I1/2

(
μMUZE

e

T

)
. (31)

For orbital-based ion-sphere models, the difference Z∗ − 〈Z〉
is an integral measure of nonideal features in the computed
DOS. Once a MUZE solution is found, one can construct
the three MIS values 〈Z〉MUZE, Z∗

MUZE, and ZIS
MUZE using,

respectively, (31), (29), and (27).

E. Including ion correlations: Coupled-density models

Here we sketch the implementation of KS models that
include ionic correlations beyond the IS, as developed by
Dharma-wardana and Perrot [61]. Other related models by
Ofer et al. [38] and Zakowicz et al. [39] employ orbital-free
methods for the electron density and correlations within the
ion density, but these will not discussed further here.

Our calculational scheme begins with a correlation sphere
of radius Rc ∼ 5ai–8ai , filled with a homogeneous electron
fluid of specified temperature T and average electron density
ne; hence the electron chemical potential is known. A charge-
neutralizing ion fluid is also included. The choice of a
correlation sphere radius Rc of 5ai–8ai is chosen to be large
enough to be greater than typical ion-ion correlation lengths
for a given problem. Even at Rc = 5ai the cell is two orders
of magnitude more voluminous than that of the IS model.
Electron correlations die much faster than ion correlations and

are easily contained in the CS. A nucleus of charge Znuce is
placed at the origin in the fluid, pulling electrons around it
and causing a local modification �nf (r) of the free-electron
density in the CS; bound states may form, causing an additional
local enhancement nb(r). Thus the nucleus acquires some
mean ionization Z due to population of bound states and free
states. This Z is taken as a trial value for the effective charge of
field ions, whose mean number density becomes ni = ne/Z.
In effect, in this algorithm Z is the Lagrange multiplier that
enforces charge neutrality. This interpretation of the MIS was
first discussed in Ref. [61] in the context of hydrogen plasmas.
The field ions are allowed to interact with other charges and
form a correlated equilibrium distribution about the central
nucleus. The coupled Euler equations for the electron and ion
subsystems arise from the stationary property of the total free
energy F [ne(r),ni(r)] with respect to functional derivatives
of the two densities. The electron-subsystem Euler equation
δF/δne(r) = 0 leads to a Kohn-Sham-like equation, while
the ion-subsystem Euler equation δF/δni(r) = 0 leads to
a MHNC equation. The equations are coupled through the
Lagrange multiplier Z and via electrostatic and correlation
potentials. Iterative solution of the coupled equations lead
to the thermodynamic ne(r) and ni(r) profiles. The charge-
density profiles established around Znuc are

qe(r) ≡ −enegei(r)

= −e[ne + �nf (r) + nb(r)], (32)

qi(r) ≡ Znuceδ(r) + Zenigii(r)

= Znuceδ(r) + Ze[�ni(r) + ni], (33)

where gei(r) and gii(r) are the electron-ion and ion-ion pair-
distribution functions and �ni(r) represents the modification
of the ion density from the bulk value. The calculation also
yields the chemical potential of the ions.

The computation is begins with trial electron and ion density
profiles. The value of Z and the associated Wigner-Seitz radius
bi , which is the trial value of ai , are adjusted at each iteration
using the calculated nb(r) and �nf (r), while {Rc,T ,ne}
are held fixed. Solutions to the coupled DFT equations for
the densities are iterated until, at r = Rc and beyond, they
yield a stationary value for the ratio ne/ni = Z, which we
take to be the definition of the mean ionization 〈Z〉. The
chosen CS is deemed large enough if both pair-distribution
functions have tended to unity and if all bound-state orbitals
have decayed exponentially while the continuum solutions
have become phase-shifted free-electron orbitals. Consistency
requires that at Rc the phase shifts of the continuum orbitals
satisfy the Friedel sum rule, adding up to the value of the mean
ionization 〈Z〉.

F. Neutral pseudoatom model

The above coupled-density model, which has been im-
plemented in several investigations, provides a systematic
method with only a minimum of assumptions. However, a
simpler version, when applicable, enables one to decouple
the KS (electron) calculation from the ion profile calculation
so that the electron density can be addressed separately
[20,61–63], using a very simple model for the ion profile.
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This simplification is based on the concept of the neutral
pseudoatom, i.e., a single nucleus and an associated cavity
embedded in a responsive electron gas with a compensating
uniform ionic background of charge density qi . Properties of
the NPA model are such that, to a good approximation, the
total density of electrons in the plasma is the superposition of
the pseudoatom densities surrounding individual ions.

To construct a neutral pseudoatom, a spherical cavity of
radius bi is made in the positive ion background; an amount
of charge �Z = 4πb3

i qi/3 is thereby scooped out. A nucleus
Znuc is placed at the cavity’s center and an inhomogeneous
electron charge density qe(r) = −en(r), determined from KS
orbitals, is established in response to this nucleus and the static
positive background with its spherical cavity. Effectively, the
true ion-ion pair distribution function has been replaced by an
approximation

gii(r) = θ (r − bi), (34)

where θ (x) is the usual step function. This cavity plus its
contents is similar to the Wigner-Seitz sphere used in ion-
sphere models; however, we emphasize that the charge density
qe(r) belongs not only to the central nucleus, but also to the
charge inhomogeneity associated with the cavity. However,
this is a small perturbative effect compared to that of the central
nucleus. Hence, as detailed by Perrot [83], linear response
theory can be used to correct for the presence of the cavity
since the cavity potential induces a density displacement. Thus
the electron density attributable to the NPA is given by

qe(r) = −e[ne + �nf (r) − �n
cavity

f (r) + nb(r)], (35)

with free- and bound-state contributions analogous to the
terms in (32). The NPA calculation uses the CS so its
boundary conditions (r = Rc) for KS orbitals are the same
as those applied to the full coupled-density model. With
a self-consistent NPA electron density in hand, the free-
electron excess �Ñf (r) = �nf (r) − �n

cavity

f (r) can be used
to determine a pair potential for evaluating the ion-ion gii(r)
obtained from a modified HNC equation, but this feature of the
NPA model is not needed when its MIS value is determined.

The KS orbital equation for the electrons (26) must be
solved iteratively for each orbital, with the cavity radius bi

being adjusted so that at each step 4πb3
i ne/3 = Z, where

the effective charge Z is that of the nucleus Znuc minus
the part of all its bound electrons that can be attributed to
a single ion. When any of the bound states extend beyond
the cavity, it is necessary to construct a method of sharing
these delocalized or hopping electrons so that only a suitable
fraction of them are attributed the central nucleus. To this end,
Perrot [62] introduced a cutting function f (r) that applies to
the delocalized states. This function, which integrates to unity,
was constructed by studying results from full two-component
DFT calculations and with it one expresses the effective
number of bound electrons as

νb =
∫

CS

d3rf (r)nb(r), (36)

where the integration is over the volume of the CS (effectively,
all space since all bound states have decayed exponentially by
r = Rc). Similarly, the number of electrons that contribute to
a quasibound mobility edge, as in disordered semiconductors,

can be written as

νh =
∫

CS

d3r[1 − f (r)]nb(r). (37)

These electrons cannot be assigned to any one ion center. When
the number of quasibound electrons is substantial, say, νh > 1,
then the coupled electron-ion DFT equations should be used
instead of their approximate, NPA version. Note that only a
part of the total bound electrons nb is included in νb since
the hopping electrons are not ascribed to any ion center but
belong to the ion distribution. The theory of hopping electrons
in plasmas has been discussed by Dharma-wardana and
Perrot [63].

Equations for the NPA are iterated until self-consistency is
obtained. At that point, the quantity

〈Z〉NPA = Znuc − νb (38)

is identified as the MIS of the neutral pseudoatom and bi

converges to ai , the computed radius of the Wigner-Seitz
sphere for the central ion. We may compare the correlation-
sphere approach with the ion-sphere model MIS value of 〈Z〉
by noting that the MIS sets the ratio of uniform electron and
ion densities at the edge of the CS, i.e., 〈Z〉NPA = n(Rc)/ni ,
while the ion-sphere model uses the values at the edge of the
ion sphere, as in Eq. (27).

All the models, including the NPA, examined in this paper
are average-atom models. There is just one species of field ions,
with the MIS charge Z. The resulting 〈Z〉NPA need not be an
integer. A simple extension of the average-atom model is to
consider the plasma to consist of several stages of ionization
Zi with composition fractions xi . Here Zi are integers, as
in an Al plasma with Z1 = 3, Z2 = 2, and Z3 = 3 with an
average-atom value that is a nonintegral quantity between 1
and 3. Then the average-atom mean ionization is usually found
to be a simple approximant to the multispecies estimate of the
mean ionization given by

〈Z〉 =
∑

i

xiZi. (39)

In the multispecies DFT calculations [8] using the NPA model
or CS model, the equation of state is also computed and the
composition fractions are determined by a minimization of the
total free energy as a function of xi . Thus an aluminum plasma
at a compression of 0.507 (i.e., about half the normal density)
and at T = 1.5 eV is found to have a mean ionization state of
〈Z〉=1.478. This fractional mean value is found to correspond
to a multispecies plasma of Al1+, Al2+, and Al3+ with
composition fractions 0.614, 0.294, and 0.092, respectively.
These numbers are obtained from the multispecies extension
of the NPA model as described in [8]. The three types of
ions and electrons provide a four-component plasma (i = e,
Al1+, Al2+, and Al3+) with ten different pair distribution
functions (PDFs) gij (r) that were determined via a set of
coupled MHNC equations and the Kohn-Sham equations. This
is a highly degenerate system that can be treated by AIMD
methods. However, to date AIMD results are not available to
test these calculations and the PDFs, electrical conductivities
etc., predicted by [8]. Judging by previous experience, we
are confident that when such results become available, good
agreement with AIMD would be found.
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TABLE I. Equations for MIS calculations in different models.

Model TF MUZE NPA

Cell IS IS CS
〈Z〉 (19) (31) (38)
Z∗ (21) (29)

The results from the average-atom models and from the full
multispecies approaches agree unless the plasma is close to
ionization thresholds and phase transitions. The multispecies
DFT model establishes the thermodynamic character of 〈Z〉,
already familiar from the simplest ionization models of Saha
theory where particle interactions are ignored.

IV. MEAN IONIZATION STATE CALCULATIONS
FOR Be, Al, AND Cu

We now present and discuss mean ionization results for the
different models described in Sec. III. It is helpful, first, to
collect the equations used for the MIS definitions in various
models; we do this in Table I. With regard to recent related
work of Sterne et al. [81] using PURGATORIO, the notational
connections are their ZWS ↔ ZIS

MUZE, their Zbackground ↔
〈Z〉MUZE, and their Zcontinuum ↔ Z∗

MUZE. Notation in most of
the cited NPA papers of Perrot and Dharma-wardana is such
that their Z ↔ 〈Z〉NPA.

We studied the metals Be, Al, and Cu under temperature
and density conditions of contemporary laboratory interest.
Tables II–VII list results computed for a representative set of
points in the WDM regime. Material densities are expressed as
compressions relative to normal solid density. (Again, for Be,
Al, and Cu, respectively, ρ0 = 1.85, 2.70, and 8.92 g/cm3.)
For each table, the ion density ni , the Wigner-Seitz radius ai ,
and the ion-ion coupling factor (computed using 〈Z〉NPA) are
listed. The first row identifies the particular model and the
second whether the calculation includes exchange-correlation
interactions [as given in (14)]. Entries in rows 3–5 are the
electron chemical potential μe and the MIS values 〈Z〉 and
Z∗. Given the statements in Sec. II, we pay particular attention
here to differences in μe values obtained from the different
models. In each table, reading from left to right reveals the
effects of going beyond basic TF to include (i) orbitals, (ii)
orbitals plus exchange-correlation interactions, (iii) orbitals,
exchange-correlation interactions, and a larger fundamental
cell.

Along the model sequence TF → MUZE (no XC) → MUZE

(recall that this an IS model), one can see that each of the three
tabulated quantities decreases monotonically as first orbitals
and then orbitals with exchange-correlation interactions are

TABLE II. Mean ionization of Be: ρ/ρ0 = 1.0 and T = 10 eV,
with ni = 1.24 × 1023 cm−3, ai/a0 = 2.32, and �NPA

ii = 4.63.

DFT model TF MUZE MUZE NPA

XC no no yes yes
μe (eV) 5.06 4.72 3.39 7.77
〈Z〉 1.73 1.69 1.53 2.00
Z∗ 2.17 2.00 2.00

TABLE III. Mean ionization of Al: ρ/ρ0 = 0.1 and T = 10 eV,
with ni = 6.03 × 1021 cm−3, ai/a0 = 6.44, and �NPA

ii = 2.14.

DFT model TF MUZE MUZE NPA

XC no no yes yes
μe (eV) −25.0 −26.2 −27.5 −26.2
〈Z〉 2.53 2.26 1.98 2.25
Z∗ 3.01 2.52 2.27

introduced. Values of 〈Z〉 will be close when electron degen-
eracy parameters computed by a pair of models are about the
same and, for small differences, properties of the Fermi-Dirac
integrals yield the relation �〈Z〉 ≈ (�ηe/2) I−1/2(ηe). If one
considers only the values of 〈Z〉, the effects of orbitals and
exchange-correlation interactions tend to be comparable; in
contrast, if one considers instead only the Z∗ values, in all
cases orbitals have the larger effect. It is the latter result that is
consistent with expectations raised in Sec. III.

It is reassuring that, since the same exchange-correlation
interaction energy is used, the values of Z∗

MUZE and 〈Z〉NPA

usually are very close. In light of comments made above,
this means that νh is very small and that the NPA model
is a good approximation of the full two-component DFT
model. However, it is disconcerting that often there are
large differences between the corresponding electron chemical
potentials. There is, however, a straightforward explanation
that we mentioned earlier: In the NPA model and as required by
KS theory [19,21], the chemical potential is the noninteracting
value at the interacting homogeneous electron density that
prevails in the bulk of the plasma. That is, μe is fixed by the
electron density n(Rc) specified at the edge of the correlation
sphere. However, for orbital-based ion-sphere models such as
MUZE, the density at which μe is established is actually not
that of a homogeneous interacting electron gas: The central
ion’s influence usually is still felt at the boundary r = ai ,
as evidenced by KS orbitals not yet having attained their
asymptotic values. Interestingly, this problem does not arise
in the orbital-free TF model since, at r = ai , there are no
electrons with negative total energy and there is no residual
influence of the central ion on electrons with positive total
energy.

Figures 5–8 reveal additional MIS trends and information.
In Figs. 5–7 we show computed values of the MIS and ηe

for a wide range of temperatures for each of the metals
Be, Al, and Cu at normal solid density. For Be and Al, the
temperature dependence of MIS values shown in Figs. 5 and
6 is smooth and the results for NPA and MUZE tend to lie
somewhat lower than those for TF and MUZE no XC. Here
again we see the expected effect on the MIS as first orbitals

TABLE IV. Mean ionization of Al: ρ/ρ0 = 1.0 and T = 10 eV,
with ni = 6.03 × 1022 cm−3, ai/a0 = 2.99, and �NPA

ii = 8.30.

DFT model TF MUZE MUZE NPA

XC no no yes yes
μe (eV) 2.61 1.10 −0.77 2.76
〈Z〉 2.96 2.64 2.28 3.02
Z∗ 4.00 3.11 3.02
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TABLE V. Mean ionization of Al: ρ/ρ0 = 1.0 and T = 30 eV,
with ni = 6.03 × 1022 cm−3, ai/a0 = 2.99, and �NPA

ii = 5.60.

DFT model TF MUZE MUZE NPA

XC no no yes yes
μe (eV) −37.7 −40.5 −44.9 −37.4
〈Z〉 4.26 3.93 3.42 4.30
Z∗ 5.18 4.78 4.16

and then orbitals plus exchange-correlation interactions are
added to the ion-sphere model. The exception is Cu, where
Fig. 7 shows that Z∗

MUZE drops abruptly by several charge
states from a value of 11 at temperatures near 10 eV. This
anomalous and unphysical behavior is due to the way this
MIS apportions states that are continuum resonances at low
temperature but evolve to bound 3d orbitals as the temperature
and hence the core charge increases. The abrupt change is not
evident in MUZE values of 〈Z〉 or in the corresponding values
of ηe, both of which vary smoothly. In the bottom panels
of Figs. 5–7 the common trend of smaller differences in ηe,
between MUZE and NPA, as the temperature rises, confirms the
increased reliability of ion-sphere models as electron degen-
eracy, Coulomb coupling, and exchange-correlation effects all
decrease.

Figure 8 highlights the effects of pressure ionization in
plots of mean ionization (MUZE) versus density for Al and
Cu at T = 30 eV. The trend in Z∗ is, first, one of decreasing
ionization with increasing density, interrupted by small jumps
when outer orbitals become pressure ionized. Later, large
jumps occur in the region of increasing ionization when core
orbitals are pressure ionized. As above, 〈Z〉 follows the general
trend of Z∗, but without near discontinuities. Here three
points are noteworthy. (i) This behavior of first decreasing
and then increasing ionization vs density occurs over a
modest range of plasma temperatures, as shown qualitatively
by the TF values of 〈Z〉 for Al (at 20 � T � 40 eV) that
are plotted in Fig. 1. (ii) In ion-sphere models, large MIS
differences |Z∗ − 〈Z〉| signify important resonant structure in
the continuum DOS. (iii) Quite similar, nearly discontinuous
ionization behavior has been published for gold and aluminum
at low temperatures T � 10 eV using the NPA model [9].
Evidently, the pressure ionization jumps shown in Figs. 7
and 8 are a possible feature of all orbital-based average-atom
models.

Figure 9 shows the run of the different MIS values computed
by MUZE (exchange-correlation interactions included) versus
temperature for Al at normal solid density. As the temperature
drops, we see a growing difference between 〈Z〉 and the third
MIS quantity ZIS

MUZE [Eq. (27)]. Because that difference is

TABLE VI. Mean ionization of Al: ρ/ρ0 = 10.0 and T = 30 eV,
with ni = 6.03 × 1023 cm−3, ai/a0 = 1.39, �NPA

ii = 9.44.

DFT model TF MUZE MUZE NPA

XC no no yes yes
μe (eV) 72.0 67.0 60.6 48.9
〈Z〉 5.67 5.25 4.70 3.80
Z∗ 7.40 4.50 3.81

TABLE VII. Mean ionization of Cu: ρ/ρ0 = 1.0 and T = 30 eV,
with ni = 8.41 × 1022 cm−3, ai/a0 = 2.67, and �NPA

ii = 15.3.

DFT model TF MUZE MUZE NPA

XC no no yes yes
μe (eV) −13.8 −16.2 −21.8 −13.6
〈Z〉 6.18 5.79 4.93 6.72
Z∗ 8.08 6.74 5.79

a measure of bound electron density at r = ai , we have yet
another indication that an ion sphere is not a large enough
fundamental cell for determining certain properties of strongly
coupled systems. Figure 9 (bottom panel) shows the run of
〈Z〉 versus temperature, as determined by the three ion-sphere
models, for Cu at normal solid density. For comparison, we
also plot NPA results. These curves illustrate the sensitivity
of this MIS to the computed differences in electron chemical
potentials.

To illustrate MIS sensitivity to the exchange-correlation
potential, in Fig. 10 we plot 〈Z〉 values for Al, as calculated by
MUZE with different forms of uxc[n,T ], for two temperatures

FIG. 5. (Color online) Plots of mean ionization (top) and electron
degeneracy ηe (bottom) for Be at normal solid density, versus
temperature, as determined by DFT models discussed in the text:
Thomas-Fermi (TF), MUZE without exchange-correlation interac-
tions (MUZE no XC), MUZE with exchange-correlation interactions
(MUZE), and neutral pseudoatom (NPA).
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FIG. 6. (Color online) Same as in Fig. 5, but for Al at normal
solid density.

and a range of densities. At T = 1 eV, 〈Z〉 is practically
independent of the temperature or the exact form of uxc,
confirming the recent AIMD results of Faussurier et al.
[84]. However, at T = 30 eV, the two temperature-dependent
formulations of the exchange-correlation interaction both lead
to a lower 〈Z〉 than that corresponding to the T = 0 potential
that was used, for example, in Ref. [59]; also, values with
the Ichimaru-Iyetomi-Tanaka formulation [69] lie closer to
the T = 0 result than do those with the formulation by Perrot
and Dharma-wardana (used in the other calculations reported
herein) [71]. We also note the interesting result that 〈Z〉 here
decreases with temperature at above solid densities.

We conclude this section with some comments on the TF
model. In general, TF results for (isolated) neutral atoms
(at T = 0) are expected to be better for heavier elements
because a greater fraction of the electrons have large principal
quantum numbers and so are less localized; hence the uniform
density approximation of F0[n,T ] is more accurate. For cool
to warm (say, T � 10 eV) dense matter, data plotted in
Figs. 5–7 suggest a more complicated trend: The TF values
of Z∗ are reasonably close to those of the orbital-based
DFT models for Be, but the relative agreement worsens
as the nuclear charge Znuc increases. As Fig. 3 illustrated,
exchange-correlation interactions are more important at low
temperatures. However, by comparing the Z∗ values plotted
here for all three ion-sphere models, we see that in fact orbitals

FIG. 7. (Color online) Same as in Fig. 5, but for Cu at normal
solid density.

have a relatively greater effect at low temperatures, while
exchange-correlation interactions have relatively greater effect
than orbitals at high temperatures. Such results suggest caution
when applying conventional wisdom to plasmas having partial
ionization and partial degeneracy. There also is a trend, most
apparent in Fig. 5, where TF theory overestimates the more
accurate values of Z∗ for low ionization, but underestimates
them for high ionization. Finally, the tabulated results show
that 〈Z〉T F (the simplest MIS calculation) sometimes turns
out to be close to Z∗

MUZE and 〈Z〉NPA. This situation results
from a partial cancellation of two effects: (i) the enhanced
density of continuum electrons counted in Z∗

MUZE and 〈Z〉NPA

and (ii) the enhanced binding due to exchange-correlation
effects. Unfortunately (see Table VI and Fig. 8), such fortuitous
agreement disappears at the densities of compressed solids,
where pressure ionization of orbitals is significant.

V. X-RAY THOMSON SCATTERING AS A PROBE
OF MEAN IONIZATION

X-ray Thomson scattering (XRTS) is an important di-
agnostic for a variety of hard and soft condensed-matter
systems. X-ray Thomson scattering also has the promise to
provide useful information about dense plasmas that cannot
be obtained otherwise [85] due to their short existence.
Mean ionization state concepts are central to understanding
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FIG. 8. (Color online) Mean ionization values Z∗ and 〈Z〉, as
calculated by MUZE, for Al (top) and Cu (bottom) at T = 30 eV,
versus density. See the text for a discussion of abrupt jumps in Z∗.

dense-plasma XRTS and here we consider these experiments
in the context context of the MIS.

A popular formulation of XRTS by electrons in plasmas and
liquid metals is due to Chihara [86], where the XRTS cross
section per nucleus, differential in frequency, and direction of
scattered radiation is

d2σ

d
f dω
= dσT h

d
f

kf

ki

Stot
ee (k,ω). (40)

Here h̄ω and h̄k are the energy and momentum lost when
a photon of incident wave vector ki (as modified by the
plasma’s index of refraction) is scattered into the solid-angle
element surrounding the final wave vector kf and dσT h/d
f

is the usual differential Thomson cross section for scattering of
unpolarized radiation by electrons. All effects of the medium
are contained in the electrons’ total dynamic structure factor
Stot

ee (k,ω), which includes contributions from both bound and
free electrons as well as ionic contributions to the electron
dynamics.

Chihara’s analysis assumes the separability of an ion’s
electrons into (i) core electrons Zc that are tightly bound
and hence highly localized and (ii) so-called free electrons
that are delocalized. This latter group includes all electrons
having positive energy plus valence electrons that are only
weakly bound. There are Zf = Znuc − Zc per ion, where as

FIG. 9. (Color online) Comparison of the three different MIS
values defined in the MUZE model [(19), (27), and (31)], for Al at
normal solid density, versus temperature (top) and comparison of 〈Z〉
values for Cu at normal solid density, as computed by different DFT
models [(19), (31), and (38)], versus temperature (bottom).

before Znuc is the nuclear charge. Similarly, their densities
sum to give the total electron density associated with that
nucleus n(r) = nc(r) + nf (r). Chihara’s principal result is
that the dynamic structure factor appearing in (40) has three
contributions, commonly written as

Stot
ee (k,ω) = |nf (k) + nc(k)|2Sii(k,ω) + Zf S(0)

ee (k,ω)

+Zc

∫
dω′Sce(ω − ω′)Ss(k,ω′). (41)

The first term on the right-hand side is a product involving
the usual ion-ion dynamic structure factor and the Fourier
transform of n(r). This term represents low-frequency inelastic
scattering by electrons that follow the ion motion [49]; it
is often referred to as the quasielastic peak. The second
term contains the structure factor S(0)

ee (k,ω) that represents
high-frequency electron dynamics that are not correlated with
ion motion. The third term involves a convolution of special
dynamic structure factors pertaining to the core electrons and
to a gas of ions and it represents inelastic scattering by the
electrons tightly bound to ions; details of the notation can
be found elsewhere [86]. Our interest is with the quantities
multiplying each of these structure factors.
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FIG. 10. (Color online) Density dependence of Al 〈Z〉 calculated
by MUZE, at two temperatures and with four different treatments of
the exchange-correlation potential (including no XC).

The essential problem is that in dense plasmas the electron
separation nc(r) + nf (r) that Chihara posits is a delicate matter
that depends on the nature of the probe and the material itself.
In simple metals and their plasmas, there is a clear energy
separation between valence electrons and core electrons. The
same feature also exists in weakly coupled plasmas in which
isolated-atom electronic structure calculations can be used to
designate deeply bound or completely free electrons (such
models are used in the chemical picture and in Saha-like
ionization equations for weakly coupled systems). However,
in most plasmas the electronic structure of ions has to be
calculated using some model like the ones described here. The
separation between core and free electrons must be carried out,
paying attention to the overlap of bound-electron distributions
between ions. There is no separation in configuration space
[a measure of localization; recall (24)] and hence in k space
forced by the orthogonality of KS orbitals. This is evident
in Fig. 4, which plots bound (i.e., negative-energy) and free
(i.e., positive-energy) electron densities versus position r , for
solid-density Al at 30 eV. Clearly, the bound electrons are only
slightly localized relative to the free electrons. Another way of
displaying the information in Fig. 4 is shown in Fig. 11, where
integrated Al densities (total bound density within r and total
unbound density beyond r) are plotted. The top panel is again
for solid density Al at 30 eV; the bottom panel is for Al at
the same temperature but the higher density ρ/ρ0 = 10. We
see that greater compression leads to greater delocalization
of negative-energy states and to greater uncertainty in any
assignment of core vs free in these regimes of compression
and temperature.

These issues complicate the use of distinct XRTS features to
determine the MIS of a dense plasma. In the current literature
involving heated solid density or compressed targets [85–89],
the working assumption that ne = Zf ni has been used to
infer Chihara’s Zf from the relative strengths of the first
two XRTS terms in (41) or from the electron density that the
measured position of a plasmon feature yields. Some of these
experiments have shown certain orbital-based MIS values to
be in reasonable agreement with data for plasmas at varying
temperatures, while Saha-type MIS values underestimate the
inferred degree of ionization at low temperatures. This is

FIG. 11. (Color online) Integrated fraction of the bound (ε < 0)
electron density outside the radius r = xai and the integrated fraction
of the free (ε � 0) electron density inside the radius r = xai , as
computed by MUZE, for Al at T = 30 eV and ρ/ρ0 = 1 (top) and Al
at T = 30 eV and ρ/ρ0 = 10 (bottom), with other details listed in
Table VI.

expected since ionization based on a chemical picture does
not include weakly bound or resonant-state contributions to the
MIS. Even so, with what MIS computed by an orbital-based
approach should one identify the Zf extracted from XRTS?
The quantity 〈Z〉NPA does define the ratio ne/ni of the
background uniform density plasma for that model and, as
we have found, Z∗

MUZE ≈ 〈Z〉NPA under many conditions.
In contrast, according to Eqs. (28) and (38), both Z∗

MUZE
and 〈Z〉NPA include all positive-energy electrons, but only
that fraction of weakly bound delocalized electrons existing
outside the ion sphere. Moreover, orbital-based models include
electrons in localized, resonant states of positive-energy states
whose electrons probably participate differently in various
plasma processes because they are not fully free [10,55,90].

As an alternative strategy, one could identify Zf as 〈Z〉
for some ion-sphere model. This would count those positive-
energy electrons constituting the uniform background [see
(19)], but it would ignore, e.g., effects of the structure evident
in Fig. 4 and would exclude electrons in resonance states.
Another possibility is that one could integrate the sum of core
orbital terms (somehow defined) in (24) over the volume of the
fundamental cell and then, by subtraction from Znuc, obtain a

063113-15



MURILLO, WEISHEIT, HANSEN, AND DHARMA-WARDANA PHYSICAL REVIEW E 87, 063113 (2013)

FIG. 12. (Color online) Structure factors for Be at ρ =
1.85g/cm3 are shown for the four temperatures: 5 eV (top pair,
purple), 10 eV (first pair from top, green), 20 eV (second pair
from bottom, red), and 40 eV (bottom pair, blue). The dashed lines
correspond to the Z∗ definition, while the solid lines correspond to the
〈Z〉 definition, here calculated using the TF model for the ionization
and a Yukawa structure calculation. Due to ionization effects when
� < 1, the structure factors are very similar above q = 3 and provide
no ion temperature information over this broad temperature range;
however, temperature information is available at longer wavelengths.

simple expression for Zf that would correct the MIS for any
diffuse, weakly bound states whose density partly lies within
the ion sphere. In our view, such manipulation of DFT results
to better match an experimentally inferred Zf for high-density
partially ionized matter is not particularly meaningful. A better
formulation of XRTS may be needed here.

We illustrate these concepts by computing the ion static
structure factor S(k), which is proportional to the frequency
integral of the quasielastic peak [49]. This part of the scattering
cross section represents the portion of the scattered light that
can probe ionic properties, such as the ion temperature Ti [7].
Measuring the electron and ion temperatures separately is of
paramount importance for many plasma studies. We consider
normal solid density Be and use a Yukawa model for the
ion-ion interaction; the structure is computed using a MHNC
approach [49]. Four temperatures T = 5, 10, 20, and 40 eV
that span a wide degeneracy � range are studied, using only
Thomas-Fermi results for 〈Z〉 and Z∗. The results are shown
in Fig. 12.

We examine important features that emerge from this
calculation. First, between T = 5 and 10 eV, the free electrons
are moderately degenerate and the ionic structure depends
mainly on the ion temperature Ti , making that regime better for
Ti measurements. Second, when � < 1, there is atomic core
excitation and ionization, which has two effects in the Yukawa
model. Higher temperatures correspond to both larger charge
states and higher kinetic energies, which partially cancel
in determining the Coulomb coupling parameter, yielding a
smaller sensitivity to temperature in this temperature regime.
Similarly, there is a partial cancellation in the screening
parameter since the electrons are hotter, but there are also
more of them. This is particularly apparent in the comparison
of the T = 20 and 40 eV cases, which differ by at most 30%.
These are the basic features that ionization has on this portion
of the XRTS spectrum.

Next consider the pairs of lines in which the dashed and
solids curves correspond to Z∗ and 〈Z〉, respectively. The
difference between the two ionization definitions is seen to
be small, at most about 5%. This agreement can again be
traced to the interplay between strong coupling and stronger
screening so that the effective Coulomb coupling parameter
(6) is weakened (when most models agree).

The factor n(k) multiplying the ionic dynamic structure
factor in (41) is usually a product of DFT procedures that
require the density in both direct and reciprocal space. Using
a DFT n(k) for XRTS would be self-consistent since the same
DFT calculation provides the MIS defining Zf . This has not
been the approach taken to date, but the effect of making this
change in the analysis should be explored. Well beyond that,
one could develop an all-electron model of XRTS, in which a
coupled, electron-ion DFT scheme is used to determine, self-
consistently, all the electronic and ionic information necessary
to interpret the scattering data. Such a model would involve
treatment of plasma dynamics via time-dependent DFT [27],
a topic undergoing rapid development [28].

Future XRTS experiments could test details of orbital-based
DFT calculations and better illuminate the role of weakly
bound and resonant states in the scattering process. Consider
a mostly ionized plasma. Then nc(k) represents very few
electrons and one can use XRTS measurements to study the
density functional characterization of delocalized electrons.
Conversely, when pressure ionization is modest, the use
of XRTS to explore core-electron issues is facilitated. By
using different measurement angles (hence probing different k

values), modulations in n(k) caused by shell structure and/or
continuum resonances and pseudogaps [64] might even be
observable, although uncertainties in Sii(k,ω) would need
to be accounted for. In such investigation, plasmas where
the distinction between core and free electrons is blurred
(e.g., a case such as that shown in Fig. 11) may be best.
Another interesting XRTS study would be the change in
plasma ionization across a predicted jump in the MIS for
a case like in the top panel of Fig. 7 (for fixed density) or
in Fig. 8 (for fixed temperature). Metal-nonmetal transitions
are evident in electrical resistivity measurements of warm
plasma under expansion, but the increase in resistivity with
decreasing density is not as dramatic as the computed MIS
behavior of ion-sphere models would suggest (better overall
agreement with electrical conductivity has been obtained
from NPA-type calculations). These issues and complications
notwithstanding, XRTS may be a better probe of ionization
than integrated measurements of bulk transport properties,
which do not generally distinguish the MIS effects on the
scattering cross section from those on the number of charge
carriers.

VI. SUMMARY AND FUTURE PROSPECTS

We have investigated the subject of ionization in dense
plasmas, applying several formulations of DFT and several
definitions of the MIS to the well-established notion of
average-atom models. Models based on an IS (i.e., Wigner-
Seitz cell) do not yield a unique result for an atom’s MIS;
models based on a larger CS do, although there is some
latitude in how one deals with weakly bound electrons. We

063113-16



PARTIAL IONIZATION IN DENSE PLASMAS: . . . PHYSICAL REVIEW E 87, 063113 (2013)

have discussed three MIS definitions and compared numerical
results of four DFT models, for the metals Be, Al, and Cu, over
a wide range of conditions. These conditions, which represent
plasmas having partial degeneracy and partial ionization, are
accessible with a variety of experimental methods. We find
very good agreement between the ion-sphere and correlation-
sphere results for particular MIS definitions, but often see
significant differences among other MIS values. One way
to obviate this issue is to cast a given problem in a purely
physical picture, which makes no reference to the MIS (i.e.,
uses all the electrons without finite-T pseudopotentials), but
this remains impractical for many applications and finite-T
pseudopotentials [8,9] will eventually play an important role,
just as for T = 0 applications.

By using the common framework of DFT, comparisons
among models and involving specific physics issues could
be made unambiguously. We considered both OFDFT (finite-
temperature TF) and orbital-based (KS) models. Also, we
explored the importance of including a LDA exchange-
correlation potential that is accurate at all relevant temperatures
and densities [67]. Finally, using the neutral pseudoatom
model, we examined consequences of employing a fundamen-
tal cell larger than the ion sphere. Our key findings include the
following.

(i) Under most conditions explored, there is excellent
agreement between the IS- and NPA-based MIS values
defined as the integral of continuum electron density based
on orbitals. However, the corresponding electron chemical
potentials μe can differ considerably. Each model determines
μe at the edge of its fundamental cell, but in orbital-based
ion-sphere models the electron density there is not yet that of
the interacting homogeneous background. Larger differences
between chemical potentials occur in plasmas with larger
electron-ion coupling parameters, with a relationship that is
roughly linear. The NPA μe, when modified for ion subsystem
effects as in Ref. [8], may lead to closer agreement (or
disagreement in some cases) with the IS values. This has not
been investigated.

(ii) In all cases, the (negative) exchange-correlation inter-
action serves to enhance binding and reduce the MIS; the
same is true for the introduction of orbitals. However, their
relative importance in IS models depends on the particular
MIS definition in use. The relevance of a finite-T exchange-
correlation potential is very clear.

(iii) Because of the way resonance states are treated in
orbital-based IS and NPA models, pressure ionization can
cause large jumps in Z∗. Such jumps are not present in either
the chemical potential or the ion-sphere MIS quantity 〈Z〉.
These jumps physically correspond to rapid variations in the
MIS and such smoothed mean-Z values are obtainable in
multistate DFT models [8]. In fact, an abrupt change in the
difference 〈Z〉 − Z∗ when small changes in T or ni is a good
indicator of emergent structure in the low-energy sector of the
continuum. The TF model fails to exhibit such behavior as it
has no shell structure.

(iv) From the discussion of x-ray Thomson scattering, it is
evident that the measurement of ionization in WDM is far more
problematic than it is in dilute plasmas or solids and liquid
metals, all of which, interestingly, have provided insights and
techniques for the study of this complex regime. We agree with

comments made by others [55] to the effect that for IS models,
the best MIS choice likely depends on just what phenomenon
is being investigated. Even for CS models, where there is
no MIS ambiguity, it should be remembered that an ion’s
charge state is not the eigenvalue of any quantum operator
[83] and hence that one requires some physically motivated
definition that sets the role of hopping electrons in a given
situation [63]. However, even the temperature of a plasma is
a property for which there is no direct quantum operator and
such properties are quite common in statistical physics. Hence
the lack of a quantum-mechanical operator does not mean
that a MIS cannot be extracted from suitable measurements
such as stopping power and electrical conductivity that include
it. The temperature T of a plasma and the mean ionization
Z can both be viewed as Lagrange multipliers, where T is
associated with the conservation of energy [91], while 〈Z〉
is a Lagrange multiplier associated with charge neutrality, as
discussed in [61].

Progress motivated from this study should occur in a
number of directions. There is in wide use a simple fit [55] to
the TF value of 〈Z〉, computed without exchange-correlation
interaction. Because of the importance of this interaction at
very high densities, as we have seen, and the ready availability
of a fit for it [recall (14)], improved 〈Z〉 fits should be produced
for a TFXC model; together with finite-temperature gradient
corrections, a more accurate orbital-free model may result.
Combining such a model with ionic structure [38,40,41] may
yield a more accurate, all-electron model that includes self-
consistent ionic correlations. The notion of an average atom
with a definite MIS provides a simple one-parameter finite-
temperature pseudopotential for describing ions in plasmas;
determining, for example, ion-ion dynamic structure factors
using more accurate ionic models could involve, e.g., atomic
shells of specified radii and well depths [8]. A more accurate
pseudopotential is expected to be particularly important in
plasmas having heavy ions with many bound electrons and a
comprehensive set of orbital-based DFT calculations would
provide these pseudopotential parameters, as already done
in [8] for Al ions in plasmas. Finally, extending comparative
studies like the present one to plasmas with mixtures of
elements is attractive.

Finally, we conclude by returning to the issue of which
MIS is optimal for a given problem. In a study of dense
plasma viscosity [92], strong sensitivity to the choice of
the MIS was found. For such a problem one seeks the best
effective ion-ion interaction potential, which is not easily
tied to any of the MIS quantities we have considered, except
perhaps those from coupled-CS models [93]. For electron-ion
physics, measurements of the electrical conductivity can be
used to deduce the most appropriate MIS [81]. In purely
theoretical treatments, it is also possible to decide among
several choices of the MIS through thermodynamic self-
consistency arguments [14].
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