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ABSTRACT

Motivation: The systematic integration of expression profiles and

other types of gene information, such as chromosomal localization,

ontological annotations and sequence characteristics, still represents

a challenge in the gene expression arena. In particular, the analysis

of transcriptional data in context of the physical location of genes in

a genome appears promising in detecting chromosomal regions with

transcriptional imbalances often characterizing cancer.

Results: A computational tool named locally adaptive statistical pro-

cedure (LAP), which incorporates transcriptional data and structural

information for the identification of differentially expressed chromoso-

mal regions, is described. LAP accounts for variations in the distance

between genes and in gene density by smoothing standard statistics on

gene position before testing the significance of their differential levels of

gene expression. The procedure smoothes parameters and computes

p-values locally to account for the complex structure of the genomeand

to more precisely estimate the differential expression of chromosomal

regions.TheapplicationofLAP to three independentsetsof rawexpres-

sion data allowed identifying differentially expressed regions that are

directly involved in known chromosomal aberrations characteristic of

tumors.

Availability: Functions in R for implementing the LAP method are

available at http://www.dpci.unipd.it/Bioeng/Publications/LAP.htm

Contact: silvio.bicciato@unipd.it

Supplementary Information: http://www.dpci.unipd.it/Bioeng/

Publications/LAP.htm

INTRODUCTION

The exploration of all genes at once, in a systematic fashion,

still represents a sort of revolution that is shifting molecular

biology from a reductionistic, hypothesis-driven approach towards

deciphering the mechanisms underlying gene transcription and

regulation. These technological advances have been accompanied

by the development of bioinformatic methods for the analysis and

interpretation of an overwhelming mass of biological data. The

common objective of all these methods is to identify statistically

relevant genes sharing particular profiles from huge matrices bear-

ing values for thousands of molecules. Although hundreds of studies

have fully demonstrated the relevancy of genomic approaches in

analyzing the transcriptional status of different physiopathological

conditions, it is becoming increasingly clear that one of the next

challenges in the gene expression arena is the systematic integration

of expression profiles with other types of gene information, such

as chromosomal localization, ontological annotations and seq-

uence characteristics. In particular, analyzing gene expression

data in context of the physical location of genes in a genome

should be effective in detecting those chromosomal regions with

transcriptional imbalances often characterizing cancer.

Several functional genomics studies suggested a relationship

between genomic structural abnormalities and expression imbal-

ances (under- or over-expression), and identified groups of

physically contiguous genes characterized by similar, coordinated

transcriptional profiles. The pioneering work of Caron and cowork-

ers (Caron et al., 2001) illustrated how whole chromosome views

can reveal a higher order organization of the genome with most

chromosomes presenting large regions of highly expressed genes,

called RIDGEs (regions of increased gene expression), inter-

spersed with regions where gene expression is low. This research

is the basis for the Human Transcriptome Map (http://bioinfo.amc.

uva.nl/HTMseq/controller) where genome sequences have been

integrated with mRNA expression profiles obtained from many

different tissues using Serial Analysis of Gene Expression

(SAGE) libraries and oligonucleotide microarrays. Comparative

screenings of Transcriptome Map data highlighted numerous clus-

ters of overexpressed and physically close genes implicated in

cancer or tissue-specific pathologies (Caron et al., 2001;

Versteeg et al., 2003). As a consequence, gene expression profiles

have been analyzed in a chromosomal context to identify amplified

or deleted chromosomal regions containing genes related to tumor

initiation and progression (Lu et al., 2001; Crawley and Furge,

2002; Husing et al., 2003; Zhou et al., 2003; Furge et al., 2004;
Cromer et al., 2004; Masayesva et al., 2004; Midorikawa et al.,
2004; Reyal et al., 2005). Lately, genotyping studies have revealed

that there is a considerable influence of copy number on gene

expression patterns, and that organizing gene-expression data by

genomic location and scanning for regions with significantly

modulated gene-expression signals may reveal chromosomal

amplifications and deletions (Pollack et al., 2002; Hyman et al.,
2002; Heidenblad et al., 2005).
Several computational approaches have been adopted to

identify chromosomal regions of increased or decreased expres-

sion from transcriptional data (Caron et al., 2001; Crawley and

Furge, 2002; Pollack et al., 2002; Kano et al., 2003; Husing et al.,
2003; Zhou et al., 2003, 2005; Toedling et al., 2005). All these
methods score differentially expressed genes using standard statis-

tics and then scan an array-based gene map using windows of�To whom correspondence should be addressed.
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fixed length or containing a pre-selected number of genes.

In particular, the R-package called MACAT (Toedling et al.,
2005, http://www.compdiag.molgen.mpg.de/software/macat.shtml)

links differential gene expression data to the chromosomal loca-

tion of genes, interpolating a regularized t-score for distances

between measured genes. The parameters of the kernel smoothing

functions are estimated and optimized from the data through a

cross-validation procedure, and statistics are smoothed over a

moving window of fixed length. This strategy implicitly assumes

that the distance between genes and/or the gene density are con-

stant within chromosomes. To overcome this limitation, Levin

and coworkers (Levin et al., 2005) developed a model-based

method that accounts for variations in gene distance, density

and sequence characteristics (e.g. GC content). The statistical

significance of chromosomal regions with differential gene

expression is determined in comparison with a theoretical null

distribution given the assumptions that the expression of each

gene is normally distributed, the distances between genes are

distributed as independent and identical exponential random vari-

ables, and the lengths of genes are negligible in comparison with

the distances between them.

The purpose of this work is to present a non-parametric model-

free statistical method, named locally adaptive statistical proce-

dure (LAP), for the identification of differentially expressed

chromosomal regions, which accounts for variations in gene dis-

tance and density. The method is based on the computation of a

standard statistic (e.g. SAM t-statistic) as a measure of the dif-

ference in gene expression patterns between groups of samples,

assessed on high-density microarrays. Once the statistical scores

have been calculated, probes (or probe sets for Affymetrix arrays)

are re-annotated in terms of Entrez Gene IDs and the statistics are

sorted, on each chromosome, according to the chromosomal

coordinate (in base pairs) of the corresponding gene. For each

chromosome, the statistic is locally smoothed using non-

parametric estimation of regression function over the positional

coordinate. Differentially expressed regions are identified using a

permutation procedure. In particular, gene positions are randomly

shuffled and the randomly generated statistics are smoothed to

generate the null smoothed distribution. This empirical null

distribution is finally used to estimate the q-value measure of

significance.

The LAP procedure has been tested on three public datasets

(Virtaneva et al., 2001; Ross et al., 2003; Nutt et al., 2003) to assess
the correspondence between differentially expressed chromosomal

regions and known chromosomal aberrations such as trisomies,

translocations and deletions.

In this article, the Methods section gives the computational

details of the statistics in the various response cases, of the smooth-

ing algorithm and of the permutation test to identify differ-

entially expressed chromosomal regions. The Results section

presents the application of LAP to the analysis of publicly available

expression data. Additional tables and figures are available in

the Supplementary information section (denoted as _SI throughout

the text). The Results section also includes a comparison of the

proposed procedure with MACAT and Levin’s approach.

Finally, Conclusions summarizes the main characteristics of the

LAP procedure and discusses the proposed approach in comparison

with other methods for the identification of differentially expressed

chromosomal regions.

METHODS

LAP procedure consists of three main steps: (1) computation of a statistic

for ranking probes in order of strength of the evidence for differential

expression; (2) smoothing of the statistic after sorting the statistical scores

according to the chromosomal position of the corresponding genes and

(3) application of a permutation test to identify differentially expressed

chromosomal regions.

Statistic

Let X be the matrix of normalized expression levels xij for gene i in sample j

(i ¼ 1, 2, . . . ,G; j ¼ 1, 2, . . . , n) and Y a response vector yj (j ¼ 1, 2, . . . , n)

for the n samples. The statistic di is based on the ratio of change in gene

expression ri to the standard deviation in the dataset si for each probe set i, as
defined by Tusher et al. (2001) in the SAM method:

di ¼
ri

si þ s0
‚ ð1Þ

where the estimates of gene-specific variance over repeated measurements

are stabilized by a fudge factor s0 [see Tusher et al. (2001) and SAM

technical manual for details].

Since the chromosomal analysis can be applied to different data types

(e.g. two- and multi-class problems, paired data, quantitative responses, time

course experiments, survival analyses), the quantities ri and si have different

formulations in different experimental designs.

Specifically, in the two-class unpaired case, yj ¼ 1 or yj ¼ 2. Considering

Ck the set of indices for the nk samples in group k,
Ck ¼ fj : yj ¼ k‚ k ¼ 1‚2g, �xxi1 ¼

P
j2C1

xij/n1 and �xxi2 ¼
P

j2C2
xij/n2,

then ri and si can be computed as follows:

ri ¼ �xxi2 � �xxi1 ð2Þ

si ¼
ð1/n1 þ 1/n2Þ

�P
j2C1

ðxij � �xxi1Þ2 þ
P

j2C2
ðxij � �xxi2Þ2

�
ðn1 þ n2 � 2Þ

" #1/2

ð3Þ

and di represents a two-sample t-like statistic with variance stabilization.

In the case of a multi-class response vector, yj 2 {1, 2, . . . ,K}, given the

Ck indices of observations in class k, the nk samples in Ck, �xxik ¼
P

j2Ck
xij/nk

and �xxi ¼
P

j xij/n, ri and si have the following formulations:

ri ¼
P

nkQ
nk

� � XK
k¼1

nkð�xxik � �xxiÞ2
" #1/2

ð4Þ

si ¼
1P

ðnk � 1Þ
X 1

nk

XK
k¼1

X
j2Ck

ðxij � �xxikÞ2
! #1/2

0
@

2
4 ð5Þ

with di taking the form of an F-like statistic with variance stabilization.

In the case of censored survival data, yj¼ (tj, Dj) where tj is time and Dj¼ 1

if the observation is a death while Dj ¼ 0 if the observation is censored.

Considering D the set of indices of the K unique death times z1, z2, . . . , zK,

R1, R2, . . . ,RK the indices of the observations at risk at these unique death

times, i.e. Rk ¼ fl : tl � zkg, mk the number of observations in RK, dk the

number of deaths at time zk, x
�
ik ¼

P
tj¼zj

xij and �xxik ¼
P

j2RK
xij/mk, then ri

and si are defined as follows:

ri ¼
X
k

�
x�ik � dk�xxik

�
ð6Þ

si ¼
X
k

dk
mk

� � X
j2Rk

ðxij � �xxikÞ2
" #1/2

ð7Þ

and di represents a Cox-like statistic with variance stabilization.

All the SAM statistics can be computed using the R package samr freely

available at http://www-stat.stanford.edu/~tibs/SAM/.

LAP to identify differentially expressed chromosomal regions

2659

Downloaded from https://academic.oup.com/bioinformatics/article-abstract/22/21/2658/252091
by guest
on 29 July 2018

http://www.compdiag.molgen.mpg.de/software/macat.shtml
http://www-stat.stanford.edu/~tibs/SAM/


Smoothing

To link statistical scores di and chromosomal locations, probes are

re-annotated in terms of Entrez Gene ID using the annotate package of

Bioconductor and statistics are sorted, on each chromosome, according to

the physical coordinate (in base pairs) of the corresponding gene. Since each

locus must be characterized by a single value of the statistic, in the case of

multiple probes mapping to the same locus (e.g. probe set redundancy in

Affymetrix arrays), the chromosomal locus is assigned the statistic of the

probe with the highest absolute value of di. To verify whether this choice

introduces any bias or affects the permutation procedure, the issue of redun-

dancy introduced by replicate probes on the array has been also addressed by

assigning to each locus the mean (Crawley and Furge, 2002) or the median

statistics of multiple probes mapping to the same gene.

Once sorted, the di statistics are smoothed over the chromosomal coord-

inate, obtaining for each locus link a smoothed statistic Si. The smoothing

process allows estimating the differential expressionof chromosomal regions,

taking into account that the distribution of investigated genes is not uniform

over the genome. Specifically, the LAP procedure interpolates the statistics

between investigated chromosomal positions using a non-parametric estima-

tion of regression functions based on kernel regression estimators and auto-

matically adapted local plug-in bandwidth (Herrmann,1997).As described by

Toedling and coworkers (Toedling et al., 2005), smoothing of the statistic can

be formally stated as anon-parametric regressionproblemwhere thedi score is
to be estimated over the chromosomal coordinate. Non-parametric regression

problems can be approached using various methods, as kernel smoothing,

orthogonal series, spline functions or wavelets. A critical issue in selecting

the regression strategy is represented by the procedure for adapting the

smoothing parameters. Indeed, the smoothing parameters, e.g. the bandwidth,

can be adapted globally or locally (Herrmann, 1997).

In particular, the LAP procedure is based on a local variable bandwidth

kernel estimator, the lokerns function, developed by Herrmann (1997) and

coded in the R package lokern freely available at http://www.sourcekeg.co.

uk/cran/src/contrib/Descriptions/lokern.html. Lokern comprises a function

which automatically estimates the optimal bandwidths iteratively, adapting

a bandwidth to the regression function and minimizing the asymptotic

mean squared error. Polynomial kernels and boundary kernels are used

with a fast and stable updating algorithm for kernel regression estimation.

Theoretical aspects and mathematical formulation of lokerns can be found

in Herrmann (1997).

Permutation test

The identification of differentially expressed chromosomal regions as the

result of a system perturbation in a microarray experiment can be formally

stated as a hypothesis-testing problem in which a defined statistic is used

to rank transcripts in order of evidence against the null hypothesis. In

general, data obtained from microarray studies do not support asymptotic

hypothesis testing. Nevertheless, nominal type I error can be controlled using

statistical tests based on empirically constructed null distributions. Thus, a

permutation scheme is used to identify differentially expressed regions

under the assumption that each gene has a unique neighborhood and that

the corresponding smoothed statistic is not comparable with any statistic

smoothed in other regions of the genome. Specifically, the G statistic values

di are first randomly assigned to G chromosomal locations through permu-

tations and then, for each permutation, smoothed over the chromosomal

coordinate. The permutation process over B random assignments allows

defining the null smoothed statistic S0bi for gene i (b ¼ 1, . . . ,B). The

significance of the differentially expressed genes, i.e. the p-value pi for

gene i, is computed as the probability that the random null statistic S0bi
exceeds the observed statistic Si over B permutations:

pi ¼
#
�
b : j S0bi j � j Si j ‚b ¼ 1‚ . . .‚B

�
B

ð8Þ

The p-value of Equation (8) has the peculiarity to be local since the observed

smoothed statistic Si is compared only with null statistics S0bi smoothed on

the same neighborhood of the gene i. Indeed, during the permutation process,

the chromosomal position is conserved while the statistics are randomly

shuffled. Thus, observed and null statistics are smoothed and compared

exactly over the same region, taking into account variations in the gene

distances and in gene density.

Once the distribution of empirical p-values has been generated, the

q-value is used to identify differentially expressed chromosomal regions

(Storey and Tibshirani, 2004). Q-values allow quantifying significance in

light of thousands of simultaneous tests and can be calculated, directly from

the p-values of Equation (8), using R qvalue package (http://faculty.

washington.edu/~jstorey/qvalue/).

RESULTS

The LAP procedure has been applied to three public datasets with

three different types of response variables: (1) two-class unpaired

comparison (acute myeloid leukemia; Virtaneva et al., 2001),

(2) multi-class response (pediatric acute lymphoblastic leukemia;

Ross et al., 2003) and (3) censored survival data (malignant

gliomas; Nutt et al., 2003).

Case study 1: two-class unpaired data

Virtaneva et al. (2001) used Affymetrix HuGeneFL oligonucleotide

microarrays to study global gene expression in acute myeloid

leukemia patients with trisomy of chromosome 8 (AML+8) as

the sole chromosomal abnormality. The expression profiles of

n ¼ 10 AML+8 patients were compared with those of n ¼ 10

AML patients with normal cytogenetics (AML-CN).

Intensity levels were generated from publicly available CEL files

(http://thinker.med.ohio-state.edu/aml/index.html) using the robust

multi-array analysis (RMA) procedure described by Irizarry and

colleagues (Irizarry et al., 2003). After annotation, probe sets

without chromosomal location information and those referring to

chromosomes X and Y were filtered out. Differential expressions

between AML+8 and AML-CN groups were calculated using the

regularized t-statistic as defined in Equations (1)–(3) and each locus
was assigned the score of the probe set with the highest score

absolute value. This preprocessing step resulted in 5313 unique

IDs from the initial 7129 probe sets. Application of the smoothing

procedure generated the smoothed scores of Figure 1a. In detail,

dots indicate values of the statistic di and traces represent the

smoothed statistics Si for each chromosome, along the chromosomal

coordinate. The null statistic was defined through B ¼ 10 000

permutations of the statistic values di (i.e. randomly assigning

the scores to the 5313 loci) and then, for each permutation,

smoothed over the chromosomal coordinate. Finally, differentially

expressed chromosomal regions were identified using the q-value
calculated from the distribution of empirical p-values [Equation

(8)]. Setting a q-value threshold of 0.05 allowed the identification

of 44 overexpressed genes in AML+8 samples (Fig. 1b and

Table 1_SI) and located on chromosome 8 (cytobands 8q112–

q13 and 8q22; p-values ranging from 4.8 · 10�9 to 2.1 · 10�2

in DAVID functional annotation) as expected, given the analyzed

specimens (Virtaneva et al., 2001). Similar distributions of the

smoothed statistics and the same regions on chromosome

8 (e.g. 8q11–q13 and 8q22) were obtained assigning to each

locus the highest, median or mean absolute value of di calculated
over multiple probes (Figs 1_SI and 2_SI). In the whole genome

plot of Figure 1b, the red perpendicular lines represent the exact

chromosomal locations and orientations of the 44 overexpressed
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genes, the white bars indicate locations and orientations of all probe

sets in the HuGeneFL array and the green lines represent a small

chromosomal region of downregulation. The positions for both

sense and antisense strands are expressed in numbers of base

pairs measured from the p (50 end of the sense strand) to q (30

end of the sense strand) arms; upper and lower bars stand for

genes on the sense and antisense strands, respectively (see gene-

plotter package from Bioconductor for details).

To investigate the presence of a chromosomal aberration at the

level of the single specimen, the gene expression data were

smoothed independently for each sample over the chromosome

with the identified expression imbalance and the smoothed signals

were used to generate a heatmap (Fig. 1c). Hierarchical clustering

of the smoothed data for genes on chromosome 8 segregated the

20 samples into 2 major clusters, one mostly composed of AML+8
specimens with overexpressed regions on chromosome 8 and the

(a) (c)

(b)

Fig. 1. Comparison of gene expression profiles of AML patients with trisomy 8 and AML patients with normal cytogenetics (Case study 1, two-class unpaired

data). (a)Values of the statisticdi andof the smoothed statisticsSi along the chromosomal coordinate in base pairs.Dots represent the values of the statisticdi, lines
the values of the smoothed statistics Si for each chromosome and the bold line highlights the smoothed statistics of chromosome 8. (b) Whole genome plot of the

differentially expressed genes at a q-value< 0.05. The red perpendicular lines represent the exact chromosomal locations and orientations of the 44 overexpressed

genes, thewhite bars indicate locations and orientations of all probe sets in themicroarray, and the green lines the location of a cluster of 27 downregulated probes.

The positions for both the sense and antisense strands are expressed in numbers of base pairs measured from the p (50 end of the sense strand) to q (30 end of the
sense strand) arms; upper and lower bars stand for genes on sense and antisense strands, respectively. (c) Unsupervised hierarchical cluster analysis of the

smoothed expression profiles of genes located in the differentially expressed regions of chromosome 8. Euclidean metric and average-linkage were used as

distance measure and linkage method, respectively. Black and yellow labeled columns represent AML samples with trisomy 8 and with normal cytogenetics,

respectively.
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other grouping AML+8 and AML-CN samples with lower expres-

sion levels of chromosome 8 significant genes. Thus, LAP analysis

allowed identifying regions with transcriptional modulation related

to trisomy of chromosome 8 even in a heterogeneous group of

AML+8 samples. This heterogeneity penalizes methods based

on sample permutations, such as SAM (Tusher et al., 2001) and
MACAT (Toedling et al., 2004), while it does not affect LAP whose

permutation scheme is applied on gene location. Indeed, SAM did

not identify any statistically significant genes at a q-value of 0.05,

and MACAT did not select any differentially expressed chromo-

somal region (Fig. 3_SI and Table 2_SI; kNN-kernel for interpola-

tion between the scores, optimal parameter settings determined by

cross-validation and 10 000 random permutations of the class

labels). Differently, the version of MACAT with permutations

of genes on chromosomes identified a total of 697 modulated

probes scattered along the chromosomes, including up- and

down-regulated genes on chromosome 8 (Fig. 4_SI and

Table 2_SI; kNN-kernel for interpolation between the scores,

optimal parameter settings determined by cross-validation, and

10 000 random permutations of gene positions). Finally, Levin’s

model-based procedure (Levin et al., 2005) identified only few

up-regulated probes on chromosome 8 and several modulated

probes on other chromosomes (Fig. 5_SI, p-value <0.05). As

such, LAP outperformed other approaches in detecting the increase

of gene expression on chromosome 8 previously described by

Virtaneva et al., 2001 in AML+8 samples.

Case study 2: multi-class response

Pediatric acute lymphoblastic leukemia (ALL) is a heterogeneous

disease with subtypes that differ markedly in their cellular and

molecular characteristics as well as in their response to therapy

(Ross et al., 2003). Nowadays, treatment protocols achieve an over-

all survival rate of 70–80% optimizing the intensity of therapy on

the patient’s risk of relapse. As such, the accurate assignment of

patients to risk groups is a critical parameter for establishing the

correct therapeutical intervention. Ross and coworkers classified

ALL patients into prognostic groups on the basis of expression

profiles assessed with Affymetrix HG-U133A microarrays (Ross

et al., 2003).
The LAP procedure was applied to a subset of n ¼ 104 ALL

samples derived from the dataset published by Ross and coworkers

(Ross et al., 2003). The subset comprised 14 patients with T-cell

lineage ALL (T-ALL) and 90 patients with 5 distinct subtypes of

B-cell lineage ALL. Among the latter, 15 patients had a

t(9;22)(BCR-ABL) translocation, 18 had t(1;19)(E2A-PBX1) and

20 had t(12;21)(TEL-AML1); moreover, 20 patients had a rear-

rangement of the MLL gene on cytoband 11q23 and 17 had a

hyperdiploid karyotype (>50 chromosomes). Intensity levels

were generated from publicly available CEL files (http://www.

stjuderesearch.org/data/ALL3/) using the RMA procedure (Irizarry

et al., 2003). After annotation, probe sets without chromosomal

location information and those on chromosomes X and Y were

filtered out. Differential expressions among the six karyotypes

were calculated using the multi-class statistic as defined in

Equations (1), (4) and (5) and each locus was assigned the

score of the probe set with the highest score value. This prepro-

cessing step resulted in a total of 11 613 unique IDs. Application of

the smoothing procedure generated the smoothed scores of

Figure 2a, where dots indicate values of the statistic di and traces

represent the smoothed statistics Si along the chromosomal coord-

inate. As in Case study 1, the null statistic was defined through

B ¼ 10 000 permutations of the statistic values di and then, for each
permutation, smoothed over the chromosomal coordinate. Differ-

entially expressed chromosomal regions were identified using

the q-value. Setting a q-value threshold of 0.01 allowed the

identification of 159 differentially expressed genes located on

the cytobands q22–q24 of chromosome 1 and centered around

gene PBX1 (Fig. 2b and Table 3_SI). The expression levels of

the 159 genes in the identified chromosomal region were smoothed

independently on each sample over chromosome 1 and used to

inspect each ALL specimen (Fig. 2c). The smoothed expression

levels of genes located on cytobands 1q22–1q24 divided the

104 samples into 2 major groups, one comprising 16 of the 18

t(1;19)(E2A-PBX1) specimens with an up-regulation of 1q22–1q24

genes and the other composed of samples with a lower expression

signal in the 1q22–1q24 region. This result indicates that, among

the most common ALL chromosomal aberrations, the t(1;19)
translocation has the highest impact on gene transcription. How-

ever, it is currently not understood how the t(1;19) translocation
leads to up-regulation of region 1q22–1q24 and, as such, the

identified features could help shed light on this chromosomal

aberration. Since this region is centered on gene PBX1, it is

possible that most of the analyzed samples with the t(1;19) translo-
cation present not only a chromosomal re-arrangement but also a

gain of a whole chromosome segment (Paulsson et al., 2005).

Case study 3: censored survival data

The LAP was finally applied to censored survival data to identify

differentially expressed chromosomal regions from gene expression

profiles of tumor samples with different clinical outcomes. Speci-

fically, LAP was applied to a set of n ¼ 50 primary brain tumors

(28 glioblastomas and 22 anaplastic oligodendrogliomas) sampled

and assessed on Affymetrix U95Av2 GeneChips before therapy

(Nutt et al., 2003). Survival data for all samples were available

in terms of months from date of initial diagnosis to death event

or, for living patients, to the last follow-up.

Intensity levels were generated from publicly available raw data

(http://www.broad.mit.edu/cgi-bin/cancer/publications/pub_paper.

cgi?mode¼view&paper_id¼82) using the RMAprocedure (Irizarry

et al., 2003). After annotation, probe sets without chromosomal

location information and those on chromosomes X and Y were fil-

tered out. Association with survival time was computed using the

score of Equation (1) with the regularized Cox-statistic described in

Equations (6) and (7). For each genetic locus, only the probe set with

the highest statistic absolute valuewas further analyzed (8035 unique

gene IDs). Application of the smoothing procedure generated the

smoothed scores of Figure 3a, where dots indicate values of the

statistic di and traces represent the smoothed statistics Si along
the chromosomal coordinate. As in the previous cases, the null statis-

tic was defined permutingB¼ 10 000 times the statistic values di and
then, for each permutation, smoothing over the chromosomal coord-

inate. Differentially expressed chromosomal regions were identified

setting the q-value threshold to zero. This allowed the identification
of a large up-regulated region on the p arm of chromosome 1 and a

down-regulated region corresponding to cytoband q23–24 of chro-

mosome 10 (Fig. 3b and Table 4_SI), for a total of 170 unique genes.

Given the statistic as defined in Equations (1), (6) and (7), an up-

regulated chromosomal region is associated with patients with a
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higher risk of death and, conversely, down-regulated genes charac-

terize patients with a better outcome. Cluster analysis of the

smoothed gene expression data from the p arm of chromosome 1

(156 genes) partitioned the samples into two main groups, one com-

posed of 15 patients with a lower signal pattern (Fig. 3c, cluster A)

and another comprising 35 samples with an over-expression of the

region 1p35–1p21 (Fig. 3c, cluster B). Survival analysis of these two

groups with opposite transcriptional patterns on chromosome 1

(Fig. 4) revealed that patients of cluster A (down-regulation of

1p35–1p21) had significantly better survival (log-rank p-value ¼
0.00197) than patients in cluster B (up-regulation of 1p35–1p21).

This result is in agreement with the observation that deletion of the

short arm of chromosome 1 (1p) is strongly associatedwith increased

chemosensitivity and is considered a favorable prognostic factor in

glioma tumors (Idbaih et al., 2005; Sasaki et al., 2002).

DISCUSSION

Although several annotation schemes have been successfully

applied to identify chromosomal regions enriched with differenti-

ally expressed genes from microarray data, only a few methods

have been developed to integrate transcriptional and structural

(a) (c)

(b)

Fig. 2. Analysis of gene expression profiles in six groups of pediatric ALL samples (Case study 2, multi-class response). (a) Values of the statistic di and of

the smoothed statistics Si along the chromosomal coordinate in base pairs. Dots represent the values of the statistic di and lines the values of the smoothed statistics

Si for each chromosome. The bold line highlights the smoothed statistics of chromosome 1. (b) Whole genome plot of the differentially expressed genes at a

q-value < 0.01. The red perpendicular lines represent the exact chromosomal locations and orientations the 159 differentially expressed genes, while the white

bars indicate locations and orientations of all probe sets in themicroarray. The positions for both the sense and antisense strands are expressed in numbers of base

pairs measured from the p (50 end of the sense strand) to q (30 end of the sense strand) arms; upper and lower bars stand for genes on the sense and antisense

strands, respectively. (c) Unsupervised hierarchical cluster analysis of the smoothed expression profiles of genes located in the differentially expressed regions

of chromosome 1. Euclidean metric and average-linkage were used as distance measure and linkage method, respectively. Black and yellow column labels

represent samples with and without the t(1;19)(E2A-PBX1) translocation, respectively.
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information before or during the data-analysis process (Crawley and

Furge, 2002; Pollack et al., 2002; Kano et al., 2003; Husing et al.,
2003; Zhou et al., 2003, 2005; Toedling et al., 2005). In this context,
the LAP is a non-parametric model-free statistical method to detect

differential expression over large chromosomal regions. The

notions about gene location and local density are incorporated

with the differential expression data, interpolating the observed

and null statistics on gene positions. The smoothing parameters

and measures of significance (e.g. p-values) are adapted and

computed locally, thus accounting for genomic complexity and

more precisely estimating differentially expressed chromosomal

regions. The main characteristics of the LAP procedure are (1)

the use of a locally adaptive smoothing function, (2) the application

of a permutation scheme of statistic values over the whole genome,

(3) the computation of local p-values and (4) the control of mul-

tiplicity through q-value calculation. Specifically, a kernel regres-

sion estimator and automatically adapted local plug-in bandwidth

are used to locally adapt the smoothing parameters. Although

(a) (c)

(b)

Fig. 3. Analysis of gene expression profiles in 50 primary brain tumors (Case study 3, censored survival data). (a) Values of the statistic di and of the smoothed

statistics Si along the chromosomal coordinate in base pairs. Dots represent the values of the statistic di and lines the values of the smoothed statistics Si for each

chromosome. The bold line highlights the smoothed statistics of chromosome1. (b)Whole genome plot of the differentially expressed genes at a q-value¼ 0. The

colored perpendicular lines represent the exact chromosomal locations, orientations, and up- (red) or down-regulation (green) states of the 170 differentially

expressed genes, while the white bars indicate locations and orientations of all probe sets in the microarray. Positions for both the sense and antisense strands are

expressed in numbers of base pairs measured from the p (50 end of the sense strand) to q (30 end of the sense strand) arms; upper and lower bars stand for genes on

sense and antisense strands, respectively. (c) Unsupervised hierarchical clustering of the smoothed expression profiles of genes located in the differentially

expressed regions of chromosome 1 (156 genes). Euclideanmetric and average-linkage were used as distancemeasure and linkagemethod, respectively. Cluster

analysis divided samples into two main groups: a group with down-regulated smoothed expression levels (cluster A, 15 samples) and a group with up-regulated

smoothed expression levels (cluster B, 35 samples).
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suffering from a sub-optimal asymptotic behavior, local variable

bandwidth kernel estimators are still competitive, at least in prac-

tical terms, over new and more complex methods, such as locally

adaptive wavelets. Permutation of statistics over the whole set of

genomic loci allows using the information contained in all chro-

mosomes and identifying significant chromosomal regions even in

the case of heterogeneous groups. In this case, methods which use a

standard permutation scheme of sample labels are indeed penalized,

as exemplified by the analysis of Case study 1. Permuting a quantity

over thousands of positions implies a huge computational charge.

Nevertheless, results from LAP are quite stable with B > 10 000. The
local computation of p-values permits taking into account the com-

plex structure of the genome in the neighborhood of each gene.

Indeed, each observed smoothed statistic Si is compared only with

null statistics smoothed exactly on the same neighborhood of gene i.
The proposed method can analyze gene expression data from the

most common experimental designs (e.g. two-class comparison,

multi-class response, censored survival data, time-course experi-

ment) and in principle can be applied to signals obtained from

any high-throughput platform (e.g. copy number data from geno-

typing arrays). Using a statistic based on criteria such as the dif-

ference between the maximum and the minimum expression levels

for each gene, the standard deviation, or the interquartile range, it is

also possible to perform unsupervised analyses and screen single-

class experimental designs to identify regions of increased gene

expression common to an entire set of samples.

As in MACAT (Toedling et al., 2005), LAP involves the inter-

polation of a statistic for distances between investigated genes but it

does not assume that gene distances and densities are constant

within chromosomes. Moreover, the smoothing functions and the

p-value computations are different in the two methods, and the

statistic of MACAT has not been implemented for multi-class

and survival analyses. Differently from the model-based scan statis-

tic proposed by Levin and coworkers (Levin et al., 2005), LAP is

model-free and does not depend on the validity of any assumption

about the distributions of expression signal and gene distances.

Finally, LAP uses the q-value to quantify the significance of modu-

lated regions in light of thousands of simultaneous tests, while

MACAT relies on quantile thresholds without any multiplicity con-

trol. Moreover, Levin’s approach uses pre-defined thresholds of a

z-score distribution to identify differentially expressed probes (i.e.

neither stabilizing the variance nor performing any statistical test)

and then computes p-values comparing distances of these modu-

lated probes to a theoretical distribution of gene distances over the

chromosomes.

The application of the LAP to three independent sets of raw

expression data allowed the identification of regions of differential

expression that are directly involved in the chromosomal aberra-

tions known to be characteristic of hematological and solid tumors

(copy number gain or loss). Recently, the method has been applied

to integrate DNA copy number variations obtained from Affymetrix

Mapping 100k GeneChips with gene expression data derived

from expression arrays (Cifola et al., 2006). In the context of a

research project focused on the identification of clinical biomarkers

of renal cell carcinoma, LAP, MACAT and Levin’s approach have

been applied to asses the global effect of gene dosage on transcrip-

tional levels in this type of epithelial tumor (see Supplementary

Fig. 4. Case study 3: Kaplan–Meier estimates of overall survival for the

groups of samples identified by unsupervised hierarchical clustering of the

smoothed gene expression data from the p arm of chromosome 1. Patients

forming cluster A (down-regulation of 1p35–1p21) had a significantly better

survival (log-rank p-value ¼ 0.00197) than patients in cluster B (up-

regulation of 1p35–1p21).

Table 1. Comparison among LAP, MACAT, and Levin’s methods in terms

of Type I and Type II errors in the detection of differentially expressed

regions at various confidence thresholds

DNA status CNAG copy

number

Type I

error (%)

Type II

error (%)

LAP q-value < 0.01

Gain >2 59.14

Normal 2 25.35

Loss <2 49.15

LAP q-value < 0.05

Gain >2 32.95

Normal 2 52.85

Loss <2 20.82

Levin’s p-value < 0.01

Gain >2 96.62

Normal 2 5.57

Loss <2 99.88

Levin’s p-value < 0.05

Gain >2 61.46

Normal 2 45.33

Loss <2 63.92

MACAT sample permutation

Gain >2 91.51

Normal 2 13.77

Loss <2 92.01

MACAT gene permutation

Gain >2 93.06

Normal 2 11.43

Loss <2 93.70
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Information). The availability of copy number and gene expression

data from samples of Caki-1, a renal carcinoma cell line, allowed a

quantitative comparison among the three different methods in terms

of Type I and Type II errors in the detection of differentially

expressed regions, assuming all gains and losses are known

based on copy number analysis (Table 1). In Table 1, Type I

and Type II errors are calculated as the number false positives

(probes with normal DNA status detected as transcriptionally modu-

lated) and false negatives (probes with gain or loss detected as

transcriptionally unchanged), respectively. Results from the com-

parisons indicate that LAP, although overestimating the amplitude

of regions with gene expression imbalance, outperforms both

Levin’s approach and MACAT in detecting the chromosomal

bands where a change in copy number induces a variation of the

gene expression profile (see Supplementary information).
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