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ENTIRE SOLUTIONS OF SEMILINEAR
ELLIPTIC EQUATIONS IN R3 AND
A CONJECTURE OF DE GIORGI

LUIGI AMBROSIO AND XAVIER CABRÉ

1. Introduction

This paper is concerned with the study of bounded solutions of semilinear elliptic
equations ∆u − F ′(u) = 0 in the whole space Rn, under the assumption that
u is monotone in one direction, say, ∂nu > 0 in Rn. The goal is to establish
the one-dimensional character or symmetry of u, namely, that u only depends on
one variable or, equivalently, that the level sets of u are hyperplanes. This type
of symmetry question was raised by De Giorgi in 1978, who made the following
conjecture – we quote (3), page 175 of [DG]:

Conjecture ([DG]). Let us consider a solution u ∈ C2(Rn) of

∆u = u3 − u

such that

|u| ≤ 1 , ∂nu > 0

in the whole Rn. Is it true that all level sets {u = λ} of u are hyperplanes, at least
if n ≤ 8 ?

When n = 2, this conjecture was recently proved by Ghoussoub and Gui [GG].
In the present paper we prove it for n = 3. The conjecture, however, remains open
in all dimensions n ≥ 4. The proofs for n = 2 and 3 use some techniques in the
linear theory developed by Berestycki, Caffarelli and Nirenberg [BCN] in one of
their papers on qualitative properties of solutions of semilinear elliptic equations.

The question of De Giorgi is also connected with the theories of minimal hy-
persurfaces and phase transitions. As we explain later in the introduction, the
conjecture is sometimes referred to as “the ε-version of the Bernstein problem for
minimal graphs”. This relation with the Bernstein problem is probably the reason
why De Giorgi states “at least if n ≤ 8” in the above quotation.
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Most articles dealing with the question of De Giorgi have also considered the
conjecture in a slightly simpler version. It consists of assuming that, in addition,

lim
xn→±∞

u(x′, xn) = ±1 for all x′ ∈ Rn−1.(1.1)

Here, the limits are not assumed to be uniform in x′ ∈ Rn−1. Even in this simpler
form, the conjecture was first proved in [GG] for n = 2, in the present article for
n = 3, and it remains open for n ≥ 4.

The positive answers to the conjecture for n = 2 and 3 apply to more gen-
eral nonlinearities than the scalar Ginzburg-Landau equation ∆u + u − u3 = 0.
Throughout the paper, we assume that F ∈ C2(R) and that u is a bounded solu-
tion of ∆u − F ′(u) = 0 in Rn satisfying ∂nu > 0 in Rn. Under these assumptions,
Ghoussoub and Gui [GG] have established that, when n = 2, u is a function of
one variable only (see section 2 for the proof). Here, the only requirement on the
nonlinearity is that F ∈ C2(R).

The following are our results for n = 3. We start with the simpler case when the
solution satisfies (1.1).

Theorem 1.1. Let u be a bounded solution of

∆u− F ′(u) = 0 in R3(1.2)

satisfying

∂3u > 0 in R3 and lim
x3→±∞

u(x′, x3) = ±1 for all x′ ∈ R2.(1.3)

Assume that F ∈ C2(R) and that

F ≥ min{F (−1), F (1)} in (−1, 1).(1.4)

Then the level sets of u are planes, i.e., there exist a ∈ R3 and g ∈ C2(R) such that

u(x) = g(a · x) for all x ∈ R3.

Note that the direction a of the variable on which u depends is not known apriori.
Indeed, if u is a one-dimensional solution satisfying (1.3), we can “slightly” rotate
coordinates to obtain a new solution still satisfying (1.3). Instead, if we further
assume that the limits in (1.1) are uniform in x′ ∈ Rn−1, then we are imposing an
apriori choice of the direction a, namely, a · x = xn. In this respect, it has been
established in [GG] for n = 3, and more recently in [BBG], [BHM] and [F2] for every
dimension n, that if the limits in (1.1) are assumed to be uniform in x′ ∈ Rn−1,
then u only depends on the variable xn, that is, u = u(xn). This result applies
to equation (1.2) for various classes of nonlinearities F which always include the
Ginzburg-Landau model.

Theorem 1.1 applies to F ′(u) = u3 − u since F (u) = (1 − u2)2/4 is a double-
well potential with absolute minima at u = ±1. For this nonlinearity, the explicit
one-dimensional solution (which is unique up to a translation of the independent
variable) is given by tanh(s/

√
2). Hence, in this case the conclusion of Theorem 1.1

is that

u(x) = tanh
(
a · x− c√

2

)
in R3,

for some c ∈ R and a ∈ R3 with |a| = 1 and a3 > 0.
The hypothesis (1.4) made on F in Theorem 1.1 is a necessary condition for

the existence of a one-dimensional solution as in the theorem; see Lemma 3.2(i).
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At the same time, most of the equations considered in Theorem 1.1 admit a one-
dimensional solution. More precisely, if F ∈ C2(R) satisfies F > F (−1) = F (1) in
(−1, 1) and F ′(−1) = F ′(1) = 0, then h′′ − F ′(h) = 0 has an increasing solution
h(s) (which is unique up to a translation in s) such that lims→±∞ h(s) = ±1; see
Lemma 3.2(ii).

The following result establishes for n = 3 the conjecture of De Giorgi in the form
stated in [DG]. Namely, we do not assume that u→ ±1 as x3 → ±∞. The result
applies to a class of nonlinearities which includes the model case F ′(u) = u3 − u
and also F ′(u) = sinu, for instance.

Theorem 1.2. Let u be a bounded solution of

∆u− F ′(u) = 0 in R3

satisfying

∂3u > 0 in R3.

Assume that F ∈ C2(R) and that

F ≥ min{F (m), F (M)} in (m,M)(1.5)

for each pair of real numbers m < M satisfying F ′(m) = F ′(M) = 0, F ′′(m) ≥ 0
and F ′′(M) ≥ 0. Then the level sets of u are planes, i.e., there exist a ∈ R3 and
g ∈ C2(R) such that

u(x) = g(a · x) for all x ∈ R3.

Our proof of Theorem 1.1 will only require F ∈ C1,1(R), i.e., F ′ Lipschitz.
However, in Theorem 1.2 we need F ′ of class C1.

Question. Do Theorems 1.1 and 1.2 hold for every nonlinearity F ∈ C2? That is,
can one remove hypotheses (1.4) and (1.5) in these results?

The first partial result on the question of De Giorgi was found in 1980 by Modica
and Mortola [MM2]. They gave a positive answer to the conjecture for n = 2
under the additional assumption that the level sets of u are the graphs of an equi-
Lipschitzian family of functions. Note that, since ∂nu > 0, each level set of u is the
graph of a function of x′.

In 1985, Modica [M1] proved that if F ≥ 0 in R, then every bounded solution u
of ∆u− F ′(u) = 0 in Rn satisfies the gradient bound

1
2
|∇u|2 ≤ F (u) in Rn.(1.6)

In 1994, Caffarelli, Garofalo and Segala [CGS] generalized this bound to more
general equations. They also showed that, if equality occurs in (1.6) at some point
of Rn, then the conclusion of the conjecture of De Giorgi is true. More recently,
Ghoussoub and Gui [GG] have proved the conjecture in full generality when n = 2
(see also [F3], where weaker assumptions than ∂2u > 0 and more general elliptic
operators are considered).

Under the additional assumption that u(x′, xn)→ ±1 as xn → ±∞ uniformly in
x′ ∈ Rn−1, it is known that u only depends on the variable xn; here, the hypothesis
∂nu > 0 is not needed. This result was first proved in [GG] for n = 3, and more
recently in any dimension n by Barlow, Bass and Gui [BBG], Berestycki, Hamel
and Monneau [BHM], and Farina [F2]. Their results apply to various classes of
nonlinearities F , which always include the Ginzburg-Landau model. These papers
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also contain related results where the assumption on the uniformity of the limits
u→ ±1 is replaced by various hypotheses on the level sets of u. The paper [BBG]
uses probabilistic methods, [BHM] uses the sliding method, and [GG] and [F2] are
based on the moving planes method.

Using a one-dimensional arrangement argument, Farina [F1] proved the con-
clusion u = u(xn) provided that u minimizes the energy functional in an infinite
cylinder ω×R (with ω bounded) among the functions satisfying v(x′, xn)→ ±1 as
xn → ±∞ uniformly in x′ ∈ ω.

Our proof of the conjecture of De Giorgi in dimension 3 proceeds as the proof
given in [BCN] and [GG] for n = 2. That is, for every coordinate xi, we consider
the function σi = ∂iu/∂nu. The goal is to show that σi is constant (then the
conjecture follows immediately) and this will be achieved using a Liouville type
result (Proposition 2.1 below) for a nonuniformly elliptic equation satisfied by σi.
The following energy estimate is the key result that will allow us to apply such a
Liouville type theorem when n = 3. This energy estimate holds, however, in all
dimensions and for arbitrary C2(R) nonlinearities.

Theorem 1.3. Let u be a bounded solution of

∆u− F ′(u) = 0 in Rn,

where F is an arbitrary C2(R) function. Assume that

∂nu > 0 in Rn and lim
xn→+∞

u(x′, xn) = 1 for all x′ ∈ Rn−1.

For every R > 1, let BR = {|x| < R}. Then,∫
BR

{
1
2
|∇u|2 + F (u)− F (1)

}
dx ≤ CRn−1

for some constant C independent of R.

The energy functional in BR,

ER(u) =
∫
BR

{
1
2
|∇u|2 + F (u)− F (1)

}
dx,

has ∆u − F ′(u) = 0 as Euler-Lagrange equation. In 1989, Modica [M2] proved a
monotonicity formula for the energy. It states that if

F ≥ F (1) in R

and u is a bounded solution of ∆u− F ′(u) = 0 in Rn, then the quantity

ER(u)
Rn−1

is a nondecreasing function of R. Theorem 1.3 establishes that this quotient is, in
addition, bounded from above. Moreover, the monotonicity formula shows that the
upper bound in Theorem 1.3 is optimal: indeed, if ER(u)/Rn−1 → 0 as R → ∞,
then we would obtain that ER(u) = 0 for any R > 0, and hence that u is constant
in Rn.

Note that the estimate of Theorem 1.3 is clearly true assuming that u is a one-
dimensional solution; see (3.7) in Lemma 3.2(i). The estimate is also easy to prove
for u as in Theorem 1.3 under the additional assumption that u is a local minimizer
of the energy; see Remark 2.3. In this case, the estimate already appears as a lemma
in the work of Caffarelli and Córdoba [CC] on the convergence of intermediate level
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surfaces in phase transitions. The proof of the estimate for u as in Theorem 1.3
involves a new idea. It originated from the proof for local minimizers and from a
relation between the key hypothesis ∂nu > 0 and the second variation of energy;
see section 2.

Finally, we recall the heuristic argument that connects the conjecture of De
Giorgi with the Bernstein problem for minimal graphs. For simplicity let us suppose
that F (u) = (1 − u2)2/4. With u as in the conjecture, consider the blown-down
sequence

uε(y) = u(y/ε) for y ∈ B1 ⊂ Rn,
and the penalized energy of uε in B1:

Hε(uε) =
∫
B1

{
ε

2
|∇uε|2 +

1
ε
F (uε)

}
dy.

Note that Hε(uε) is a bounded sequence, by Theorem 1.3. As ε→ 0, the function-
als Hε Γ-converge to a functional which is finite only for characteristic functions
with values in {−1, 1} and equal (up to the multiplicative constant 2

√
2/3) to the

area of the hypersurface of discontinuity; see [MM1] and [LM]. Heuristically, the
sequence uε is expected to converge to a characteristic function whose hypersurface
of discontinuity S has minimal area or is at least stationary. The set S describes
the behavior at infinity of the level sets of u, and S is expected to be the graph of
a function defined on Rn−1 (since the level sets of u are graphs due to hypothesis
∂nu > 0). The conjecture of De Giorgi states that the level sets are hyperplanes.
The connection with the Bernstein problem (see Chapter 17 of [G] for a complete
survey on this topic) is due to the fact that every minimal graph of a function de-
fined on Rm = Rn−1 is known to be a hyperplane whenever m ≤ 7, i.e., n ≤ 8. On
the other hand, Bombieri, De Giorgi and Giusti [BDG] established the existence of
a smooth and entire minimal graph of a function of eight variables different than a
hyperplane.

In a forthcoming work [AAC] with Alberti, we will use new variational methods
to study the conjecture of De Giorgi in higher dimensions.

In section 2 we prove Theorems 1.1 and 1.3. Section 3 is devoted to establishing
Theorem 1.2.

2. Proof of Theorem 1.1

To prove the conjecture of De Giorgi in dimension 3, we will use the energy
estimate of Theorem 1.3. It is this estimate that will allow us to apply, when
n = 3, the following Liouville type result for the equation ∇ · (ϕ2∇σ) = 0, where
ϕ = ∂nu, σ = ∂iu/∂nu, and ∇· denotes the divergence operator.

Proposition 2.1. Let ϕ ∈ L∞loc(Rn) be a positive function. Suppose that σ ∈
H1

loc(Rn) satisfies

σ∇ · (ϕ2∇σ) ≥ 0 in Rn(2.1)

in the distributional sense. For every R > 1, let BR = {|x| < R} and assume that∫
BR

(ϕσ)2 ≤ CR2,(2.2)

for some constant C independent of R. Then σ is constant.
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The study of this type of Liouville property, its connections with the spectrum
of linear Schrödinger operators, as well as its applications to symmetry properties
of solutions of nonlinear elliptic equations, were developed by Berestycki, Caffarelli
and Nirenberg [BCN]. In the papers [BCN] and [GG], this Liouville property was
shown to hold under various decay assumptions on ϕσ. These hypotheses, which
were more restrictive than (2.2), could not be verified when trying to establish the
conjecture of De Giorgi for n ≥ 3. We then realized that hypothesis (2.2) could be
verified when (and only when) n ≤ 3 and that, at the same time, (2.2) was sufficient
to carry out the proof of the Liouville property given in [BCN]. For convenience, we
include below their proof of Proposition 2.1. See Remark 2.2 for another question
regarding this Liouville property.

Before proving Theorem 1.3 and Proposition 2.1, we use these results to give
the detailed proof of Theorem 1.1. First, we establish some simple bounds and
regularity results for the solution u. We assume that u is a bounded solution of
∆u − F ′(u) = 0 in the distributional sense in Rn. It follows that u is of class C1,
and that ∇u is bounded in the whole Rn, i.e.,

|∇u| ∈ L∞(Rn).(2.3)

Indeed, applying interiorW 2,p estimates, with p > n, to the equation ∆u = F ′(u) ∈
L∞ in every ball B2(y) of radius 2 in Rn, we find that

‖u‖W 2,p(B1(y)) ≤ C
{
‖u‖L∞(B2(y)) + ‖F ′(u)‖Lp(B2(y))

}
≤ C

with C independent of y. Using the Sobolev embedding W 2,p(B1(y)) ⊂ C1(B1(y))
for p > n, we conclude (2.3) and that u ∈ C1.

Next, we verify that

u ∈ W 3,p
loc (Rn) for all 1 ≤ p <∞;

in particular, we have that

u ∈ C2,α(Rn) for all 0 < α < 1.

Indeed, since F ′ is C1, and u and ∇u are bounded, we have that F ′(u) ∈W 1,p
loc (Rn),

∇F ′(u) = F ′′(u)∇u, and

∆ ∂ju− F ′′(u) ∂ju = 0(2.4)

in the weak sense, for every index j. Since F ′′(u)∂ju ∈ L∞(Rn) ⊂ Lploc(Rn), we
obtain ∂ju ∈W 2,p

loc (Rn).

Proof of Theorem 1.1. For each i ∈ {1, 2}, we consider the functions

ϕ = ∂3u and σi =
∂iu

∂3u
.

Note that σi is well defined since ∂3u > 0. We also have that σi is C1,α (see the
remarks made above about the regularity of u) and that

ϕ2∇σi = ∂3u∇∂iu− ∂iu∇∂3u.

Since the right hand side of the last equality belongs to W 1,p
loc (R3), we can use that

∂iu and ∂3u satisfy the same linearized equation ∆w − F ′′(u)w = 0 to conclude
that

∇ · (ϕ2∇σi) = 0

in the weak sense in R3.
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Our goal is to apply to this equation the Liouville property of Proposition 2.1.
Since

ϕσi = ∂iu,

condition (2.2) will be established if we show that, for each R > 1,∫
BR

|∇u|2 ≤ CR2(2.5)

for some constant C independent of R.
Recall that, by assumption, F ≥ min{F (−1), F (1)} in (−1, 1). Suppose first

that min{F (−1), F (1)} = F (1). In this case we have F (u) − F (1) ≥ 0 in R3.
Hence, applying Theorem 1.3 with n = 3 (it is here and only here that we use
n = 3), we conclude that

1
2

∫
BR

|∇u|2 ≤
∫
BR

{
1
2
|∇u|2 + F (u)− F (1)

}
≤ CR2.

This proves (2.5). In case that min{F (−1), F (1)} = F (−1), we obtain the same con-
clusion by applying the previous argument with u(x′, x3) replaced by −u(x′,−x3)
and with F (v) replaced by F (−v).

By Proposition 2.1, we have that σi is constant, that is,

∂iu = ci ∂3u

for some constant ci. Hence, u is constant along the directions (1, 0,−c1) and
(0, 1,−c2). We conclude that u is a function of the variable a · x alone, where
a = (c1, c2, 1).

When carried out in dimension 2, the previous proof is essentially the one given
in [GG] to establish their extended version of the conjecture of De Giorgi for n = 2.
The proof above shows that every bounded solution u of ∆u − F ′(u) = 0 in R2,
with ∂2u > 0 and F ∈ C2(R), is a function of one variable only. Here, no other
assumption on F is required, since there is no need to apply Theorem 1.3. Indeed,
when n = 2, (2.5) is obviously satisfied since ∇u is bounded.

Remark 2.2. In [BCN], the authors raised the following question: Does Proposi-
tion 2.1 hold for n ≥ 3 under the assumption ϕσ ∈ L∞(Rn) – instead of (2.2)?
If the answer were yes, then the previous proof would establish the conjecture of
De Giorgi in dimension n, since we have that ϕσi = ∂iu is bounded in Rn. However,
it has been established by Ghoussoub and Gui [GG] for n ≥ 7, and later by Barlow
[B] for n ≥ 3, that the answer to the above question is negative.

We turn now to the

Proof of Theorem 1.3. We consider the functions

ut(x) = u(x′, xn + t),

defined for x = (x′, xn) ∈ Rn and t ∈ R. For each t, we have

∆ut − F ′(ut) = 0 in Rn

and

|ut|+ |∇ut| ≤ C in Rn,
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by (2.3); throughout the proof, C will denote different positive constants indepen-
dent of R and t. Note also that

lim
t→+∞

ut(x) = 1 for all x ∈ Rn.

Denoting the derivative of ut(x) with respect to t by ∂tut(x), we have

∂tu
t(x) = ∂nu(x′, xn + t) > 0 for all x ∈ Rn.

We consider the energy of ut in the ball BR = BR(0) defined by

ER(ut) =
∫
BR

{
1
2
|∇ut|2 + F (ut)− F (1)

}
dx.

Note that

lim
t→+∞

ER(ut) = 0.(2.6)

Indeed, the term
∫
BR
{F (ut) − F (1)} tends to zero as t → +∞ by the Lebesgue

dominated convergence theorem. To see that the term
∫
BR

(1/2)|∇ut|2 also tends
to zero, we multiply ∆ut − F ′(ut) = 0 by ut − 1 and we integrate by parts in BR.
We obtain ∫

BR

|∇ut|2 =
∫
∂BR

∂ut

∂ν
(ut − 1)−

∫
BR

F ′(ut)(ut − 1).

Clearly, the last two integrals converge to zero, again by the dominated convergence
theorem.

Next, we compute and bound the derivative of ER(ut) with respect to t. We use
the equation ∆ut−F ′(ut) = 0, the L∞ bounds for ut and ∇ut, and the crucial fact
∂tu

t > 0. We find that

∂tER(ut) =
∫
BR

∇ut∇(∂tut) +
∫
BR

F ′(ut)∂tut

=
∫
∂BR

∂ut

∂ν
∂tu

t

≥ −C
∫
∂BR

∂tu
t.(2.7)

Hence, for each T > 0, we have

ER(u) = ER(uT )−
∫ T

0

dt ∂tER(ut)

≤ ER(uT ) + C

∫ T

0

dt

∫
∂BR

dσ(x) ∂tut(x)

= ER(uT ) + C

∫
∂BR

dσ(x)
∫ T

0

dt ∂t[ut(x)]

= ER(uT ) + C

∫
∂BR

dσ(x) (uT − u)(x)

≤ ER(uT ) + C|∂BR| = ER(uT ) + CRn−1.(2.8)

Letting T → +∞ and using (2.6), we obtain the desired estimate.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



ENTIRE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS 733

Now that Theorems 1.3 and 1.1 are proved, we can verify that these results only
require F ′ Lipschitz – instead of F ∈ C2. The only delicate point to be checked
is the linearized equation (2.4), which is then used to derive the equation satisfied
by σi in the weak sense. To verify (2.4), we use that u ∈ W 1,p

loc (Rn) ∩ L∞(Rn) and
that F ′ is Lipschitz. It follows (see Theorem 2.1.11 of [Z]) that F ′(u) ∈ W 1,p

loc (Rn)
and ∇F ′(u) = F ′′(u)∇u almost everywhere. Using this, we derive (2.4).

Remark 2.3. Recall that u is said to be a local minimizer if, for every bounded
domain Ω, u is an absolute minimizer of the energy in Ω on the class of functions
agreeing with u on ∂Ω. It is easy to prove estimate ER(u) ≤ CRn−1, for R > 1,
whenever u ∈ L∞(Rn) is a local minimizer. We just compare the energy of u with
the energy of a function satisfying v ≡ 1 in BR−1 and v = u on ∂BR. Take, for
instance, v = η + (1− η)u, where 0 ≤ η ≤ 1 has compact support in BR and η ≡ 1
in BR−1. Then

ER(u) ≤ ER(v) =
∫
BR\BR−1

{
1
2
|∇v|2 + F (v)− F (1)

}
dx

≤ C|BR \BR−1| ≤ CRn−1,

with C independent of R.

This proof suggested we look for an appropriate path connecting u with the
constant function 1, in the general case of Theorem 1.3. We have seen that this is
given by the solution u itself. Indeed, sliding u in the direction xn, we obtain the
path ut(x) = u(x′, xn + t) connecting u for t = 0 and the function 1 for t = +∞
in the ball BR = BR(0). Moreover, this path is made by functions which are all
solutions of the same Euler-Lagrange equation.

At the same time, it is interesting to observe that the condition ∂nu > 0 forces
the second variation of energy in BR at u (and hence, also at each function ut in
the path) to be nonnegative under perturbations vanishing on ∂BR. Indeed, ∂nu
is a positive solution of the linearized equation ∆ ∂nu− F ′′(u) ∂nu = 0. By a well-
known result in the theory of the maximum principle, this implies that the first
eigenvalue of the operator −∆ +F ′′(u) in every ball BR is nonnegative (this result
will be needed and established in the proof of Lemma 3.1). Therefore,∫

BR

|∇ξ|2 + F ′′(u)ξ2 ≥ 0 for all ξ ∈ C∞c (BR),

which means that the second variation of energy is nonnegative under perturbations
vanishing on ∂BR.

Finally, we present the proof of the Liouville property exactly as given in [BCN].

Proof of Proposition 2.1. Let ζ be a C∞ function on R+ such that 0 ≤ ζ ≤ 1 and

ζ =

{
1 if 0 ≤ t ≤ 1,
0 if t ≥ 2.

For R > 1, let

ζR(x) = ζ

(
|x|
R

)
for x ∈ Rn.
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Multiplying (2.1) by ζ2
R and integrating by parts in Rn, we obtain∫

ζ2
R ϕ

2|∇σ|2 ≤ −2
∫
ζR ϕ

2σ∇ζR · ∇σ

≤ 2

[∫
{R<|x|<2R}

ζ2
R ϕ

2|∇σ|2
]1/2 [∫

ϕ2σ2|∇ζR|2
]1/2

≤ C
[∫
{R<|x|<2R}

ζ2
R ϕ

2|∇σ|2
]1/2 [

1
R2

∫
B2R

(ϕσ)2

]1/2

,

for some constant C independent of R. Using hypothesis (2.2), we infer that∫
ζ2
R ϕ

2|∇σ|2 ≤ C
[∫
{R<|x|<2R}

ζ2
R ϕ

2|∇σ|2
]1/2

,(2.9)

again with C independent of R. This implies that
∫
ζ2
R ϕ

2|∇σ|2 ≤ C and, letting
R→∞, we obtain ∫

Rn
ϕ2|∇σ|2 ≤ C.

It follows that the right hand side of (2.9) tends to zero as R→∞, and hence∫
Rn
ϕ2|∇σ|2 = 0.

We conclude that σ is constant.

3. Proof of Theorem 1.2

To prove Theorem 1.2, we proceed as in the previous section. We need to es-
tablish the energy estimate ER(u) ≤ CR2. In the definition of ER(u), we now
replace the term F (1) of the previous section by F (supu). Looking at the proof
of Theorem 1.3, we see that the difficulty arises when trying to show (2.6), i.e.,
limt→+∞ER(ut) = 0 – since we no longer assume limx3→+∞ u(x′, x3) = supu for
all x′. Hence, we consider the function

u(x′) = lim
x3→+∞

u(x′, x3),

which is a solution of the same semilinear equation, but now in R2. Using a method
developed by Berestycki, Caffarelli and Nirenberg [BCN] to study symmetry of
solutions in half spaces, we establish a stability property for u which will imply
that u is actually a solution depending on one variable only. As a consequence, we
will obtain that the energy of u in a two-dimensional ball of radius R is bounded
by CR and, hence, that

lim sup
t→+∞

ER(ut) ≤ CR2.

Proceeding exactly as in the proof of Theorem 1.3, this estimate will suffice to
establish ER(u) ≤ CR2 and, under the assumptions made on F , the conjecture.
The rest of this section is devoted to giving the precise proof of Theorem 1.2.

We start with a lemma that states the stability property of u and its conse-
quences.
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Lemma 3.1. Let F ∈ C2(R) and let u be a bounded solution of ∆u−F ′(u) = 0 in
Rn satisfying ∂nu > 0 in Rn. Then, the function

u(x′) = lim
xn→+∞

u(x′, xn)(3.1)

is a bounded solution of

∆u− F ′(u) = 0 in Rn−1(3.2)

and, in addition, there exists a positive function ϕ ∈W 2,p
loc (Rn−1) for every p <∞,

such that

∆ϕ− F ′′(u)ϕ ≤ 0 in Rn−1.(3.3)

As a consequence, if n = 3, then u is a function of one variable only. More
precisely, either

(a) u is equal to a constant M satisfying F ′′(M) ≥ 0, or
(b) there exist b ∈ R2, with |b| = 1, and a function h ∈ C2(R) such that h′ > 0

in R and

u(x′) = h(b · x′) for all x′ ∈ R2.

The following lemma, which is elementary, is concerned with one-dimensional
solutions. We will use its first part.

Lemma 3.2. Let F be a C2(R) function.
(i) Suppose that there exists a bounded function h ∈ C2(R) satisfying

h′′ − F ′(h) = 0 and h′ > 0 in R.(3.4)

Let m1 = infR h and m2 = supR h. Then, we have

F ′(m1) = F ′(m2) = 0,(3.5)

F > F (m1) = F (m2) in (m1,m2),(3.6)

and ∫ +∞

−∞

{
1
2
h′(s)2 + F (h(s))− F (m2)

}
ds < +∞.(3.7)

(ii) Conversely, assume that m1 < m2 are two real numbers such that F satisfies
(3.5) and (3.6). Then there exists an increasing solution h of h′′ − F ′(h) = 0 in R,
with lims→−∞ h(s) = m1 and lims→+∞ h(s) = m2. Such a solution is unique up to
a translation of the independent variable s.

We start with the proof of Lemma 3.1. Here, we employ several ideas taken from
section 3 of [BCN].

Proof of Lemma 3.1. The fact that u is a solution of ∆u − F ′(u) = 0 in Rn−1

is easily verified viewing u as a function of n variables, limit as t → +∞ of the
functions ut(x′, xn) = u(x′, xn + t). By standard elliptic theory, ut → u uniformly
in the C1 sense on compact sets of Rn.

To check the existence of ϕ > 0 satisfying (3.3), we use that

∂nu > 0 and ∆ ∂nu− F ′′(u) ∂nu = 0 in Rn.(3.8)

It is well known in the theory of the maximum principle that (3.8) leads to∫
Rn
|∇ξ|2 + F ′′(u)ξ2 ≥ 0 for all ξ ∈ C∞c (Rn);(3.9)
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that is, the first eigenvalue (with Dirichlet boundary conditions) of −∆ +F ′′(u) in
every bounded domain is nonnegative. Indeed, (3.9) can be easily proved by mul-
tiplying the equation in (3.8) by ξ2/∂nu – recall that ∂nu ∈ C1,α – and integrating
by parts to obtain∫

2ξ
∂nu
∇∂nu · ∇ξ + F ′′(u)ξ2 =

∫
ξ2

(∂nu)2
|∇∂nu|2.

Then, (3.9) follows by the Cauchy-Schwarz inequality.
Next, we claim that∫

Rn−1
|∇η|2 + F ′′(u)η2 ≥ 0 for all η ∈ C∞c (Rn−1).(3.10)

To show this, we take ρ > 0 and ψρ ∈ C∞(R) with 0 ≤ ψρ ≤ 1, 0 ≤ ψ′ρ ≤ 2, ψρ = 0
in (−∞, ρ) ∪ (2ρ+ 2,+∞), and ψρ = 1 in (ρ+ 1, 2ρ+ 1), and we apply (3.9) with
ξ(x) = η(x′)ψρ(xn). We obtain, after dividing the expression by αρ =

∫
ψ2
ρ, that∫

Rn−1
|∇η(x′)|2 +

∫
Rn−1

η2(x′)
∫
R

(ψ′ρ)
2(xn)
αρ

+
∫
Rn−1

η2(x′)
∫
R
F ′′(u(x′, xn))

ψ2
ρ(xn)
αρ

is nonnegative. Passing to the limit as ρ → +∞, and using F ∈ C2 and that
u(x′, xn) converges to u(x′) as xn → +∞ uniformly in compact sets of Rn−1, we
conclude (3.10). This is the crucial point where we need F ∈ C2, and not only
F ∈ C1,1.

Now, (3.10) implies that the first eigenvalue λ1,R of −∆ + F ′′(u) in the ball
B′R = {x′ ∈ Rn−1 : |x′| < R} is nonnegative for every R > 1. Let ϕR > 0 be the
corresponding first eigenfunction in B′R:{

∆ϕR − F ′′(u)ϕR = −λ1,R ϕR in B′R,

ϕR = 0 on ∂B′R,

normalized such that ϕR(0) = 1. Note that λ1,R ≥ 0 is decreasing in R and,
hence, bounded. Therefore, the Harnack inequality gives that ϕR are bounded,
uniformly in R, on every compact set of Rn−1. By W 2,p estimates, it follows that
a subsequence of ϕR converges in W 2,p

loc to a positive function ϕ ∈ W 2,p
loc (Rn−1), for

every p <∞, satisfying ∆ϕ− F ′′(u)ϕ ≤ 0 in Rn−1 (since λ1,R ≥ 0 for every R).
Finally, assume that n = 3. For each i ∈ {1, 2}, we consider the function

σi =
∂iu

ϕ
in R2.

Note that σi is well defined and we have enough regularity to compute:

∇ · (ϕ2∇σi) = ϕ∆∂iu− ∂iu∆ϕ,

and hence

σi∇ · (ϕ2∇σi) = ∂iu∆∂iu− (∂iu)2(∆ϕ/ϕ)

= (∂iu)2F ′′(u)− (∂iu)2(∆ϕ/ϕ)
≥ 0,

by (3.3).
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Next, we apply the Liouville property of Proposition 2.1 to this inequality in R2.
Since ϕσi = ∂iu is bounded and the dimension is two, condition (2.2) holds. We
obtain that σi is constant, that is,

∂iu = ciϕ(3.11)

for some constant ci. If c1 = c2 = 0, then u is equal to a constant M . In this case,
(3.10) obviously implies that F ′′(M) ≥ 0.

If at least one ci is not zero, then u is constant along the direction (c2,−c1),
by (3.11). Hence, taking b = |(c1, c2)|−1(c1, c2), we find that u(x′) = h(b · x′)
in R2 for some function h. Using this relation and (3.11), we see that ciϕ =
ci|(c1, c2)|−1h′(b · x′), and hence h′ > 0 in R.

Next, we sketch the proof of Lemma 3.2, which is elementary.

Proof of Lemma 3.2. (i) Multiplying the equation by h′ and integrating, we find
that 2F (h) − (h′)2 = c is constant in R. Since h has finite limits as s → ±∞ we
obtain

lim inf
s→±∞

h′(s) = 0,(3.12)

whence c is equal to both 2F (m1) and 2F (m2). Since 2F (h) = c+(h′)2 > c and the
image of h is (m1,m2), we infer (3.6). The equalities F ′(m1) = F ′(m2) = 0 follow
from the equation h′′ − F ′(h) = 0 and from (3.12), using the mean value theorem.
Finally, the integral in (3.7) is equal to

∫ +∞
−∞ (h′)2 ds, which can be estimated by

(m2 −m1) suph′ ≤ (m2 −m1)
√

2D < +∞,
where D = supt∈(m1,m2) F (t)− F (m1).

(ii) Let m ∈ (m1,m2) and let φ : (m1,m2)→ R be the function

φ(t) =
∫ t

m

1√
2F (z)− 2F (m1)

dz,

well defined thanks to (3.6). By (3.5) and F (m1) = F (m2), we infer that the image
of φ is the whole real line, and it is easy to check by integration that the unique
increasing solution of h′′−F ′(h) = 0 in R satisfying h(0) = m is the inverse function
of φ.

Finally, we give the

Proof of Theorem 1.2. Since ∂3u > 0, the proof of Theorem 1.1 shows that Theo-
rem 1.2 will be established if we prove (2.5) for every R > 1, i.e.,∫

BR

|∇u|2 ≤ CR2

for some constant C independent of R.
Let

m = inf
R3
u and M = sup

R3
u,

and consider the functions

u(x′) = lim
x3→−∞

u(x′, x3) and u(x′) = lim
x3→+∞

u(x′, x3).

Note that u < u in R2, m = infR2 u, and M = supR2 u. We apply Lemma 3.1. If u
is constant, then necessarily u ≡M , F ′(M) = 0 by (3.2), and F ′′(M) ≥ 0 as stated
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in Lemma 3.1. In case (b) of Lemma 3.1, we see that the function h satisfies (3.4).
Hence, we can apply Lemma 3.2(i) with m1 = inf u < m2 = M = supu, and we
obtain again that F ′(M) = 0 and, using (3.6), that F ′′(M) ≥ 0. Hence, we have
proved that we always have

F ′(M) = 0 and F ′′(M) ≥ 0.

In an analogous way, arguing with u (or simply replacing u(x′, x3) by −u(x′,−x3),
and F (v) by F (−v)), we see that

F ′(m) = 0 and F ′′(m) ≥ 0.

By the hypothesis made on F , it follows that F ≥ min{F (m), F (M)} in (m,M).
Suppose first that min{F (m), F (M)} = F (M) (the other case reduces to this one,
again by the same change of u and F as before). Then, F (u) − F (M) ≥ 0 in R3.
Hence, the theorem will be proved if we show that∫

BR

{
1
2
|∇u|2 + F (u)− F (M)

}
dx ≤ CR2

for each R > 1.
To establish this, we proceed as in the proof of Theorem 1.3. That is, we consider

the functions ut(x) = u(x′, xn + t) defined for x = (x′, xn) ∈ Rn and t ∈ R, and the
energy of ut in the ball BR = BR(0), defined now by

ER(ut) =
∫
BR

{
1
2
|∇ut|2 + F (ut)− F (M)

}
dx.

We need to show that ER(u) = ER(u0) ≤ CR2. The computations leading to
inequalities (2.7) and (2.8) are still valid here – since the extra hypothesis of The-
orem 1.1, limx3→±∞ u(x′, x3) = ±1, was only used in the proof of Theorem 1.3 to
establish (2.6), i.e., limt→+∞ER(ut) = 0. Using (2.8) we see that ER(u) ≤ CR2

will hold if we verify

lim sup
t→+∞

ER(ut) ≤ CR2.

This inequality is an easy consequence of Lemmas 3.1 and 3.2(i). Indeed, using
standard elliptic estimates and that ut(x) increases in BR to u(x′) as t→ +∞, we
have

lim
t→+∞

ER(ut) =
∫
BR

{
1
2
|∇u(x′)|2 + F (u(x′))− F (M)

}
dx

≤ CR
∫
B′R

{
1
2
|∇u(x′)|2 + F (u(x′))− F (M)

}
dx′,

where B′R = {|x′| < R} ⊂ R2. But the last integral∫
B′R

{(1/2)|∇u(x′)|2 + F (u(x′))− F (M)} dx′,

which is computed in a two-dimensional ball, is bounded byCR, since u is a function
of one variable only (by Lemma 3.1), and in this variable the energy is integrable
on all the real line, by (3.7). The proof is now complete.
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Added in proof

In the forthcoming article [AAC] with Alberti, we have proved that Theorem 1.2
holds for every nonlinearity F ∈ C2. That is, the additional hypothesis (1.5) on F
is not needed in this theorem.
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Basel-Boston (1984). MR 87a:58041
[LM] S. Luckhaus and L. Modica, The Gibbs–Thompson relation within the gradient theory of

phase transitions, Arch. Rational Mech. Anal. 107 (1989), 71–83. MR 90k:49041
[M1] L. Modica, A gradient bound and a Liouville theorem for nonlinear Poisson equations,

Comm. Pure Appl. Math. 38 (1985), 679–684. MR 87m:35088
[M2] L. Modica, Monotonicity of the energy for entire solutions of semilinear elliptic equa-

tions, Partial differential equations and the calculus of variations, Vol. II., Progr. Non-
linear Differential Equations Appl. 2, 843–850. MR 91a:35015

[MM1] L. Modica and S. Mortola, Un esempio di Γ−-convergenza, Boll. Un. Mat. Ital. B (5) 14
(1977), 285–299. MR 56:3704

[MM2] L. Modica and S. Mortola, Some entire solutions in the plane of nonlinear Poisson
equations, Boll. Un. Mat. Ital. B (5) 17 (1980), 614–622. MR 81k:35036

[Z] W. P. Ziemer, Weakly Differentiable Functions, Springer Verlag, New York (1989).
MR 91e:46046

Scuola Normale Superiore di Pisa, Piazza dei Cavalieri, 7, 56126 Pisa, Italy

E-mail address: luigi@ambrosio.sns.it
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