A STRONG COMPARISON PRINCIPLE FOR THE p-LAPLACIAN

PAOLO ROSELLI AND BERARDINO SCIUNZI

(Communicated by David S. Tartakoff)

Abstract

We consider weak solutions of the differential inequality of pLaplacian type $$
-\Delta_{p} u-f(u) \leq-\Delta_{p} v-f(v)
$$ such that $u \leq v$ on a smooth bounded domain in \mathbb{R}^{N} and either u or v is a weak solution of the corresponding Dirichlet problem with zero boundary condition. Assuming that $u<v$ on the boundary of the domain we prove that $u<v$, and assuming that $u \equiv v \equiv 0$ on the boundary of the domain we prove $u<v$ unless $u \equiv v$. The novelty is that the nonlinearity f is allowed to change sign. In particular, the result holds for the model nonlinearity $f(s)=s^{q}-\lambda s^{p-1}$ with $q>p-1$.

1. Introduction and statement of the results

Throughout this article Ω will be a bounded smooth domain of \mathbb{R}^{N} with $N \geq 2$. A function $w \in C^{1, \alpha}(\bar{\Omega})$ (see [6, 8, 12]) solves the equation

$$
-\Delta_{p} w=f(w) \text { weakly on } \Omega
$$

(where $p>1$ and f is a continuous real function that is locally Lipschitz on its domain) if and only if

$$
\begin{equation*}
\int_{\Omega}|\nabla w|^{p-2} \nabla w \cdot \nabla \phi d x=\int_{\Omega} f(w) \phi d x \quad \forall \phi \in W_{0}^{1, p}(\Omega) \tag{1.1}
\end{equation*}
$$

In this paper we consider the following problem:

$$
\left\{\begin{align*}
-\Delta_{p} w & =f(w) & & \text { weakly on } \Omega, \tag{1.2}\\
w & >0 & & \text { on } \Omega, \\
w & =0 & & \text { on } \partial \Omega .
\end{align*}\right.
$$

We restrict our attention to the case of positive solutions, and we recall that by the strong maximum principle for the p-Laplacian under quite general hypotheses on f (see [10, 13]) any nonnegative solution is in fact strictly positive.

Two functions $u, v \in C^{1, \alpha}(\bar{\Omega})$ satisfy the inequality

$$
-\Delta_{p} u-f(u) \leq-\Delta_{p} v-f(v) \text { weakly on } \Omega
$$

[^0]if and only if
$$
\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla \psi d x-\int_{\Omega} f(u) \psi d x \leq \int_{\Omega}|\nabla v|^{p-2} \nabla v \cdot \nabla \psi d x-\int_{\Omega} f(v) \psi d x
$$
for every $\psi \in W_{0}^{1, p}(\Omega)$ such that $\psi \geq 0$ a.e. Throughout this paper we will assume
\[

(A)_{p}\left\{$$
\begin{array}{l}
\text { both } u \text { and } v \text { are nonnegative on } \Omega \\
\text { either } u \text { or } v \text { solves problem ((1.2)), } \\
-\Delta_{p} u-f(u) \leq-\Delta_{p} v-f(v) \quad \text { weakly on } \Omega
\end{array}
$$\right.
\]

We say that a Strong Comparison Principle (SCP for short) holds for two functions $u, v \in C^{1, \alpha}(\bar{\Omega})$ satisfying $(A)_{p}$ if from the inequalities

$$
u \leq v \quad \text { on } \Omega
$$

we can infer the alternative

$$
u<v \text { on } \Omega \text { unless } u \equiv v \text { on } \Omega .
$$

We want to prove that, under suitable boundary conditions, such an SCP holds.
The novelty of the paper is that f can be a sign changing nonlinearity. For example, our assumptions allow us to consider nonlinearities such as

$$
f(s)=s^{q}-\lambda s^{p-1} \quad(\text { with } q>p-1)
$$

Even when f has definite sign, it is well known that this is a hard task due to the nonlinear degenerate nature of the p-Laplace operator. In fact, comparison principles are not equivalent in this case to maximum principles as for the case of linear operators. We refer the readers to [10] and the references therein for an interesting overview on this topic, and we recall here some known results.

In [3] it is proved that, if f is locally Lipschitz, a Strong Comparison Principle holds in any connected component of $\Omega \backslash Z_{u, v}$ where $Z_{u, v} \equiv\{x \in \Omega \mid \nabla u(x)=$ $0=\nabla v(x)\}$. In [7] it is proved that, if f is positive and nondecreasing, a Strong Comparison Principle holds assuming that u, v are both solutions of problem (1.2) or assuming as the boundary condition in (1.2) that $u<v$ on $\partial \Omega$. The results in [7] have been recently extended to a more general class of operators in [9, where also some interesting estimates on the set of possible touching points are proved. The assumptions of Theorem 1.3 in [9 are equivalent, in our context, to assuming that f is positive and nondecreasing. Also, we point out some interesting results in [1, 2] where the case of solutions of (1.2) is considered and a Strong Comparison Principle is proved for a particular class of problems involving nonlinearities that do not change sign 1

Some details of our proofs are similar to the ones in [1, 2]. In particular, we point out that we will use a Divergence Theorem stated and proved in [2], together with some regularity results from [4]. The crucial tool anyway is a general result recently obtained in [5] where the case of positive nonlinearities is considered. Here we adapt Theorem 1.4 in [5] for future use.

[^1]Lemma 1.1. Assume $\frac{2 N+2}{N+2}<p \leq 2$ or $p \geq 2$. Let $u, v \in C^{1, \alpha}(\bar{\Omega})$ satisfy $(A)_{p}$ and f satisfy the following hypothesis:
$\left(f_{1}\right) \quad f$ is continuous on $[0,+\infty)$,
$\left(f_{2}\right) \quad f$ is locally Lipschitz continuous on $(0,+\infty)$.
Assume that u is a solution of (1.2) in Ω and assume that $f(u)$ has a definite sign on a domain $\Omega^{\prime} \subseteq \Omega$ (let us say $f(u)>0$); if $u \leq v$ and $u \neq v$ in Ω^{\prime}, then $u<v$ in Ω^{\prime}.

The same result follows assuming that v is a solution of (1.2) in Ω and $f(v)$ has a definite sign on Ω^{\prime}.

Remark 1.2. The restriction $p>\frac{2 N+2}{N+2}$ allows $|\nabla u|^{p-2}$ to be in $L^{1}(\Omega)$ (in [4] see Theorem 2.3). Lemma 1.1 follows from Theorem 1.4 in [5] by simple considerations. In Theorem 1.4 of [5] only the assumption $f(u)>0$ is considered, however it is clear from its proof that the assumption $f(u)<0$ is equivalent to the assumption $f(u)>0$. The statement of Lemma 1.1 is a local version of Theorem 1.4 in [5] since it holds in any domain $\Omega^{\prime} \subseteq \Omega$. Looking at the proof of Theorem 1.4 in [5] this causes only that a local version of Theorem 2.1 in [5] (see also Theorem 1.1 in (4]) is needed. The latter can be found in [11.

The aim of this paper is to deal with sign changing nonlinearities. More precisely, we keep hypothesis $(A)_{p},\left(f_{1}\right),\left(f_{2}\right)$ without assuming that $f(u)$ or $f(v)$ has definite sign. We simply assume

$$
\left(f_{3}\right) \quad f(t) \begin{cases}=0 & \text { if } t=0 \text { or } t=k>0 \\ <0 & \text { if } t \in(0, k) \\ >0 & \text { if } t \in(k,+\infty)\end{cases}
$$

$\left(f_{4}\right) \quad f$ is nondecreasing on some open interval I_{k} containing k.
We prove the following
Theorem 1.3. Assume $\frac{2 N+2}{N+2}<p \leq 2$ or $p \geq 2$. Let $u, v \in C^{1, \alpha}$ satisfy $(A)_{p}$ with f fulfilling $\left(f_{1}\right),\left(f_{2}\right),\left(f_{3}\right),\left(f_{4}\right)$, and assume that $u \leq v$ in Ω. Then, if $u<v$ on $\partial \Omega$, it follows

$$
u<v \text { in } \Omega
$$

Theorem 1.4. Assume $\frac{2 N+2}{N+2}<p \leq 2$ or $p \geq 2$. Let $u, v \in C^{1, \alpha}$ both satisfy (1.2) with f fulfilling $\left(f_{1}\right),\left(f_{2}\right),\left(f_{3}\right),\left(f_{4}\right)$, and assume that $u \leq v$ in Ω. Then, if $u \equiv v \equiv 0$ on $\partial \Omega$, the following alternative holds:

$$
u<v \text { in } \Omega \quad \text { or } \quad u \equiv v \text { in } \Omega
$$

2. Proof of Theorem 1.3

Let us consider the set where u and v possibly coincide:

$$
C_{u, v}=\{x \in \Omega: u(x)=v(x)\}
$$

We want to show that $C_{u, v}=\emptyset$. By contradiction, we assume that the closed set $C_{u, v}$ is not empty. This, under our hypothesis, equals $\partial C_{u, v} \neq \emptyset$.
2.1. Step 1. We claim that at each $x \in \partial C_{u, v}$ we have $u(x)=k$. We already know that $u \equiv v>0$ on $C_{u, v} \supset \partial C_{u, v}$ since either u or v is a solution of problem (1.2). Assume by contradiction that there exists some $\bar{x} \in \partial C_{u, v}$ such that $u(\bar{x}) \neq k$. By hypothesis $\left(f_{3}\right)$, we have $f(u(\bar{x})) \neq 0$. Without loss of generality we can consider $f(u(\bar{x}))>0$, and u as a solution of problem (1.2); in this case we can find an open ball $B\left(\bar{x}, r_{\bar{x}}\right)$ centered at \bar{x} such that $f(u)>0$ on $B\left(\bar{x}, r_{\bar{x}}\right)$. Since $\bar{x} \in \partial C_{u, v}, u$ can not coincide with v on the whole $B\left(\bar{x}, r_{\bar{x}}\right)$, thus we can apply Lemma 1.1 getting $u<v$ on $B\left(\bar{x}, r_{\bar{x}}\right)$, and this contradicts the hypothesis $u(\bar{x})=v(\bar{x})$.
2.2. Step 2. By assuming $C_{u, v} \neq \emptyset$, the function $\operatorname{dist}\left(x, C_{u, v}\right)$ is well defined at each $x \in \Omega$ and we can consider the open set

$$
C_{u, v}^{\epsilon}=\left\{x \in \Omega: \operatorname{dist}\left(x, C_{u, v}\right)<\epsilon\right\} \quad(\text { where } \epsilon>0)
$$

Since $u \equiv v \equiv k$ on $\partial C_{u, v}$, we can claim that there exists a $\bar{\epsilon}>0$ such that

$$
\begin{equation*}
\forall x \in C_{u, v}^{\bar{\epsilon}} \backslash C_{u, v} \quad u(x) \in I_{k} \quad \text { and } \quad v(x) \in I_{k} \tag{2.1}
\end{equation*}
$$

On the contrary we would have that

$$
\forall \epsilon>0 \exists x_{\epsilon} \in C_{u, v}^{\epsilon} \backslash C_{u, v} \quad u\left(x_{\epsilon}\right) \notin I_{k} \quad \text { or } \quad v\left(x_{\epsilon}\right) \notin I_{k} .
$$

By choosing $\epsilon=\frac{1}{n}$ there would exist a sequence $\left(x_{n}\right)$ such that

$$
x_{n} \in C_{u, v}^{\frac{1}{n}} \backslash C_{u, v} \quad u\left(x_{n}\right) \notin I_{k} \quad \text { or } \quad v\left(x_{n}\right) \notin I_{k} .
$$

From this sequence we could extract a subsequence $\left(x_{n^{\prime}}\right)$ such that

$$
x_{n^{\prime}} \in C_{u, v}^{\frac{1}{n^{\prime}}} \backslash C_{u, v} \quad w\left(x_{n^{\prime}}\right) \notin I_{k}
$$

where w would be either u or v. As Ω is bounded we could extract from $\left(x_{n^{\prime}}\right)$ a subsequence $\left(x_{n^{\prime \prime}}\right)$ that would necessarily converge to some point $z \in \partial C_{u, v}$ where $w(z)=k$. But this would end the contradiction $w\left(x_{n^{\prime \prime}}\right) \rightarrow k$ and $w\left(x_{n^{\prime \prime}}\right) \notin I_{k}$.
2.3. Step 3 [Contradiction]. By construction we have that $u<v$ on $\partial C_{u, v}^{\bar{\epsilon}}$. As $\partial C_{u, v}^{\bar{\epsilon}}$ is compact, there exists some $\rho>0$ such that $u+\rho<v$ on $\partial C_{u, v}^{\bar{\epsilon}}$. Let us consider the function $w_{\rho}: \bar{\Omega} \rightarrow[0,+\infty)$ defined as follows:

$$
w_{\rho}= \begin{cases}(u+\rho-v)^{+} & \text {on } C_{u, v}^{\bar{\epsilon}} \\ 0 & \text { on } \bar{\Omega} \backslash C_{u, v}^{\bar{\epsilon}}\end{cases}
$$

Since $u+\rho<v$ on $\partial C_{u, v}^{\bar{\epsilon}}$, we have that $w_{\rho} \in W_{0}^{1, p}(\Omega)$ and

$$
\nabla w_{\rho}= \begin{cases}\nabla u-\nabla v & \text { where } w_{\rho}>0 \\ 0 & \text { elsewhere }\end{cases}
$$

As w_{ρ} is a test function, we can use it in (1.1) obtaining ${ }^{2}$

$$
\begin{aligned}
\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla w_{\rho} & =\int_{\Omega} f(u) w_{\rho} \\
& =\int_{C_{u, v}^{\bar{\epsilon}}} f(u) w_{\rho} \\
& =\int_{C_{u, v}^{\bar{\epsilon}} \backslash C_{u, v}} f(u) w_{\rho}+\int_{C_{u, v}} f(u) w_{\rho} \\
& =\int_{C_{u, v}^{\bar{\epsilon}} \backslash C_{u, v}} f(u) w_{\rho}+\int_{C_{u, v}} f(v) w_{\rho} \\
& \leq \int_{C_{u, v}^{\bar{\epsilon}} \backslash C_{u, v}} f(v) w_{\rho}+\int_{C_{u, v}} f(v) w_{\rho} \\
& =\int_{C_{u, v}^{\bar{\epsilon}}} f(v) w_{\rho}=\int_{\Omega} f(v) w_{\rho} \\
& \left\langle r e c a l l(A)_{p} \text { on } \Omega C_{u, v}^{\bar{\epsilon}}\right\rangle \\
& \left.\leq \int_{\Omega}|\nabla v|^{p-2} \nabla v \cdot{ }^{p} \text { and }\left(f_{4}\right)\right\rangle \\
& \text { is a solution of (1.2) }\rangle
\end{aligned}
$$

that is,

$$
\begin{aligned}
\int_{\Omega}\left(|\nabla u|^{p-2}\right. & \left.\nabla u-|\nabla v|^{p-2} \nabla v\right) \cdot \nabla w_{\rho} \\
& =\int_{\left\{w_{\rho}>0\right\}}\left(|\nabla u|^{p-2} \nabla u-|\nabla v|^{p-2} \nabla v\right) \cdot(\nabla u-\nabla v) \leq 0
\end{aligned}
$$

By recalling (see for example [3]) that there exists some positive constant C_{p} such that for each $\eta, \eta^{\prime} \in \mathbb{R}^{N}$

$$
\left(|\eta|^{p-2} \eta-\left|\eta^{\prime}\right|^{p-2} \eta^{\prime}\right) \cdot\left(\eta-\eta^{\prime}\right) \geq C_{p}\left(|\eta|+\left|\eta^{\prime}\right|\right)^{p-2}\left|\eta-\eta^{\prime}\right|^{2}
$$

we get

$$
C_{p} \int_{\left\{w_{\rho}>0\right\}}(|\nabla u|+|\nabla v|)^{p-2}|\nabla u-\nabla v|^{2} \leq 0
$$

This implies that $u-v$ equals some constant on $\left\{w_{\rho}>0\right\}$, that is, w_{ρ} is a constant on $\left\{w_{\rho}>0\right\}$. By continuity of w_{ρ} this constant must be zero since $w_{\rho}=0$ on $\partial C_{u, v}^{\bar{\epsilon}}$. Thus, we have that $w_{\rho} \equiv 0$ in $C_{u, v}^{\bar{\epsilon}}$, that is,

$$
u+\rho \leq v \quad \text { on } C_{u, v}^{\bar{\epsilon}} \quad\left(\text { i.e. } u<v \quad \text { on } C_{u, v}^{\bar{\epsilon}}\right)
$$

and this contradicts the fact that $C_{u, v}^{\bar{\epsilon}} \supset C_{u, v} \neq \emptyset$.

[^2]
3. Proof of Theorem 1.4

Since $u=0$ on $\partial \Omega$ and $u \in C^{1, \alpha}(\bar{\Omega})$, there exists an open neighborhood U of $\partial \Omega$ such that $0<u<k$ on $V=U \cap \Omega$. Since $f(u)<0$ on V, there the SCP holds by Lemma 1.1; therefore $u \equiv v$ on V or $u<v$ on V. In the latter case we can find a set $\Gamma^{\epsilon}=\{x \in \Omega: \operatorname{dist}(x, \partial \Omega) \geq \epsilon\}$ for a suitable $\epsilon>0$ such that $u<v$ on $\partial \Gamma^{\epsilon}$; exploiting Theorem 1.3, we get $u<v$ on Γ^{ϵ}, and therefore $u<v$ on Ω. Thus, in the sequel we will consider the former case $(u \equiv v$ on $V)$ and prove that u must coincide with v on Ω. As in Theorem 1.3, we define $C_{u, v}=\{x \in \Omega: u(x)=v(x)\}$ and $C_{u, v}^{\epsilon}=\left\{x \in \Omega: \operatorname{dist}\left(x, C_{u, v}\right)<\epsilon\right\}$. Let us assume by contradiction that there exists some $x_{0} \in \Omega$ such that $u\left(x_{0}\right)<v\left(x_{0}\right)$. Arguing as in Section 2.2 of the proof of Theorem 1.3, we can always find an ϵ such that $0<\epsilon<\operatorname{dist}\left(x_{0}, \partial C_{u, v}\right)$ and

$$
\forall x \in C_{u, v}^{\epsilon} \backslash C_{u, v} \quad u(x) \in I_{k} \quad \text { and } \quad v(x) \in I_{k}
$$

Let us observe that $\left(\Omega \backslash C_{u, v}\right) \cap C_{u, v}^{\epsilon}$ is a nonempty open set and $\partial C_{u, v}^{\epsilon} \backslash \partial \Omega \neq \emptyset$ by the assumption $0<\epsilon<\operatorname{dist}\left(x_{0}, \partial C_{u, v}\right)$. Moreover at each $x \in \partial C_{u, v}^{\epsilon} \backslash \partial \Omega$ we have $u(x)<v(x)$. By compactness of $\partial C_{u, v}^{\epsilon} \backslash \partial \Omega$ and continuity of u and v, there exists $\rho>0$ such that $u+\rho<v$ on $\partial C_{u, v}^{\epsilon} \backslash \partial \Omega$. Let us define

$$
w_{\rho}= \begin{cases}(u+\rho-v)^{+} & \text {on } C_{u, v}^{\epsilon} \\ 0 & \text { on } \Omega \backslash C_{u, v}^{\epsilon}\end{cases}
$$

We have that $w_{\rho} \in W^{1, p}(\Omega)$ and

$$
\nabla w_{\rho}= \begin{cases}\nabla u-\nabla v & \text { where } w_{\rho}>0 \\ 0 & \text { elsewhere }\end{cases}
$$

Let us observe that $\nabla w_{\rho}=\nabla u-\nabla v=0$ on \bar{V}. This allows us to use w_{ρ} "as a test function" even if $w_{\rho} \notin W_{0}^{1, p}(\Omega)$; in fact, we will see that the boundary terms appearing in the Divergence Theorem for u and v coincide.

As pointed out in [5], a C^{1} solution of (1.2), with f as in our hypothesis, belongs to the class $C^{2}(\Omega \backslash Z)$, where $Z=\{x \in \Omega: \nabla u(x)=0\}$; therefore the generalized derivatives of $|\nabla u|^{p-2} u_{x_{i}}$ coincide with the classical ones on $\Omega \backslash Z$. Moreover in [5] it was proved that $|\nabla u|^{p-2} u_{x_{i}} \in W^{1,2}(\Omega)$. Since $w_{\rho} \in W^{1,2}(\Omega)$ we have that $\operatorname{div}\left(w_{\rho}|\nabla u|^{p-2} \nabla u\right) \in L^{1}$. The vector field $w_{\rho}|\nabla u|^{p-2} \nabla u$ belongs to $\left[C^{0}(\Omega)\right]^{N}$, so we can apply the Divergence Theorem as stated in [2] pag.742, obtaining

$$
\int_{\Omega} \operatorname{div}\left(w_{\rho}|\nabla u|^{p-2} \nabla u\right) d x=\int_{\partial \Omega} w_{\rho}|\nabla u|^{p-2} \frac{\partial u}{\partial \nu} d \sigma
$$

Since $\operatorname{div}\left(w_{\rho}|\nabla u|^{p-2} \nabla u\right)=w_{\rho} \operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+|\nabla u|^{p-2} \nabla u \cdot \nabla w_{\rho}$ and also $-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=f(u)$ almost everywhere, we obtain (exploiting as in Theorem 1.3)

$$
\begin{aligned}
\int_{\Omega} & |\nabla u|^{p-2} \nabla u \cdot \nabla w_{\rho} d x=\int_{\Omega} f(u) w_{\rho} d x+\int_{\partial \Omega} w_{\rho}|\nabla u|^{p-2} \frac{\partial u}{\partial \nu} d \sigma \\
& =\int_{\Omega} f(u) w_{\rho} d x+\int_{\partial \Omega} w_{\rho}|\nabla v|^{p-2} \frac{\partial v}{\partial \nu} d \sigma \\
& =\int_{C_{u, v}^{\epsilon}} f(u) w_{\rho} d x+\int_{\partial \Omega} w_{\rho}|\nabla v|^{p-2} \frac{\partial v}{\partial \nu} d \sigma \\
& =\int_{C_{u, v}^{\epsilon} \cap C_{u, v}} f(u) w_{\rho} d x+\int_{C_{u, v}^{\epsilon} \backslash C_{u, v}} f(u) w_{\rho} d x+\int_{\partial \Omega} w_{\rho}|\nabla v|^{p-2} \frac{\partial v}{\partial \nu} d \sigma \\
& =\int_{C_{u, v}^{\epsilon} \cap C_{u, v}} f(v) w_{\rho} d x+\int_{C_{u, v}^{\epsilon} \backslash C_{u, v}} f(u) w_{\rho} d x+\int_{\partial \Omega} w_{\rho}|\nabla v|^{p-2} \frac{\partial v}{\partial \nu} d \sigma \\
& \leq \int_{C_{u, v}^{\epsilon} \cap C_{u, v}} f(v) w_{\rho} d x+\int_{C_{u, v}^{\epsilon} \backslash C_{u, v}} f(v) w_{\rho} d x+\int_{\partial \Omega} w_{\rho}|\nabla v|^{p-2} \frac{\partial v}{\partial \nu} d \sigma \\
& =\int_{\Omega} f(v) w_{\rho} d x+\int_{\partial \Omega} w_{\rho}|\nabla v|^{p-2} \frac{\partial v}{\partial \nu} d \sigma \\
& ={ }_{(*)} \int_{\Omega}|\nabla v|^{p-2} \nabla v \cdot \nabla w_{\rho} d x
\end{aligned}
$$

Arguing as in Theorem 1.3 we conclude the contradiction $w_{\rho}=0$ (that is, $u+\rho \leq$ $v)$ in $C_{u, v}^{\epsilon} \supset C_{u, v} \neq \emptyset$.
Remark 3.1. Further extensions are possible. For example, one may guess that in Theorem 1.4 the thesis is still valid by assuming that $u, v \in C^{1, \alpha}$ simply satisfy $(A)_{p}$, instead of both being solutions of (1.2). This is actually true if the function that is not a solution of (1.2) (let us say v) shares the same regularity as the solution u. In such a case the Divergence Theorem can still be applied to v giving, with $(A)_{p}$, the inequality \leq instead of the equality at the final step $(*)$. However, we skipped such a statement because here shortness and simplicity is our aim.

References

1. M. Cuesta, P. Takàc, A Strong Comparison Principle for the Dirichlet p-Laplacian Proceedings of the Conference on Reaction diffusion systems (Trieste, 1995), 79-87, Lecture Notes in Pure and Appl. Math., 194, Dekker, New York, 1998. MR1472511 (98i:35058)
2. M. Cuesta, P. Takàc, A Strong Comparison Principle for Positive Solutions of Degenerate Elliptic Equations Differential Integral Equations 13 (2000), no. 4-6, 721-746. MR 1750048 (2001h:35008)
3. L. Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 15 (1998), no. 4, 493-516. MR1632933 (99e:35081)
4. L. Damascelli and B. Sciunzi, Regularity, Monotonicity and Symmetry of positive solutions of m-Laplace equations. J. Differential Equations, 206 (2004), no.2, 483-515. MR2096703 (2005h:35116)
5. L. Damascelli and B. Sciunzi, Harnack Inequalities, Maximum and Comparison Principles, and Regularity of positive solutions of m-Laplace equations. Calc. Var. Partial Differential Equations, 25 (2006), no.2, 139-159. MR2188744 (2006i:35084)
6. E. DiBenedetto, $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7 (1983), no. 8, 827-850. MR0709038|(85d:35037)
7. M. Guedda and L. Veron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal., 13 (1989), no. 8, 879-902. MR1009077 (90h:35100)
8. G.M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), no. 11, 1203-1219. MR0969499 (90a:35098)
9. M. Lucia and S. Prashant, Strong comparison principle for solutions of quasilinear equations, Proc. Amer. Math. Soc., 132 (2004), no. 4, 1005-1011. MR2045415 (2005a:35033)
10. P. Pucci, J. Serrin, The strong maximum principle revised, J. Differential Equations, 196 (2004), no. 1, 1-66. MR2025185 (2004k:35033)
11. B. Sciunzi, Some results on the qualitative properties of positive solutions of quasilinear elliptic equations, NoDEA Nonlinear Differential Equations Appl., to appear.
12. P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51 (1984), 126-150. MR0727034 (85g:35047)
13. J. L. Vazquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984), 191-202. MR0768629 (86m:35018)

Dipartimento di Matematica, Universà di Roma "Tor Vergata", Via della Ricerca SciEntifica
00133 Roma, Italy
E-mail address: roselli@mat.uniroma2.it
Dipartimento di Matematica, Università di Roma "Tor Vergata", Via della Ricerca Scientifica, 00133 Roma, Italy

E-mail address: sciunzi@mat.uniroma2.it

[^0]: Received by the editors April 14, 2006 and, in revised form, June 19, 2006.
 2000 Mathematics Subject Classification. Primary 35J70; Secondary 35B05.
 Key words and phrases. p-Laplace operator, geometric and qualitative properties of the solutions, comparison principle.

 Supported by MURST, Project "Metodi Variazionali ed Equazioni Differenziali Non Lineari".

[^1]: ${ }^{1}$ The nonlinearities considered in [1 2] could change sign if the solutions u, v change sign. Anyway this does not occur since the authors show that the solutions are nonnegative.

[^2]: ${ }^{2}$ We put comments between \rangle brackets.

