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ESTIMATES FOR FUNCTIONS OF THE LAPLACE OPERATOR
ON HOMOGENEOUS TREES

MICHAEL COWLING, STEFANO MEDA, AND ALBERTO G. SETTI

Abstract. In this paper, we study the heat equation on a homogeneous graph,
relative to the natural (nearest–neighbour) Laplacian. We find pointwise esti-
mates for the heat and resolvent kernels, and the Lp-Lq mapping properties
of the corresponding operators.

In recent years, random walks on graphs have been studied as analogues of
diffusions on manifolds (see, e.g., T. Coulhon [Cn], M. Kanai [K1], [K2], and
N. Th. Varopoulos [V1], [V2]). More recently, I. Chavel and E. A. Feldman [CF] and
M. M. H. Pang [P] considered the semigroup (e−t∆)t>0. In this paper, we consider
the heat semigroup associated to the canonical Laplace operator on a homogeneous
tree, which is perhaps the basic example of a graph where the cardinality of the
“ball of radius r” grows exponentially in r. We study the properties of the heat and
resolvent operators, and discover very close analogies with diffusions on hyperbolic
spaces, in line with the philosophy of the above-mentioned authors.

A homogeneous tree X of degree q + 1 is defined to be a connected graph with
no loops, in which every vertex is adjacent to q + 1 other vertices. We denote by d
the natural distance on X, d(x, y) being the number of edges between the vertices
x and y, and by Lp(X) the Lebesgue space with respect to counting measure on X.
On X the canonical “Laplace operator” L is defined thus:

Lf(x) = f(x)− 1
q + 1

∑
y∈X

d(x,y)=1

f(y) ∀x ∈ X;

it is easily seen to be bounded on Lp(X) for every p in [1,∞], and self–adjoint on
L2(X). Denote by σ2(L) the L2(X) spectrum of L, and by Pλ the associated spectral
resolution of the identity, such that

Lf =
∫
σ2(L)

λdPλf ∀f ∈ L2(X),

and denote inf σ2(L) by b2. For θ in [0, 1] and α with Re (α) > 0, the heat operator
and the (θ, α)-resolvent of L are the operators defined by the formulae

Htf =
∫
σ2(L)

e−tλ dPλf ∀t ∈ R+,
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and

Rα
θ f =

∫
σ2(L)

(λ− θb2)−α/2 dPλf,

for all L2(X) functions f for which the integrals define L2 functions. Since the
operators Ht and Rαθ are invariant under the action of the group of automorphisms
of X, they are represented by convolution kernels denoted by ht (the heat kernel)
and r αθ respectively.

The first part of this paper is devoted to a study of the behaviour of the heat
kernel, and of the Lp–Lr operator norms of the heat operator. The second part of
the paper is concerned with the description of the region where the (θ, α) resolvent
is Lp–Lr bounded. In the last part of the paper we establish some results about
variants of the Littlewood–Paley–Stein g–function associated to the heat operator.

1. Notation and preliminaries on harmonic analysis on X

Let o be a fixed reference point on X, and write |x| for d(x, o). We say that a
function f on X is radial if f(x) depends only on |x| . If E(X) is a function space
on X, we will denote by E(X)] the subspace of radial elements in E(X).

Let G be the group of automorphisms of the tree, i.e., of isometries of (X, d), and
let Go be the isotropy subgroup of o. Then X may be canonically identified with
the coset space G/Go, and functions and radial functions on X may be identified
with Go–right-invariant and Go–bi-invariant functions on G respectively. By using
this identification, we may define the convolution of two functions f1 and f2 on X

by the formula

f1 ∗ f2(g · o) =
∫
G

f1(h · o) f2(h−1g · o) dh ∀g ∈ G,

whenever the integral makes sense. When f2 is radial,

f1 ∗ f2(x) =
∞∑
n=0

f2(xn)
∑

d(x,y)=n

f1(y) ∀x ∈ X,

where xn is chosen such that |xn| = n for every n in N.
Let δo denote the Dirac measure at o and ν the uniformly distributed probability

measure supported on {x ∈ X : |x| = 1}. The Laplace operator is given by right
convolution with the function δo−ν. EveryG–invariant (in the sense that K(f ◦g) =
(Kf) ◦ g for every f in Lp(X) and g in G) continuous operator K from Lp(X) to
Lr(X) (weak-star continuous if p =∞) is given by right convolution with a Go–bi-
invariant kernel k:

Kf(x) = f ∗ k(x) ∀x ∈ X.

We shall denote by Cvrp(X) the space of such convolution kernels. For an operator
K, we denote its usual Lp–Lr operator norm by |||K|||p;r; by abuse of notation, if k is
in Cvrp(X), we also denote by |||k|||p;r the Lp–Lr operator norm of the corresponding
operator. A simple argument shows that operators in Cvrp(X) are equal to their

transposes, so that, if k ∈ Cvrp(X), then k ∈ Cvp
′

r′ (X), and the norms in the two
spaces coincide.

We will use the “variable constant convention”, and denote by C, possibly with
sub- or superscripts, a constant that may vary from place to place and may depend
on any factor quantified (implicitly or explicitly) before its occurrence, but not on
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factors quantified afterwards. Given functions A and B, both defined on a set D,
we write A(t) ∼ B(t) for all t in D if there exist positive constants C and C′ such
that

C A(t) ≤ B(t) ≤ C′A(t) ∀t ∈ D.
The expression A(t) � B(t) as t tends to t0 means that A(t)/B(t) tends to 1 when
t tends to t0.

We let τ denote 2π/ log q, and for every p in [1,∞], we write δ(p) for 1/p− 1/2
and p′ for the conjugate index p/(p − 1). We also let Sp and Sp denote the strip
{z ∈ C : |Im (z)| < |δ(p)|} and its closure.

We now summarise the main features of spherical harmonic analysis on X. The
spherical functions are the radial eigenfunctions of the Laplace operator L satisfying
the normalisation condition φ(o) = 1, and are given by the formula

φz(x) =



(
1 + q−1

q+1 |x|
)
q−|x|/2 ∀z ∈ τZ,(

1 + q−1
q+1 |x|

)
q−|x|/2(−1)|x| ∀z ∈ τ/2 + τZ,

c(z) q(iz−1/2)|x| + c(−z) q(−iz−1/2)|x| ∀z ∈ C \ (τ/2)Z,

(1.1)

where c is the meromorphic function defined by the rule

c(z) =
q1/2

q + 1
q1/2+iz − q−1/2−iz

qiz − q−iz ∀z ∈ C \ (τ/2)Z.(1.2)

It can be shown (see, e.g., [CMS]) that z 7→ φz(x) is an entire function for each x
in X, and

|φz(x)| ≤ 1 ∀x ∈ X ∀z ∈ S1.(1.3)

It should perhaps be noted that we use a different parametrisation of the spherical
functions from Figà-Talamanca and his collaborators (see, e.g., [FTP] and [FTN]);
our φz corresponds to their φ1/2+iz , and c is reparametrised similarly.

The spherical Fourier transform f̃ of a function f in L1(X)] is given by the
formula

f̃ (z) =
∑
x∈X

f(x)φz(x) dx ∀z ∈ S1.

The symmetry properties of the spherical functions imply that f̃ is even and τ -
periodic in the strip S1. We denote the torus R/τZ by T, and usually identify it
with [−τ/2, τ/2).

Let µ denote the Plancherel measure on T, given by the formula

dµ(s) = cG |c(s)|−2
ds, where cG =

q log q
4π(q + 1)

.(1.4)

The following theorems are well known.

Theorem 1.1. The spherical Fourier transformation extends to an isometry of
L2(X)] onto L2(T, µ), and corresponding Plancherel and inversion formulae hold:

‖f‖2 =

[∫ τ/2

τ/2

∣∣∣f̃ (s)
∣∣∣2 dµ(s)

]1/2

∀f ∈ L2(X)],
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and

f(x) =
∫ τ/2

−τ/2
f̃ (s)φs(x) dµ(s) ∀x ∈ X

for “nice” radial functions f on X.

Proof. See, for instance, Chapter 2 of [FTN].

The next result is the version of the Hausdorff–Young inequality valid in our
context. Note that there is a partial converse, which is not classical.

Theorem 1.2. Suppose that 1 ≤ p < 2 and f is in Lp(X)]. Then f̃ extends to a
holomorphic function in the strip Sp, with boundary values f̃ (· ± iδ(p)) belonging
to the conjugate space Lp

′
(T), and[∫ τ/2

−τ/2

∣∣∣f̃ (s± iδ(p))
∣∣∣p′ ds]1/p′

≤ C‖f‖p.

Further, if 1 ≤ p < 2 and f is a radial function on X such that fφiδ(p) is in L1(X)],
then f is in Lp(X) and

‖f‖p ≤ C
∥∥fφiδ(p)∥∥2δ(p)

1

[∫ τ/2

−τ/2
|f(s+ iδ(p))|2 ds

]1/2−δ(p)

.

Proof. See [CMS], Theorems 1.1 and 1.2.

Theorem 1.3. Suppose that 1 ≤ p, r ≤ ∞, and that s = min(r, p′). Suppose also
that k is an element of Cvrp(X). Then the following hold:
(i) if p ≤ r, then k is in Ls(X)], and ‖k‖s ≤ |||k|||p;r;
(ii) if s < 2, then k̃ extends to a holomorphic function in Ss;
(iii) if p = r 6= 2, then k̃ extends to a bounded holomorphic function in Ss.

Proof. First, p ≤ r by the trivial generalisation to X of a well known theorem of
Hörmander [Hr]. Further, k is in Lr(X)] because δo is in Lp(X) and k = δo ∗ k;
moreover, ‖k‖r ≤ |||k|||p;r because ‖δo‖p = 1. By duality, the same holds when r is
replaced by p′, and (i) is proved. Now (ii) is a consequence of (i) and Theorem 1.2.
Finally, (iii) is a straightforward generalisation of the Clerc–Stein condition [CS] to
this situation. See [CMS] for more details.

Theorem 1.4. Suppose that 1 ≤ p < r ≤ 2. The following convolution inclusions
hold:
(i) Lp(X) ∗ Lr(X)] ⊂ Lr(X), i. e., Lr(X)] ⊆ Cvrp(X) and |||k|||p;r ≤ C ‖f‖r;
(ii) Lr(X) ∗ Lp(X)] ⊂ Lr(X), i. e., Lp(X)] ⊆ Cvrr(X) and |||k|||r;r ≤ C ‖f‖p;
(iii) Lp(X) ∗ Lr′(X)] ⊂ Lr′(X), i. e., Lr

′
(X)] ⊆ Cvr′p (X) and |||k|||p;r′ ≤ C ‖f‖r′ ;

(iv) Lr
′
(X) ∗ Lp(X)] ⊂ Lr′(X), i. e., Lp(X)] ⊆ Cvr′r′ (X) and |||k|||r′;r′ ≤ C ‖f‖p.

Proof. These are all simple consequences of the Kunze–Stein phenomenon, proved
for the group G by C. Nebbia [N]. See [CMS] for further information.

Corollary 1.5. Suppose that 1 ≤ p < r ≤ 2, and that k is a radial function on X.
Then k ∈ Lr(X) if and only if k ∈ Cvrp(X), and ‖k‖r ∼ |||k|||p;r for all k in Lr(X)].

Proof. This is an immediate consequence of Theorems 1.3 and 1.4.
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Let γ be the entire function defined by the formula

γ(z) =
q1/2

q + 1
(
qiz + q−iz

)
.

Then

γ(z) =
2q1/2

q + 1
cos(z log q) = γ(0) cos(z log q).(1.5)

The spherical Fourier transform of δo−ν is 1−γ, and using this one may show that
the Lp spectrum σp(L) of L is the image of Sp under the map 1− γ (see Chapter 2
of [FTN]). A simple computation shows that σp(L) is the region of all w in C such
that [

1− Re (w)
γ(0) cosh(δ(p) log q)

]2

+
[

Im (w)
γ(0) sinh(δ(p) log q)

]2

≤ 1.

In particular σ2(L) degenerates to the real segment [1− γ(0), 1 + γ(0)]. We denote
by bp the infimum of Re (σp(L)) . From the expression above we deduce that

bp = γ(0) cosh(δ(p) log q) = 1− γ(iδ(p)).(1.6)

2. Estimates for the heat operator

The heat semigroup generated by the Laplacian L is denoted (Ht)t>0. Since L
is bounded on Lp(X) whenever p ≥ 1 and t > 0, Ht is given by the formula

Ht = e−tL =
∞∑
n=0

(−tL)n

n!
;

the series converges in the uniform operator topology, and (Ht)t>0 is a uniformly
continuous semigroup on Lp(X). At the kernel level we have

Htf = f ∗ ht,
where

ht(x) =
∞∑
n=0

tn(ν − δo)(∗n)

n!
= e−t

∞∑
n=0

tnν(∗n)

n!
,

ν(∗k) denoting the k-th convolution power of ν. Since ν is a probability measure,
the second series converges in L1(X), hence uniformly, and

‖ht‖1 = e−t
∞∑
n=0

tn
∥∥ν(∗n)

∥∥
1

n!
= 1.

Thus Ht is contractive on Lp(X) for every p in [1,∞]. It is immediate to check
that Ht is symmetric, so that (Ht)t>0 is a symmetric contraction semigroup. This
section is devoted to the study of the heat semigroup (Ht)t>0 and the heat kernels
ht. We investigate the dependence of |||Ht|||p;r on t as t tends to 0 or ∞, and we
estimate ht pointwise and in the Lp(X) norm.

The heat kernel ht is associated to the Fourier multiplier exp[−t(1−γ)], and, by
spherical Fourier inversion,

ht(x) =
∫ τ/2

−τ/2
exp [−t(1− γ(s))t] φs(x) dµ(s) ∀x ∈ X ∀t ∈ R+.
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We will also need to consider the case where q = 1, when the tree X may be
identified with the integers Z. To avoid ambiguity, we will use a sub- or superscript
Z to denote objects defined on Z. So LZ denotes the Laplacian on Z, given by

LZF (j) = F (j)− F (j + 1) + F (j − 1)
2

= F ∗Z
[
δ0 −

δ1 + δ−1

2

]
,

hZ
t

denotes the heat kernel associated to LZ, and so forth.
Since the Fourier transform of the convolution kernel of LZ is 1 − cos(· log q),

that of hZt is exp [−t(1− cos(· log q))] , and, by Fourier inversion,

hZ
t
(j) =

1
τ

∫ τ/2

−τ/2
exp [t(cos(s log q)− 1)] q−isq ds

=
e−t

2π

∫ π

−π
exp [t cos s] cos(sj) ds ∀j ∈ Z ∀t ∈ R+.

Clearly the semigroup (HZt )t>0 shares with (Ht)t>0 all the properties described
above.

The following lemma describes the asymptotic behaviour of the Lp-norms of the
heat kernel ht for large values of t.

Lemma 2.1. Let ht be the heat kernel, described above. Then the following hold:
(i) if p = 2, then

‖ht‖p ∼ t−3/4 exp(−b2t) ∀t ∈ [1,∞);

(ii) if p =∞, then

‖ht‖p ∼ t−3/2 exp(−b2t) ∀t ∈ [1,∞);

(iii) if p is in [1, 2), then

‖ht‖p ∼ t−1/2p′ exp(−bpt) ∀t ∈ [1,∞).

Proof. The proof is a modification of that of Lemma 3.1 of [CGM]. To prove (i),
observe first that

|c(s)|−2 =
4 (q + 1)2 sin2(s log q)

(q + 1)2 sin2(s log q) + (q − 1)2 cos2(s log q)
∀s ∈ T.

Since

(q − 1)2 ≤ (q + 1)2 sin2(s log q) + (q − 1)2 cos2(s log q) ≤ (q + 1)2 ∀s ∈ T,
the Plancherel formula (Theorem 1.1) and formula (1.5) for γ imply that

‖ht‖22 =
∫ τ/2

−τ/2

∣∣∣h̃ t(s)∣∣∣2 dµ(s)

∼
∫ τ/2

−τ/2
exp [−2t(1− γ(0) cos(s log q))] sin2(s log q) ds ∀t ∈ R+.

After the change of variables v = s
√
t log q, the preceding integral becomes

t−3/2e−2b2t

log q

∫ ∞
∞

χI(t)(v) t sin2(v/
√
t) exp

[
−2tγ(0)(1− cos(v/

√
t))
]
dv,

where I(t) denotes the interval [−π
√
t, π
√
t] and χI(t) denotes its characteristic

function. The integrand converges locally uniformly to v2 exp
[
−γ(0) v2

]
as t tends
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to ∞, and it is easy to verify that, for some positive c, it is bounded above by
v2 exp

[
−cv2

]
, first on the interval I(t), and hence on all of R. By a variant of the

Lebesgue dominated convergence theorem, it follows that as t tends to infinity the
integral tends to ∫ ∞

−∞
v2 exp

[
−γ(0) v2

]
dv

(which is equal to 1
2π

1/2γ(0)−3/2), and (i) is proved.
To prove (ii), recall from (1.3) that |φz(x)| ≤ 1 for all z in S1 and x in X. By

combining this fact with the inversion formula (Theorem 1.1), it may be seen that

|ht(x)| ≤ ht(o) ∀x ∈ X,

so that ‖ht‖∞ = ht(o). Proceeding as in the proof of (i), it is easy to see that

‖ht‖∞ ∼
∫ τ/2

−τ/2
exp [−t(1− γ(s))] sin2(s log q) ds ∼ t−3/2 e−b2t ∀t ∈ [1,∞).

The hardest part of this lemma is (iii). If 1 < p < 2, then, by Theorem 1.2,

‖ht‖p
′

p ≥ C
∫ τ/2

−τ/2

∣∣∣h̃t (s+ iδ(p))
∣∣∣p′ ds

= C e−p
′bpt

∫ τ/2

−τ/2
exp

[
− tp′Re [γ(iδ(p))− γ(s+ iδ(p))]

]
ds

for all t in R+. Noting that

Re [γ(iδ(p))− γ(s+ iδ(p))] = γ(iδ(p)) [1− cos(s log q)],

and arguing as before to estimate the last integral, we obtain the lower bound

‖ht‖p ≥ C t−1/2p′e−bpt ∀t ∈ [1,∞).

To prove a comparable upper bound, we apply Theorem 1.2, and estimate:

‖ht‖p ≤ C
[
h̃t (iδ(p))

]2δ(p)
[∫ τ/2

−τ/2

∣∣∣h̃t (s+ iδ(p))
∣∣∣2ds]1/2−δ(p)

≤ C [exp(−bpt)]2δ(p)
[
t−1/4 exp(−bpt)

]1−2δ(p)

= C t−1/2p′ exp(−bpt).

This concludes the proof of the second half of (iii), and of Lemma 2.1.

The results of Lemma 2.1 leave open the question of how ‖ht‖p behaves when
t is small or when p > 2. Since ‖ht‖p = |||Ht|||1;p for any p in [1,∞], this question,
and more, is addressed in Theorem 2.2.

Theorem 2.2. Let (Ht)t>0 be the heat semigroup described above. Then the fol-
lowing hold:

(i) for all p in [1,∞],

|||Ht|||p = exp(−bpt) ∀t ∈ R+;
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(ii) for all p and r such that 1 ≤ p < r ≤ ∞,

|||Ht|||p;r ∼ 1 ∀t ∈ (0, 1];

(iii) for all p and r such that 1 ≤ p < r < 2,

|||Ht|||p;r ∼ t−1/2r′ exp(−brt) ∀t ∈ [1,∞);

(iv) for all p and r such that 2 < p < r ≤ ∞,

|||Ht|||p;r ∼ t−1/2p exp(−bpt) ∀t ∈ [1,∞).

(v) for all p and r such that either 1 ≤ p < r = 2 or 2 = p < r ≤ ∞,

|||Ht|||p;r ∼ t−3/4 exp(−b2t) ∀t ∈ [1,∞);

(vi) for all p and r such that 1 ≤ p < 2 < r ≤ ∞,

|||Ht|||p;r ∼ t−3/2 exp(−b2t) ∀t ∈ [1,∞).

Proof. The proof follows that of Theorem 3.2 in [CGM]. If p is in [1, 2], then

|||Ht|||p = h̃ t(1/p) = exp(−bpt) ∀t ∈ R+,

by Herz’s principe de majoration (see Proposition 2.3 of [CMS]). The case where p
is in [2,∞) follows by duality, and (i) is proved.

Whenever 1 ≤ q ≤ s ≤ ∞, Lq(X) embeds into Ls(X) without increasing norms,
and it follows that

ht(o) = ‖Ht‖1;∞ ≤ ‖Ht‖p;r ≤ ‖Ht‖p;p ≤ 1 ∀t ∈ R+.

Further, ht(o) is a monotone decreasing function of t, by the semigroup property.
Thus

h1(o) ≤ ‖Ht‖p;r ≤ 1 ∀t ∈ [0, 1]

and (ii) is proved.
By Corollary 1.5, if 1 ≤ p < r ≤ 2, then |||ht|||p;r ∼ ‖ht‖r, and then (iii) and the

first case of (v) follow from this fact and Lemma 2.1. By duality, (iv) follows from
(iii), and the second case of (v) follows from the first.

Finally, (vi) follows from the inequality

‖ht‖∞ = |||Ht|||1;∞ ≤ |||Ht|||p;r ≤ |||Ht/2|||p;2 |||Ht/2|||2;r

for all t in R+, and the estimates of Lemma 2.1 and (ii) and (v).

Our next goal is to obtain pointwise estimates for the heat kernel ht(x) on X,
uniform for x in X and t in R+. To achieve this we first consider the heat kernel hZ

t
on

Z. We are interested in the behaviour of hZt (j) when j2+t2 tends to infinity. We may
restrict our investigation to positive j since hZt is an even function. Exercise 10.1
of [Ol] (p. 60) expresses hZ

t
in terms of the modified Bessel function of imaginary

argument, namely

hZ
t
(j) =

1
2π

∫ π

−π
exp [t(cos s− 1)] cos(sj) ds = e−t I|j|(t) ∀j ∈ Z ∀t ∈ R+.

From the uniform asymptotic expansion of modified Bessel functions of large order,
we obtain the following theorem.
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Theorem 2.3. Let ξ : R+ → R and F : Z × R+ → R be the functions defined by
the rules

ξ(z) = (1 + z2)1/2 + log
(

z

1 + (1 + z2)1/2

)
and

F (j, t) =


(2π)−1/2 exp[−t+|j| ξ(t/|j|)]

(1+j2+t2)1/4 if j 6= 0,

(2π)−1/2 (1 + t2)−1/4 if j = 0.

Then hZ
t
(j) � F (j, t) as j2 + t2 tends to ∞, and hZ

t
(j) ∼ F (j, t) for all j in Z and

t in R+.

Proof. To prove the first assertion, it suffices to show that, if ε > 0, there exists an
integer Mε such that

(1− ε)F (j, t) ≤ hZ
t
(j) ≤ (1 + ε)F (j, t),

or equivalently

(1− ε) et F (j, t) ≤ I|j|(t) ≤ (1 + ε) et F (j, t),

when (j2 + t2) ≥Mε. Let ε be given.
Let G : Z× R+ → R be the auxiliary function defined by the rule

G(j, t) =
(1 + j2 + t2)1/4

(j2 + t2)1/4
F (j, t) ∀j ∈ Z ∀t ∈ R+.

Formula 7.16 of [Ol] (p. 377) shows that there exists ηε in R+ such that, if η ≥ ηε
and z > 0, then

(1− ε) eηξ(z)

(2πη)1/2(1 + z2)1/4
≤ Iη(ηz) ≤ (1 + ε)1/2 eηξ(z)

(2πη)1/2(1 + z2)1/4
.

We rewrite these inequalities with t/ |j| in place of z and |j| in place of η, and
deduce that

(1− ε) etG(j, t) ≤ I|j|(t) ≤ (1 + ε)1/2 etG(j, t)

when |j| ≥ ηε and t ∈ R+. Provided that ηε is taken so large that (1 + η2
ε )1/2 ≤

(1 + ε)ηε, it follows that

(1− ε) et F (j, t) ≤ I|j|(t) ≤ (1 + ε) et F (j, t)(2.1)

whenever |j| ≥ ηε and t ∈ R+. Next, for every fixed |j| ,

I|j|(t) � (2πt)−1/2 et as t→∞

(see, e.g., formula 5.11.8 of [L] (p. 123) or section 3.7.4 of [Ol] (p. 83)), and therefore
there exists T1,ε such that

(1− ε)1/2(2πt)−1/2 et ≤ I|j|(t) ≤ (1 + ε)1/2(2πt)−1/2 et

when |j| ≤ ηε and t ≥ T1,ε. Moreover, it is easy to verify that

F (j, t) � (2πt)−1/2 as t→∞
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if |j| ≤ ηε. Therefore there exists T2,ε such that

(1 − ε)1/2 et F (j, t) ≤ (2πt)−1/2 et ≤ (1 + ε)1/2 et F (j, t)(2.2)

when |j| ≤ ηε and t ≥ T2,ε. It follows that

(1− ε) et F (j, t) ≤ I|j|(t) ≤ (1 + ε) et F (j, t),

if |j| ≤ ηε and t ≥ max(T1,ε, T2,ε). By combining this with the uniform estimate
(2.1), we may conclude that

(1− ε) et F (j, t) ≤ I|j|(t) ≤ (1 + ε) et F (j, t)

if j2 + t2 ≥ 2 max(η2
ε , T

2
1,ε, T

2
2,ε), as required.

To show that hZt (j) ∼ F (j, t) for all j in Z and t in R+, on the one hand we
observe that, from the series expansion of I|j|(t) (see, e.g., formula 5.7.1 of [L]
(p. 108)), namely

hZ
t
(j) = e−t

∞∑
n=0

(t/2)|j|+2n

n! (n+ |j|)! ∀j ∈ Z ∀t ∈ R+,

it follows that

hZt (j) � (t/2)|j|

|j|! as t→ 0+,

uniformly when |j| ≤ ηε. On the other hand, we observe that, when 1 ≤ |j| ≤ ηε,
−t+ |j| ξ(t/ |j|) = |j| (log t+ 1− log(2 |j|)) + o(1) as t→ 0+,

so that, if 0 ≤ |j| ≤ ηε,

F (j, t) � (2π)−1/2(1 + j2)−1/4 t|j|e|j|

(2 |j|)|j| as t→ 0+

(where (2 |j|)|j| is taken to be 1 if j = 0). Consequently,

hZt (j) ∼ F (j, t)

when |j| ≤ ηε and t ≤ T2,ε. Combining this with (2.1) and (2.2), it follows that

hZt (j) ∼ F (j, t) ∀j ∈ Z ∀t ∈ R+,

as required. This concludes the proof of the theorem.

It is easy to verify that the bounds for hZ
t

that we obtain here improve somewhat
those of M. M. Pang [P].

We next derive a formula that expresses the heat kernel ht of X in terms of
hZt . This formula is reminiscent of the relationship between the heat kernel of a
symmetric space and that of a maximal flat submanifold. Combining this with the
estimates of Theorem 2.3 above will yield bounds for ht.

We start with a lemma that relates the derivative of hZt with respect to t with
hZ
t

itself.

Lemma 2.4. The following hold for every j in N and t in R+:
d

dt
hZ
t
(j) = hZ

t
(j + 1)− hZ

t
(j) +

j

t
hZ
t
(j);(i)

hZt (j)− hZt (j + 2) =
2(j + 1)

t
hZt (j + 1).(ii)
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Proof. We first prove (i). Substituting the integral representation for Ij(t) (see,
e.g., formula 5.22 in [L]) in the expression for hZ

t
yields

hZ
t
(j) =

2 e−t (t/2)j√
π Γ(j + 1/2)

∫ 1

0

(1− u2)j−1/2 cosh(tu) du.

Therefore the derivative of hZ
t

with respect to t may be written as the sum of three
terms, obtained by differentiating the factors e−t, (t/2)j , and cosh(tu) respectively.

The first two summands contribute −hZt (j) and
j

t
hZt (j) respectively. By differenti-

ating inside the integral and integrating by parts, we obtain that

d

dt

∫ 1

0

(1− u2)j−1/2 cosh(tu) du =
t/2

j + 1/2

∫ 1

0

(1 − u2)j+1/2 cosh(tu) du.

Thus the third summand is equal to

2 e−t (t/2)j+1

√
π (j + 1/2) Γ(j + 1/2)

∫ 1

0

(1− u2)j+1/2 cosh(tu) du = hZ
t
(j + 1),

as required.
We now turn to (ii). Recall that hZt (j) is a solution to the initial value problem

d

dt
u(j, t) + LZu(j, t) = 0 ∀t ∈ R+ ∀j ∈ Z,

u(j, 0) = δ0(j) ∀j ∈ Z.

Thus hZ
t

satisfies the relation

hZ
t
(j + 1)− hZ

t
(j) +

j

t
hZ
t
(j) =

d

dt
hZ
t
(j) =

hZ
t
(j + 1) + hZ

t
(j − 1)

2
− hZ

t
(j),

whence

hZt (j − 1)− hZt (j + 1) =
2j
t
hZt (j).

Substituting j + 1 in place of j completes the proof of the lemma.

We are now ready to state and prove our main result, in which we establish
formulae relating ht with hZ

t
, and derive upper and lower bounds for ht.

Proposition 2.5. The following hold for all t in R+ and x in X:

ht(x) = e−b2t q−|x|/2
∞∑
k=0

q−k
[
hZtγ(0)(|x|+ 2k)− hZtγ(0)(|x|+ 2k + 2)

]
;(i)

ht(x) =
2 e−b2t

γ(0) t
q−|x|/2

∞∑
k=0

q−k (|x|+ 2k + 1)hZ
tγ(0)(|x|+ 2k + 1);(ii)

(q − 1)3

q1/2(q + 1)3
ht(x) ≤ e−b2t

t
φ0(x)hZtγ(0)(|x|+ 1) ≤ q1/2

(q + 1)
ht(x).(iii)

Proof. We first prove (i). By spherical Fourier inversion (see Theorem 1.1),

ht(x) = 2 cGe−t
∫ τ/2

−τ/2
etγ(s) c(−s)−1q−(1/2+is)|x| ds.
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By using formulae (1.4), (1.5), and (1.2), for cG, γ, and c, we may deduce that

ht(x) =
q log q

2 π
e−tq−|x|/2

∫ τ/2

−τ/2
etγ(0) cos(s log q) q

−1/2−is − q−1/2+is

q1/2−is − q−1/2+is
qis|x| ds

=
log q
2π

e−tq−|x|/2
∫ τ/2

−τ/2
etγ(0) cos(s log q) 1− q2is

1− q2is−1
qis|x| ds.

Now we expand the function s 7→ 1− q2is

1− q2is−1
, change variables, and use formula

(1.6), relating b2 and γ(0), to obtain the formula

ht(x) =
1

2π
e−b2t q−|x|/2

∫ π

−π
e−tγ(0)(1−cosu)

∞∑
k=0

q−k
(
e2iuk − e2iu(k+1)

)
eiu|x| du.

Since the series converges uniformly, we may interchange the sum and the integral,
and since

hZtγ(0)(j) =
1

2π

∫ π

−π
e−tγ(0)(1−cosu)eiuj du ∀j ∈ N,

we may conclude that

ht(x) = e−b2t q−|x|/2
∞∑
k=0

q−k
(
hZtγ(0)(|x|+ 2k)− hZtγ(0)(|x|+ 2k + 2)

)
,

and (i) is proved.
Formula (ii) is an immediate consequence of (i) and Lemma 2.4 (ii).
We now turn to (iii). On the one hand, since all the summands in the series (ii)

are positive, we may estimate the series by its first term, deducing that

ht(x) ≥ 2 e−b2t

γ(0) t
q−|x|/2(|x|+ 1)hZtγ(0)(|x|+ 1).

On the other hand, |x| + 2k + 1 ≤ (2k + 1)(|x| + 1), and by Lemma 2.4 (ii),
hZ
tγ(0)(n+ 2j) ≤ hZ

tγ(0)(n). Thus, from (ii),

ht(x) =
2 e−b2t

γ(0) t
q−|x|/2

∞∑
k=0

q−k (|x|+ 2k + 1)hZ
tγ(0)(|x|+ 2k + 1)

≤ 2 e−b2t

γ(0) t
q−|x|/2

∞∑
k=0

q−k (2k + 1) (|x|+ 1)hZtγ(0)(|x|+ 1)

=
2 e−b2t

γ(0) t
q−|x|/2

q(q + 1)
(q − 1)2

(|x|+ 1)hZtγ(0)(|x|+ 1).

The definition of the spherical functions (1.1) shows that

q − 1
q + 1

φ0(x) ≤ (|x|+ 1) q−|x|/2 ≤ φ0(x) ∀x ∈ X,

and the proposition follows by combining all these inequalities and formula (1.5)
for γ(0).

It is perhaps worth noting that the ratio of the left hand side to the right hand
side of inequality (iii) of the preceding proposition tends to one as q becomes large.
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The last result of this section concerns the weak (1, 1) boundedness of the max-
imal heat operators on Z and on X; these are defined by the formulae

HZ∗F (j) = sup
t∈R+

∣∣F ∗Z hZt (j)
∣∣ ∀j ∈ Z

and

H∗f(x) = sup
t∈R+

|f ∗ ht(x)| ∀x ∈ X.

Theorem 2.6. The maximal heat operators HZ∗ and H∗ are of weak type (1, 1) and
of strong type (p, p) for every p in (1,∞).

Proof. Let M denote the class of all radial probability measures on X. According
to Corollary 3.2 of [CMS], the operatorMs, defined by the rule

Msf(x) = sup
µ∈M

(|f | ∗ µ) ∀x ∈ X,

is of weak type (1, 1) and of strong type (p, p) for every p in (1,∞).
Since

∑
x∈X

ht(x) = 1,

H∗f(x) ≤Msf(x) ∀x ∈ X

for every bounded function f on X, and the boundedness of H∗ follows.
We turn now to the boundedness of HZt . The case where p is in (1,∞) is classical

(see [S] and [Co1]), so we only need to prove the weak (1, 1) boundedness of HZt .
Since the analogue of Corollary 3.2 of [CMS] does not hold on Z, we use a different
argument, which is an adaptation of an idea in [CGGM], and relies on the sharp
estimates for the heat kernel hZt obtained in Theorem 2.3.

Let EZt denote the ergodic operator associated to HZt , namely

EZt F (j) =
1
t

∫ 2t

t

HZsF (j) ds ∀j ∈ Z ∀t ∈ R+,

and let EZ∗ be the the corresponding maximal operator:

EZ∗F (j) = sup
t∈R+

∣∣EZt F (j)
∣∣ ∀x ∈ Z.

The Hopf–Dunford–Schwartz theorem implies that EZ∗ is of weak type (1, 1), so, as
in [CGGM], it suffices to prove that the ergodic kernel, defined by the rule

εZt (j) =
1
t

∫ 2t

t

hZs (j) ds ∀j ∈ Z ∀t ∈ R+,

dominates the heat kernel. From Theorem 2.3,

hZ
s
(j) ∼ (1 + j2 + s2)−1/4 exp [|j| (−s/ |j|+ ξ(s/ |j|)]

for all j in Z \ {0} and t in R+, and since the function z 7→ −z+ ξ(z) is increasing,
while s 7→ (1 + j2 + s2)−1/4 is decreasing,

εZt (j) ≥ C (1 + j2 + 4t2)−1/4 exp [|j| (−t/ |j|+ ξ(t/ |j|))]
≥ 2−1/2C (1 + j2 + t2)−1/4 exp [|j| (−t/ |j|+ ξ(t/ |j|))]
≥ C′ hZ

t
(j) ∀j ∈ Z \ {0} ∀t ∈ R+.
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Similar estimates (but without the exponential term) hold when j = 0, so

εZt (j) ≥ C′ hZ
t
(j) ∀j ∈ Z ∀t ∈ R+,

and the weak type (1, 1) boundedness for HZ∗ follows.

3. Estimates for the resolvent

Throughout this section, α denotes a complex parameter and a its real part. For θ
in [0, 1), let Lθ andHt,θ denote the operators L−θb2 and e−tLθ . By Theorem 2.2 (i),

|||Ht,θ|||p = e−[1−b2θ−γ(iδ(p))] t ∀t ∈ R+.

Let pθ in [1, 2] be the threshold index for which Ht,θ is contractive on Lp(X), or,
equivalently, for which the Lp spectrum of Lθ is contained in the right half plane.
Thus pθ is the unique solution in the interval [1, 2] of the equation

γ (iδ(pθ)) = 1− b2θ,(3.1)

i.e.,

1
pθ

=
1
2

+
1

log q
cosh−1

(
1− θb2
1− b2

)
.

We denote by Rα
θ the operator L−α/2θ and by r αθ its integral kernel. This section

is devoted to studying the behaviour of r αθ at infinity and the Lp–Lq boundedness
properties of Rα

θ .
We need a technical lemma, which may be extracted from p. 48 of [E].

Lemma 3.1. Suppose that −∞ < c < d < ∞, 0 < Re(λ) ≤ 1, and η ∈ C2([c, d]).
The following hold:
(i) if η(k)(d) = 0 when k = 0 and 1, then∫ d

c

eixt (t− c)λ−1 η(t) dt = Γ(λ) eiλπ/2 η(c)x−λ eicx + E(x),

where the error term E is O(x−λ−1) as x tends to ∞;
(ii) if η(k)(c) = 0 when k = 0 and 1, then∫ d

c

eixt (d− t)λ−1 η(t) dt = Γ(λ) e−iλπ/2 η(d)x−λ eidx + E(x),

where the error term E is O(x−λ−1) as x tends to ∞.

Proof. Notice that the proof in [E] extends to the case when 0 < Re (λ) ≤ 1,
without change. The required conclusion is obtained by taking the first two terms
in the resulting asymptotic expansion.

The next proposition describes the asymptotic behaviour of r αθ at infinity.

Proposition 3.2. Suppose that 0 < θ < 1, α 6= 0, and a ≥ 0. Then

r αθ (x) � cα,θ |x|α/2−1 q−|x|/pθ as |x| → ∞,
where

cα,θ =
q

q + 1
(γ(0) sinh(δ(pθ) log q))−α/2

c(−iδ(pθ)) Γ(α/2)
.
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Proof. Since r αθ is associated to the multiplier (1−θb2−γ)−α/2, the spherical Fourier
inversion formula (Theorem 1.1) and formula (3.1) relating θb2 and pθ imply that

r αθ (x) = 2 cG
∫ τ/2

−τ/2
(1− θb2 − γ(s))−α/2 c(−s)−1

q(−1/2+is)|x| ds

= 2 cG
∫ τ/2

−τ/2
(γ(iδ(pθ))− γ(s))−α/2 c(−s)−1

q(−1/2+is)|x| ds ∀x ∈ X.

From (1.5), for all u and v in R, γ(iδ(pθ))− γ(u+ iv) is equal to

γ(0) [cosh(δ(pθ) log q)− cosh(v) cos(u) + i sinh(v) sin(u)] ,

so the set of zeroes of γ(iδ(pθ))− γ(·) is τZ± iδ(pθ), and Re (γ(iδ(pθ))− γ(·)) > 0
in Spθ \ (τZ± iδ(pθ)). Observe also that c−1 is meromorphic in C, with simple poles
on the line Im (z) = 1/2, and no other singularities, because

c(z) =
q1/2

q + 1
sin[(z − i/2) log q]

sin[z log q]
∀z ∈ C \ (τ/2)Z,

from formula (1.2). Thus, for d in N and α such that a ≥ 0, we may define an
analytic function fα : Spθ → C by the rule

fα(z) = [γ(iδ(pθ))− γ(z)]−α/2 c(−z)−1,(3.2)

where we take the principal branch of the logarithm to compute the power, and fα
has (almost everywhere) boundary values on the lines Im (z) = ±δ(pθ). Further,

r αθ (x) = 2 cG
∫ τ/2

−τ/2
fα(s) q(is−1/2)|x| ds.

The key idea of the proof is to vary the path of integration. Suppose that
1 < p < 2, and consider the rectangle with corners ±τ/2 and ±τ/2 + iδ(p). If f is
analytic inside the rectangle, then Cauchy’s theorem implies that∫ τ/2

−τ/2
fα(s) q(is−1/2)|x| ds =

∫ τ/2

−τ/2
fα(s+ iδ(p)) q(is−1/p)|x| ds

= q−|x|/p
∫ τ/2

−τ/2
fα(s+ iδ(p)) qis|x| ds,

because the two integrals along the vertical sides of the rectangle cancel, by peri-
odicity. Consequently, if |fα(·+ iδ(p))| is integrable, then the integral is bounded
independently of |x| , and

r αθ (x) = O(q−|x|/p) ∀x ∈ X.

The proof will involve variants and refinements of this idea.
First, we consider the case in which α = 2k, where k ∈ Z+. In this case, fα is

meromorphic. By applying the above technique for some p in (1, pθ), and taking
into account the pole of f inside the rectangle, we see that

r αθ (x) = 4πicG Res
(
fα(z) q(iz−1/2)|x|; z = iδ(pθ)

)
+ E1(x) ∀x ∈ X,(3.3)
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where the error term E1(x) is O
(
q−|x|/p

)
for all x in X. Now

Res
(
fα(z) q(iz−1/2)|x|; z = iδ(pθ)

)
=

1
(k − 1)!

(
d

dz

)k−1 [
(z − iδ(pθ))k fα(z) q(iz−1/2)|x|

] ∣∣∣
z=iδ(pθ)

.

The expression in square brackets is equal to g(z) q(iz−1/2)|x|, where g(z) =
(z − iδ(pθ))kfα(z); thus g is independent of x, holomorphic near iδ(pθ), and
g(iδ(pθ)) 6= 0. By Leibniz’s rule,

1
(k − 1)!

(
d

dz

)k−1 [
g(z) q(iz−1/2)|x|

] ∣∣∣
z=iδ(pθ)

=
k−1∑
j=0

1
j! (k − 1− j)! g

(k−1−j)(iδ(pθ)) (i |x| log q)j q−|x|/pθ

= g(iδ(pθ))
(i |x| log q)k−1

(k − 1)!
q−|x|/pθ + E2(x),

where the error term E2(x) is O((1 + |x|)k−2q−|x|/pθ ) for all x in X. From formula
(3.2) for fα,

g(iδ(pθ)) = lim
z→iδ(pθ)

[
z − iδ(pθ)

γ(iδ(pθ))− γ(z)

]k 1
c(−z)

=
[

−1
γ′(iδ(pθ))

]k 1
c(−iδ(pθ))

.

Thus

Res
(
fα(z) q(iz−1/2)|x|; z = iδ(pθ)

)
=
[

−1
γ′(iδ(pθ))

]k (i |x| log q)k−1

c(−iδ(pθ)) (k − 1)!
q−|x|/pθ + E2(x),

and by using formulae (3.3) for r αθ , (1.4) for cG, and (1.5) for γ, we see that

r αθ (x) = 4πi cG Res
(
fα(z) q(iz−1/2)|x|; z = iδ(pθ)

)
+ E1(x)

=
q

q + 1

(
−i log q
γ′(iδ(pθ))

)k 1
c(−iδ(pθ)) Γ(α/2)

|x|k−1
q−|x|/pθ + E3(x),

=
q

q + 1
[γ(0) sinh(δ(pθ) log q)]−α/2

c(−iδ(pθ)) Γ(α/2)
|x|α/2−1

q−|x|/pθ + E3(x),

where the error term E3(x) is O((1 + |x|)k−2 q−|x|/pθ ), for all x in X.
We now consider the case where α /∈ 2Z. First of all, we shift the interval of

integration using periodicity:

r αθ (x) = 2cG
∫ τ

0

fα(s) q(−1/2+is)|x| ds.

We first assume that a < 2. In this case fα has integrable singularities at iδ(pθ)
and τ + iδ(pθ), so that we may consider the rectangle with corners 0, τ, iδ(pθ), and
τ + iδ(pθ), and shift the contour of integration as before, to obtain

r αθ (x) = 2cG q−|x|/pθ
∫ τ

0

fα(s+ iδ(pθ)) qis|x| ds.
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Let Iα(x) denote the integral above, and take functions ψ1 and ψ2 in C∞([0, τ ])
such that ψ1 + ψ2 = 1, ψ1 takes the value 0 near τ, and ψ2 takes the value 0 near
0. Then

Iα(x) =
∫ τ

0

[fα(s+ iδ(pθ)) sα/2 ψ1(s)] s−α/2 eis|x| log q ds

+
∫ τ

0

[fα(s+ iδ(pθ)) (τ − s)α/2 ψ2(s)] (τ − s)−α/2 eis|x| log q ds

= Iα,1(x) + Iα,2(x) ∀x ∈ X,

say. By applying Lemma 3.1 to Iα,1 and Iα,2, it follows that

Iα(x) = Γ(1− α/2) (|x| log q)α/2−1
[
ei(1−α/2)π/2 v1 + e−i(1−α/2)π/2 v2

]
+ E1(x)

= iΓ(1− α/2) (|x| log q)α/2−1
[
e−iαπ/4 v1 − eiαπ/4 v2

]
+ E1(x)

for all x in X, where the error term E1(x) is O(xα/2−2) as |x| tends to ∞, and
where

v1 = lim
s→0+

fα(s+ iδ(pθ)) sα/2 and v2 = lim
s→τ−

fα(s+ iδ(pθ)) (τ − s)α/2.

Now

v1 = lim
s→0+

[
s

γ(iδ(pθ))− γ(s+ iδ(pθ))

]α/2 1
c(−s− iδ(pθ))

=
[

−1
γ′(iδ(pθ))

]α/2 1
c(−iδ(pθ))

= e−iαπ/4
(γ(0) log q sinh(δ(pθ) log q))−α/2

c(−iδ(pθ))
,

and similarly

v2 = eiαπ/4
(γ(0) log q sinh(δ(pθ) log q))−α/2

c(−iδ(pθ))
.

Consequently, using the formulae Γ(z) Γ(1− z) sin(πz) = π (see, e.g., formula 1.2.2
of [L] (p. 3)) and (1.4) for cG, we see that

Iα(x) =
iΓ(1− α/2) (γ(0) sinh(δ(pθ) log q))−

α
2

c(−iδ(pθ)) log q
[
e−iα

π
2 − eiαπ2

]
|x|

α
2−1 + E1(x),

=
2π (γ(0) sinh(δ(pθ) log q))−α/2

c(−iδ(pθ)) log q Γ(α/2)
|x|α/2−1 + E1(x) ∀x ∈ X,

where E1(x) is O(xα/2−2) as |x| tends to ∞, and

r αθ (x) =
q

q + 1
(γ(0) sinh(δ(pθ) log q))−α/2

c(−iδ(pθ)) Γ(α/2)
+ E2(x) ∀x ∈ X,

where E2(x) = 2cG q−|x|/pθ E1(x).
We now prove the estimate when a ≥ 2, and α is not an even integer. Performing

a k–fold integration by parts in the formulae that define Iα,1(x) and Iα,2(x), we
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deduce that

r αθ (x) = 2cG q−|x|/pθ (Iα,1(x) + Iα,2(x))

= 2cG
q−|x|/pθ

(1− α/2) · · · (k − α/2)
(Iα,1,k(x) + Iα,2,k(x)) ∀x ∈ X,

(3.4)

where

Iα,1,k(x) = (−1)k
∫ τ

0

sk−α/2
(
d

ds

)k [
fα(s+ iδ(pθ)) sα/2 ψ1(s) eis|x| log q

]
ds

and

Iα,2,k(x) =
∫ τ

0

(τ − s)k−α/2
(
d

ds

)k [
fα(s+ iδ(pθ)) (τ − s)α/2 ψ2(s) eis|x| log q

]
ds,

when a < 2. By analytic continuation, equality (3.4) continues to hold when a <
2(k+1) and α 6= 2, 4, . . . , 2k. The required estimate when 2k ≤ a < 2(k+1) is then
obtained by noting that the main contribution comes from the term where all the
derivatives are applied to the factor qis|x|, and arguing as before to estimate the
resulting integrals.

Corollary 3.3. If a is positive, then the resolvent kernel r αθ is in the Lorentz space
Lpθ,r(X) if and only if a < 2/r′. If u is in R \ {0}, then riuθ is in Lpθ,r(X) when
r > 1, but is not in Lpθ,1(X).

Proof. Let {x0, x1, x2, . . . } be a half geodesic emanating from o, so that |xd| = d
for every d in N. Then a radial function f on X is in Lp,r(X)] if and only if the
function defined on N by d 7→ f(xd) qd/p is in Lr(N), and the expression[ ∞∑

d=0

|f(xd)|r qrd/p
]1/r

defines an equivalent norm on Lp,r(X)]. This fact and Proposition 3.2 imply that
if a > 0, then r αθ is in Lpθ,r(X)] if and only if

∞∑
d=1

dr(a/2−1) <∞.

This happens if and only if r(a/2−1) < −1, i.e., if and only if a < 2/r′, as required.
The second statement is proved analogously.

Theorem 3.4. Suppose that 0 ≤ θ < 1, 1 ≤ p ≤ r ≤ ∞, s = min(r, p′), and a ≥ 0.
Then the operator Rα

θ is bounded from Lp(X) to Lr(X) if and only if one of the
following conditions holds:
(i) α = 0;
(ii) α 6= 0, s > pθ;
(iii) α 6= 0, a = 0, 1 6= s = pθ, p = r;
(iv) α 6= 0, 0 ≤ a < 2/pθ, s = pθ, p < r.

Proof. If α = 0, then Rα
θ is just the identity operator, which is trivially bounded

from Lp(X) to Lr(X). We may therefore assume that α 6= 0 for the rest of this
proof.
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Assume that r αθ ∈ Cvrp(X). We shall show that one of (ii), (iii), and (iv) must
hold. According to Theorem 1.3, if s < 2, then r̃ αθ must be analytic in the strip
Ss; since

r̃ αθ (z) = [γ(iδ(pθ))− γ(z)]−α/2,

it is necessary that s ≥ pθ. Further, if s ≥ 2, then s ≥ pθ trivially. When s = pθ,

Theorem 1.3 gives further information. On the one hand, if p = r, then r̃ αθ must be
bounded, whence a = 0; if, in addition, s = 1, then r αθ must be in L1(X), which is
excluded by Corollary 3.3. On the other hand, if p < r, then r αθ must lie in Ls(X),
which implies that 0 ≤ a < 2/pθ, again by Corollary 3.3.

Conversely, we shall show that r αθ ∈ Cvrp(X) if one of (ii), (iii) and (iv) holds.
Suppose first that (ii) holds, and take t in (pθ, 2) such that t < s. Since r̃ αθ is
smooth on St, r αθ ∈ Lt,1(X); by a theorem of Pytlik [Py], r αθ ∈ Cvtt(X). By duality
and interpolation, r αθ ∈ Cvtt(X) for all t in (pθ, pθ′), and for a suitable choice of t,
p < t < r, so Cvtt(X) ⊆ Cvrp(X), as required. Next, if (iii) holds, the argument of
Theorem 4.1 of [CGM] is applicable. Finally, if (iv) holds, then r αθ ∈ Lpθ(X), and
then r αθ ∈ Cvrp(X) by Theorem 1.4.

Corollary 3.5. Let 1 ≤ p < 2. Then the inclusions

Lp,1(X)] ⊂ Cvpp(X) ⊂ Lp(X)],

and

Cvp
′

p (X) ⊂ Lp
′
(X)]

are strict.

Proof. We may choose θ such that p = pθ. To prove the first part of the statement,
note that by Theorem 3.4 riuθ is in Cvpθpθ (X) for every real u. By Corollary 3.3, riuθ is
in the Lorentz space Lpθ,r(X) when r > 1, but it is not in Lpθ,1(X), and so Lpθ,1(X)
is strictly included in Cvpθpθ (X).

Again by Corollary 3.3, if a is in (0, 2/r′), then the resolvent kernel r αθ is in
the Lorentz space Lpθ,r(X), but it is not in Cvpθpθ (X), because its spherical Fourier
transform is not bounded on the strip Spθ . This shows that Cvpθpθ (X) does not
contain the Lorentz space Lpθ,r(X)] for any r in (1,∞); in particular it is properly
contained in Lpθ (X)].

We prove the second part of the statement by contradiction. If it were true that
Lpθ

′
(X)] ⊆ Cvpθ ′pθ (X), then it would follow that

|〈f ∗ k, g〉| ≤ ‖f ∗ k‖pθ ′ ‖g‖pθ ≤ ‖f‖pθ ‖g‖pθ ‖k‖Cvpθ′pθ
(X)]

≤ C ‖f‖pθ ‖g‖pθ ‖k‖pθ ′

for every f and g in Lpθ (X)] and k in Lpθ
′
(X)]. Since f is radial, 〈f ∗k, g〉 = 〈k, f ∗g〉,

so we would have

‖f ∗ g‖pθ = sup
‖k‖pθ′=1

|〈k, f ∗ g〉| ≤ C ‖f‖pθ ‖g‖pθ .

Thus the bilinear map (f, g) 7→ f ∗ g would be continuous from Lpθ(X)] × Lpθ(X)]

to Lpθ (X)]. We show that this is false. If a is in the interval (1/p′θ, 2/p
′
θ), then the
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resolvent kernel r αθ is in Lpθ(X)] by Corollary 3.3, while r αθ ∗r αθ is not, for otherwise
its spherical Fourier transform would satisfy the estimate[∫ τr

0

|(r αθ ∗ r αθ )˜(s+ iδ(pθ))|p
′
θ ds

]1/p′θ

≤ C ‖r αθ ∗ r αθ ‖pθ

by Theorem 1.2. A simple computation shows that the integral on the left is
divergent, and the proof is complete.

4. On the Littlewood–Paley–Stein g–function

In this section we present some results on the Lp boundedness of the Littlewood–
Paley–Stein g–function associated to the semigroup (Ht,θ)t>0. Again, α denotes a
complex parameter and a its real part.

Suppose that M is a σ–finite measure space, and that A is a positive self-adjoint
operator on L2(M); then A generates a symmetric contraction semigroup (Tt) on
L2(M). Assume that Tt is subpositive, and that, for some r in [1, 2),

‖Ttf‖p ≤ ‖f‖p ∀f ∈ Lp(M) ∩ L2(M),

whenever p is in [r, r′]. For α in Z+, we consider the nonlinear functional gα, defined
by

gα(f) = (2π)−1/2

[∫ ∞
0

∣∣∣∣tα ( ∂

∂t

)α
e−tAf

∣∣∣∣2dt
]1/2

∀f ∈ L2(M),

which was introduced by Stein [S]. It may be shown (see [Co2]) that

gα(f) = (2π)−1/2

[∫
R

∣∣Γ(α− iu)Aiuf
∣∣2du]1/2

∀f ∈ L2(M).(4.1)

Since Γ is a meromorphic function with simple poles in −N, (4.1) makes sense for
all complex α in the “admissible set” {α ∈ C : −a /∈ N}. Thus we may define gα by
(4.1) for all α in the admissible set. It is known that if r = 1, i.e., if the semigroup
is contractive on Lp(M) for all p in [1,∞], then gα is bounded on Lp(M) for all p
in (1,∞) and α in R+.

We summarise some of the properties of the functional gα in the next theorem.

Theorem 4.1. Suppose that α is admissible. Then the functional gα is bounded
on Lp(M) if one of the following holds:
(i) p = r′ and a < −1/2;
(ii) p = r and a < −1;
(iii) r < p < r′.

Proof. Part (iii) was proved in [Co2] and [CDMY]; (i) and (ii) are from [M].

Suppose that α is admissible and a > 0. Theorem 4.1 does not give any infor-
mation about the boundedness of the functional gα on Lr(M) or Lr

′
(M). It was

shown in [M] that on noncompact symmetric spaces the gα–functional associated
to the θ–heat semigroup, which is positivity preserving and contractive on Lp for
all p in the interval [pθ, pθ′], is unbounded on Lpθ and on Lpθ

′
when a > 0. We prove

here a similar result for the gα–functional associated to the θ–heat operator on X.
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For every θ in (0, 1), we consider the modified semigroup Ht,θ, and for any
admissible α, we define gα,θ by the rule

gα,θ(f) = (2π)−1/2

[∫ ∞
−∞

∣∣Γ(α− iu)L iu
θ f

∣∣2du]1/2

∀f ∈ L2(X).

Our aim is to prove some endpoint results for gα,θ.

Theorem 4.2. Suppose that θ is in (0, 1) and α is admissible. Then the following
hold:
(i) gα,θ is bounded on Lpθ (X) if a < −1 and on Lpθ

′
(X) if a < −1/2;

(ii) gα,θ is bounded on Lp(X) if p ∈ (pθ, pθ′);
(iii) gα,θ is not bounded on Lpθ (X) or on Lpθ

′
(X) if a > 0.

Proof. The statements (i) and (ii) are immediate consequences of Theorem 4.1.
We now suppose that a > 0, and we show that gα,θ is not bounded on Lpθ

′
(X).

Observe that L iu
θ φz = (γ(iδ(pθ))− γ(z))−iuφz, so

|||gα,θ|||2pθ′ ≥ ‖gα,θ (φz)‖2pθ′
/
‖φz‖2pθ

= (2π)−1

∫ ∞
−∞
|Γ(α− iu)|2

∣∣(γ(iδ(pθ))− γ(z))−iu
∣∣2 du,

for all z in Spθ . Denoting the integrand by A(u, z), it follows that

|||gα,θ|||2pθ′ ≥ sup
z∈Spθ

(2π)−1

∫ ∞
−∞

A(u, z) du.

By using the asymptotics of the Γ–function, viz,

|Γ(α− iu)| �
√

2π e−π|u|/2|u|α−1/2 as u→ ±∞ in R,

it is immediate to check that

A(u, z) = |Γ(α− iu)|2 exp
[
2u arg [γ(iδ(pθ))− γ(z)]

]
∼ exp(−π |u|) |u|2a−1 exp

[
2u arg [γ(iδ(pθ))− γ(z)]

]
= |u|2a−1 exp

[
− π |u|+ 2u arg [γ(iδ(pθ))− γ(z)]

]
for all u in R and z in Spθ . Denote the last term on the right hand side by B(u, z).

We claim that, if z approaches the point iδ(pθ) from inside the strip Spθ along a
suitable path, then arg [γ(ipθ)− γ(z)] converges to π/2. Indeed, for small real y,

γ(iδ(pθ))− γ(y − iy2 + iδ(pθ))

= 2γ(0)
(

cos(iδ(pθ))− cos(y − iy2) cos(iδ(pθ)) + sin(y − iy2) sin(iδ(pθ))
)

= 2γ(0)
(

cosh(δ(pθ)) y2/2 + i sinh(δ(pθ)) (y − iy2)
)

+O(y3).

Clearly, as y → ±0, arg
[
γ(iδ(pθ))− γ(y − iy2 + iδ(pθ))

]
→ ±π/2.
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From our claim it follows that

|||gα,θ|||2pθ′ ≥ sup
z∈Spθ

(2π)−1

∫ ∞
−∞

A(u, z) du

≥ C sup
z∈Spθ

∫ ∞
0

B(u, z) du

= C sup
z∈Spθ

∫ ∞
0

u2a−1 exp [−πu+ 2u arg [γ(iδ(pθ))− γ(z)]] du

≥ C sup
ε>0

∫ ∞
0

u2a−1 exp [−πu+ 2u(π/2− ε)] du

=∞,

as required.
The proof of the rest of (iii) is that of Theorem 2.2.(ii) of [M], mutatis mutandis.

The proof of the theorem is now complete.
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