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THE SINGLE-VALUED EXTENSION PROPERTY
FOR BILATERAL OPERATOR WEIGHTED SHIFTS

A. BOURHIM AND C. E. CHIDUME

(Communicated by Joseph A. Ball)

Abstract. In this paper, we give necessary and sufficient conditions for a
bilateral operator weighted shift to enjoy the single-valued extension property.

1. Introduction

Let X be a complex Banach space, and let L(X ) be the algebra of bounded
linear operators on X . For an operator T ∈ L(X ), we denote, as usual, by σ(T )
and σp(T ) the spectrum and the point spectrum of T , respectively. An operator
T ∈ L(X ) is said to have the single-valued extension property provided that for
every open subset U of C the only analytic solution φ : U → X of the equation

(T − λ)φ(λ) = 0 (λ ∈ U)

is the identically zero function.
Throughout this paper, H will denote a complex Hilbert space and (An)n∈Z

is a two–sided sequence of uniformly bounded invertible operators of L(H). For
1 ≤ p <∞, let

lp(H,Z) :=
{
x = (xn)n∈Z ⊂ H : ‖x‖p =

(∑
n∈Z
‖xn‖p

) 1
p

< +∞
}
.

It is a Banach space under the norm ‖.‖p. For p = +∞, let

l∞(H,Z) :=
{
x = (xn)n∈Z ⊂ H : ‖x‖∞ = sup

n∈Z
‖xn‖ < +∞

}
.

This space is also a Banach space under the norm ‖.‖∞. A linear operator S on
lp(H,Z), (1 ≤ p ≤ ∞), is called a bilateral operator weighted shift with the weight
sequence (An)n∈Z if

S(..., x−2, x−1, [x0], x1, x2, ...) = (..., A−2x−2, [A−1x−1], A0x0, A1x1, ...),

where for an element x = (..., x−2, x−1, [x0], x1, x2, ...) ∈ lp(H,Z), [x0] denotes the
central (0th) term of x.

In [8], Li Jue Xian proved that if dimH = m < +∞, then a bilateral operator
weighted shift S has the single-valued extension property if and only if the cardinal
number of σp(S) ∩ R+ is not greater than m, where R+ is the set of positive
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486 A. BOURHIM AND C. E. CHIDUME

real numbers. Here, we completely settle the question of which bilateral operator
weighted shift S on lp(H,Z) has the single-valued extension property even when
H is an infinite-dimensional Hilbert space. Our proof is simple and is based on a
recent result of [3] on a local version of the single-valued extension property.

In the sequel, let (Bn)n∈Z be the two–sided sequence given by

Bn :=


An−1An−2...A1A0 if n > 0,

1 if n = 0,

A−1
n A−1

n+1...A
−1
−2A

−1
−1 if n < 0.

For a nonzero x ∈ H, we set

n(S, x) := lim inf
n→+∞

‖B−nx‖−
1
n , p(S, x) := lim sup

n→+∞
‖Bnx‖

1
n ,

n∗(S, x) := lim inf
n→+∞

‖(B−1
n )∗x‖−

1
n , and p∗(S, x) := lim sup

n→+∞
‖(B−1

−n)∗x‖ 1
n .

Moreover, we also introduce the following notation:
(i) x(n) = (δn,kx)k∈Z, (n ∈ Z), where δn,k is the usual Kronecker-delta symbol.

(ii) Ep(x) denotes the closed linear span of {(Bnx)(n) : n ∈ Z} in lp(H,Z).
(iii) Sx denotes the restriction of S to Ep(x).

Finally, wherever it is more convenient, we will write y =
∑
n∈Z
⊕yn instead of y =

(yn)n∈Z ∈ lp(H,Z).

2. Main results

The single-valued extension property plays an important and crucial role in local
spectral theory. A local version of this property which dates back to Finch [7] has
been recently investigated in the local spectral theory and Fredholm theory by
many authors (see [1], [2], [3], and the references contained therein). Recall that
a bounded linear operator T on a complex Banach space X is said to have the
single-valued extension property at a point λ0 ∈ C if for every open disc U centered
at λ0 the only analytic function φ : U → X that satisfies the equation

(T − λ)φ(λ) = 0 (λ ∈ U)

is the identically zero function φ ≡ 0. The set of all points on which T fails to have
the single-valued extension property will be denoted by <(T ). It is an open subset
of C contained in σp(T ), and it is empty precisely when T has the single-valued
extension property. The local resolvent set, ρ

T
(x), of an operator T ∈ L(X ) at a

point x ∈ X is the union of all open subsets U of C for which there is an analytic
function φ : U → X that satisfies

(T − λ)φ(λ) = x (λ ∈ U).

The local spectrum of T at x is defined by

σT (x) := C\ρT (x).

It is clearly a closed subset of σ(T ). In [3], P. Aiena and O. Monsalve established a
useful characterization of the operators that do not have the single-valued extension
property at a given point λ0 ∈ C. They showed that an operator T ∈ L(X ) does
not have the single-valued extension property at a point λ0 ∈ C precisely when
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there exists a nonzero x ∈ ker(T − λ0) for which σ
T

(x) = ∅. For more on local
spectral theory, the reader may consult [6] and [9].

We are now able to state and prove the main result of this paper.

Theorem 2.1. The following properties hold.
(i) σp(S) =

⋃
x 6=0

σp(Sx).

(ii) <(S) =
⋃
x 6=0

<(Sx) =
⋃
x 6=0

{λ ∈ C : p(S, x) < |λ| < n(S, x)}.

Moreover, the following statements are equivalent.
(a) S has the single-valued extension property.
(b) Each Sx has the single-valued extension property.
(c) n(S, x) ≤ p(S, x) for all nonzero x in H.

Proof. Let x be a nonzero element of H. It is clear that Sx is similar to the bilateral
scalar weighted shift on lp(Z) with the weight sequence

(‖Bn+1x‖
‖Bnx‖

)
n∈Z. Therefore,

{λ ∈ C : p(S, x) < |λ| < n(S, x)} ⊂ σp(Sx) ⊂ {λ ∈ C : p(S, x) ≤ |λ| ≤ n(S, x)}
(see [9] and [11]).

(i) Now, suppose that λ ∈ C is an eigenvalue for S and y :=
∑
n∈Z
⊕yn ∈ lp(H,Z)

is a corresponding eigenvector. We obviously have λ 6= 0 and

Anyn = λyn+1 for all n ∈ Z.
Therefore,

yn =
1
λn
Bny0 for all n ∈ Z;

this shows that y ∈ Ep(y0). Hence, λ ∈ σp(Sy0) and therefore,

σp(S) ⊂
⋃
x 6=0

σp(Sx).

The reverse inclusion is trivial since S coincides with Sx when it is restricted to
each Ep(x).

(ii) First, let us prove that for every nonzero x ∈ H, we have

(2.1) σ
S

(y) = σ
Sx

(y) for all y ∈ Ep(x).

Let x be a nonzero element of H, and let y =
∑
n∈Z
⊕yn ∈ Ep(x). Since S coincides

with Sx when restricted to Ep(x),

σ
S
(y) ⊂ σ

Sx
(y).

Conversely, let φ =
∑
n∈Z
⊕φn be a lp(H,Z)-valued analytic function on some open

set U ⊂ ρ
S
(y) such that

(S − λ)φ(λ) = y (λ ∈ U).

For every n ∈ Z, we have

(2.2) An−1φn−1(λ)− λφn(λ) = yn (λ ∈ U).

For every n ∈ Z, let
Fn(λ) := Pnφn(λ) (λ ∈ U),
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where Pn is the canonical projection from H onto Mn := span{Bnx}. We clearly
have AnMn = Mn+1 for all n ∈ Z; therefore, it follows from (2.2) that, for every
n ∈ Z,

(2.3) An−1Fn−1(λ)− λFn(λ) = yn (λ ∈ U).

Since ‖Fn(.)‖ ≤ ‖φn(.)‖ for all n ∈ Z, the function

F (λ) :=
∑
n∈Z
⊕Fn(λ) (λ ∈ U)

is well defined and is, in fact, an Ep(x)-valued analytic function on U . Moreover,
in view of (2.3), this function satisfies the equation

(S − λ)F (λ) = (Sx − λ)F (λ) = y (λ ∈ U).

This shows that U ⊂ ρ
Sx

(y); therefore, σ
Sx

(y) ⊂ σ
S
(y). Thus (2.1) is established.

Next, we let x be a nonzero element of H and note that if σp(Sx) 6= ∅, we have

(S − λ)kx(λ) = 0 (λ ∈ σp(Sx)),

where

kx(λ) =
∑
n∈Z
⊕ 1
λn
Bnx.

Moreover, we have

<(Sx) = {λ ∈ C : r+
3 (S, x) < |λ| < r−2 (S, x)}

= {λ ∈ σp(Sx) : σ
Sx

(kx(λ)) = ∅}
= {λ ∈ σp(Sx) : σS (kx(λ)) = ∅}.

Indeed, since all eigenvalues of Sx are simple (see [9, theorem 9]), the equalities

<(Sx) = {λ ∈ σp(Sx) : σ
Sx

(kx(λ)) = ∅}
= {λ ∈ σp(Sx) : σ

S
(kx(λ)) = ∅}

hold by applying [3, theorem 1.9] and (2.1). Now, let us show that

<(Sx) = {λ ∈ C : p(S, x) < |λ| < n(S, x)}.

Since σp(Sx) ⊂ {λ ∈ C : p(S, x) ≤ |λ| ≤ n(S, x)}, we have

(2.4) <(Sx) ⊂ {λ ∈ C : p(S, x) < |λ| < n(S, x)}.

Conversely, suppose that p(S, x) < n(S, x) and let

O := {λ ∈ C : p(S, x) < |λ| < n(S, x)}.

We have O ⊂ σp(Sx), and kx is clearly a nonzero identically analytic function on
O and satisfies the equation

(Sx − λ)kx(λ) = 0 (λ ∈ O).

This establishes the reverse inclusion of (2.4), as desired.
Finally, we shall deduce that

<(S) =
⋃
x 6=0

<(Sx) =
⋃
x 6=0

{λ ∈ C : p(S, x) < |λ| < n(S, x)}.
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Indeed, we trivially see that
⋃
x 6=0

<(Sx) ⊂ <(S). Conversely, let λ0 ∈ <(S). By [3,

theorem 1.9] there exists a nonzero y =
∑
n∈Z
⊕yn ∈ ker(S − λ0) such that

σ
S
(y) = ∅.

As in the proof of (i), we see that y0 6= 0 and y = ky0(λ0) ∈ ker(Sy0 − λ0). By
(2.1), we have

σ
S
(y) = σ

S
(ky0(λ0)) = σ

Sy0
(ky0(λ0)) = ∅.

This shows that λ0 ∈ <(Sy0) and therefore

<(S) ⊂
⋃
x 6=0

<(Sx).

This completes the proof. �
Assume that 1 ≤ p < +∞ and 1

p + 1
q = 1. The dual of lp(H,Z) can be identified

with lq(H,Z), with the duality being implemented by the formula

〈y, z〉 =
∑
n∈Z
〈yn, zn〉 (y =

∑
n∈Z
⊕yn ∈ lq(H,Z), and z =

∑
n∈Z
⊕zn ∈ lp(H,Z)).

The adjoint, S∗, of S is given by

S∗y = (..., A∗−2y−1, A
∗
−1y0, [A∗0y1], A∗1y2, A

∗
2y3, ...) (y =

∑
n∈Z
⊕yn ∈ lq(H,Z)).

It is similar to the bilateral operator weighted shift, S̃, on lq(H,Z) with the weight
sequence (Ãn)n∈Z, where Ãn = A∗−n−1 for all n ∈ Z.

Corollary 2.2. The following properties hold.
(i) σp(S∗) =

⋃
x 6=0

σp(S̃x).

(ii) <(S∗) =
⋃
x 6=0

<(S̃x) =
⋃
x 6=0

{λ ∈ C : p∗(S, x) < |λ| < n∗(S, x)}.

Moreover, the following statements are equivalent.
(a) S∗ has the single-valued extension property.
(b) Each S̃x has the single-valued extension property.
(c) n∗(S, x) ≤ p∗(S, x) for all nonzero x in H.

Unlike in the scalar case, both S and S∗ need not have the single-valued extension
property.

Example 2.3. Assume that (en)n≥0 is an orthonormal basis of H, and let T
and R be the diagonal operators with the diagonal sequences (2, 4, 1, 1, 1, ...) and
(4, 2, 1, 1, 1, ...), respectively. We set

An :=

 T if n ≥ 0,

R if n < 0.

We have
p(S, e0) = p∗(S, e1) = 2 and n(S, e0) = n∗(S, e1) = 4.

In view of theorem 2.1 and corollary 2.2, we see that

{λ ∈ C : 2 < |λ| < 4} ⊂ σp(S) ∩ σp(S∗),
and neither S nor S∗ has the single-valued extension property.
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In the sequel, for a nonzero y =
∑
n∈Z
⊕yn ∈ lp(H,Z), let

R−(S, y) := lim sup
n→+∞

‖B−1
−ny−n‖

1
n and R+(S, y) := 1/ lim sup

n→+∞
‖B−1

n yn‖
1
n .

Remark 2.4. Let x be a nonzero element of H. In view of (2.1) and [5], we have
the following results.

(i) For every nonzero finitely supported element y of Ep(x),

σ
S

(y) = {λ ∈ C : n(S, x) ≤ |λ| ≤ p(S, x)}.
(ii) Assume that n(S, x) ≤ p(S, x), and let y be a nonzero element of Ep(x). If

R−(S, y) < n(S, x) and p(S, x) < R+(S, y), then

σ
S

(y) = {λ ∈ C : n(S, x) ≤ |λ| ≤ p(S, x)}.
Otherwise,

{λ ∈ C : max
(
R−(S, y), n(S, x)

)
< |λ| < min

(
R+(S, y), p(S, x)

)
} ⊂ σ

S
(y).

(iii) Assume that n(S, x) = 0, and let y be a nonzero negatively finitely sup-
ported element of Ep(x). If p(S, x) < R+(S, y), then

σ
S
(y) = {λ ∈ C : |λ| ≤ p(S, x)}.

Otherwise,
{λ ∈ C : |λ| ≤ R+(S, y)} ⊂ σ

S
(y).

In [4], Ben-Artzi and Gohberg introduced the concepts of Bohl exponent and
canonical splitting projection to describe the spectrum and the essential spectrum of
operator weighted shifts of finite multiplicity (see also [10]). However, in the general
setting of bilateral operator weighted shifts of infinite multiplicity, the complete
description of the spectrum and its parts is not yet settled.
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