THE SINGLE-VALUED EXTENSION PROPERTY FOR BILATERAL OPERATOR WEIGHTED SHIFTS

A. BOURHIM AND C. E. CHIDUME

(Communicated by Joseph A. Ball)

Abstract

In this paper, we give necessary and sufficient conditions for a bilateral operator weighted shift to enjoy the single-valued extension property.

1. Introduction

Let \mathcal{X} be a complex Banach space, and let $\mathcal{L}(\mathcal{X})$ be the algebra of bounded linear operators on \mathcal{X}. For an operator $T \in \mathcal{L}(\mathcal{X})$, we denote, as usual, by $\sigma(T)$ and $\sigma_{p}(T)$ the spectrum and the point spectrum of T, respectively. An operator $T \in \mathcal{L}(\mathcal{X})$ is said to have the single-valued extension property provided that for every open subset U of \mathbb{C} the only analytic solution $\phi: U \rightarrow \mathcal{X}$ of the equation

$$
(T-\lambda) \phi(\lambda)=0 \quad(\lambda \in U)
$$

is the identically zero function.
Throughout this paper, \mathcal{H} will denote a complex Hilbert space and $\left(A_{n}\right)_{n \in \mathbb{Z}}$ is a two-sided sequence of uniformly bounded invertible operators of $\mathcal{L}(\mathcal{H})$. For $1 \leq p<\infty$, let

$$
l^{p}(\mathcal{H}, \mathbb{Z}):=\left\{x=\left(x_{n}\right)_{n \in \mathbb{Z}} \subset \mathcal{H}:\|x\|_{p}=\left(\sum_{n \in \mathbb{Z}}\left\|x_{n}\right\|^{p}\right)^{\frac{1}{p}}<+\infty\right\}
$$

It is a Banach space under the norm $\|\cdot\|_{p}$. For $p=+\infty$, let

$$
l^{\infty}(\mathcal{H}, \mathbb{Z}):=\left\{x=\left(x_{n}\right)_{n \in \mathbb{Z}} \subset \mathcal{H}:\|x\|_{\infty}=\sup _{n \in \mathbb{Z}}\left\|x_{n}\right\|<+\infty\right\}
$$

This space is also a Banach space under the norm $\|\cdot\|_{\infty}$. A linear operator S on $l^{p}(\mathcal{H}, \mathbb{Z}),(1 \leq p \leq \infty)$, is called a bilateral operator weighted shift with the weight sequence $\left(A_{n}\right)_{n \in \mathbb{Z}}$ if

$$
S\left(\ldots, x_{-2}, x_{-1},\left[x_{0}\right], x_{1}, x_{2}, \ldots\right)=\left(\ldots, A_{-2} x_{-2},\left[A_{-1} x_{-1}\right], A_{0} x_{0}, A_{1} x_{1}, \ldots\right)
$$

where for an element $x=\left(\ldots, x_{-2}, x_{-1},\left[x_{0}\right], x_{1}, x_{2}, \ldots\right) \in l^{p}(\mathcal{H}, \mathbb{Z}),\left[x_{0}\right]$ denotes the central (0 th) term of x.

In [8], Li Jue Xian proved that if $\operatorname{dim} \mathcal{H}=m<+\infty$, then a bilateral operator weighted shift S has the single-valued extension property if and only if the cardinal number of $\sigma_{p}(S) \cap \mathbb{R}^{+}$is not greater than m, where \mathbb{R}^{+}is the set of positive

[^0]real numbers. Here, we completely settle the question of which bilateral operator weighted shift S on $l^{p}(\mathcal{H}, \mathbb{Z})$ has the single-valued extension property even when \mathcal{H} is an infinite-dimensional Hilbert space. Our proof is simple and is based on a recent result of [3] on a local version of the single-valued extension property.

In the sequel, let $\left(B_{n}\right)_{n \in \mathbb{Z}}$ be the two-sided sequence given by

$$
B_{n}:= \begin{cases}A_{n-1} A_{n-2} \ldots A_{1} A_{0} & \text { if } n>0 \\ 1 & \text { if } n=0 \\ A_{n}^{-1} A_{n+1}^{-1} \ldots A_{-2}^{-1} A_{-1}^{-1} & \text { if } n<0\end{cases}
$$

For a nonzero $x \in \mathcal{H}$, we set

$$
\begin{gathered}
n(S, x):=\liminf _{n \rightarrow+\infty}\left\|B_{-n} x\right\|^{-\frac{1}{n}}, p(S, x):=\limsup _{n \rightarrow+\infty}\left\|B_{n} x\right\|^{\frac{1}{n}} \\
n^{*}(S, x):=\liminf _{n \rightarrow+\infty}\left\|\left(B_{n}^{-1}\right)^{*} x\right\|^{-\frac{1}{n}}, \text { and } p^{*}(S, x):=\limsup _{n \rightarrow+\infty}\left\|\left(B_{-n}^{-1}\right)^{*} x\right\|^{\frac{1}{n}} .
\end{gathered}
$$

Moreover, we also introduce the following notation:
(i) $x^{(n)}=\left(\delta_{n, k} x\right)_{k \in \mathbb{Z}},(n \in \mathbb{Z})$, where $\delta_{n, k}$ is the usual Kronecker-delta symbol.
(ii) $E^{p}(x)$ denotes the closed linear span of $\left\{\left(B_{n} x\right)^{(n)}: n \in \mathbb{Z}\right\}$ in $l^{p}(\mathcal{H}, \mathbb{Z})$.
(iii) S_{x} denotes the restriction of S to $E^{p}(x)$.

Finally, wherever it is more convenient, we will write $y=\sum_{n \in \mathbb{Z}} \oplus y_{n}$ instead of $y=$ $\left(y_{n}\right)_{n \in \mathbb{Z}} \in l^{p}(\mathcal{H}, \mathbb{Z})$.

2. Main Results

The single-valued extension property plays an important and crucial role in local spectral theory. A local version of this property which dates back to Finch [7] has been recently investigated in the local spectral theory and Fredholm theory by many authors (see [1], [2], [3], and the references contained therein). Recall that a bounded linear operator T on a complex Banach space \mathcal{X} is said to have the single-valued extension property at a point $\lambda_{0} \in \mathbb{C}$ if for every open disc U centered at λ_{0} the only analytic function $\phi: U \rightarrow \mathcal{X}$ that satisfies the equation

$$
(T-\lambda) \phi(\lambda)=0(\lambda \in U)
$$

is the identically zero function $\phi \equiv 0$. The set of all points on which T fails to have the single-valued extension property will be denoted by $\Re(T)$. It is an open subset of \mathbb{C} contained in $\sigma_{p}(T)$, and it is empty precisely when T has the single-valued extension property. The local resolvent set, $\rho_{T}(x)$, of an operator $T \in \mathcal{L}(\mathcal{X})$ at a point $x \in \mathcal{X}$ is the union of all open subsets U of \mathbb{C} for which there is an analytic function $\phi: U \rightarrow \mathcal{X}$ that satisfies

$$
(T-\lambda) \phi(\lambda)=x(\lambda \in U)
$$

The local spectrum of T at x is defined by

$$
\sigma_{T}(x):=\mathbb{C} \backslash \rho_{T}(x)
$$

It is clearly a closed subset of $\sigma(T)$. In [3], P. Aiena and O. Monsalve established a useful characterization of the operators that do not have the single-valued extension property at a given point $\lambda_{0} \in \mathbb{C}$. They showed that an operator $T \in \mathcal{L}(\mathcal{X})$ does not have the single-valued extension property at a point $\lambda_{0} \in \mathbb{C}$ precisely when
there exists a nonzero $x \in \operatorname{ker}\left(T-\lambda_{0}\right)$ for which $\sigma_{T}(x)=\emptyset$. For more on local spectral theory, the reader may consult [6] and [9].

We are now able to state and prove the main result of this paper.
Theorem 2.1. The following properties hold.
(i) $\sigma_{p}(S)=\bigcup_{x \neq 0} \sigma_{p}\left(S_{x}\right)$.
(ii) $\Re(S)=\bigcup_{x \neq 0} \Re\left(S_{x}\right)=\bigcup_{x \neq 0}\{\lambda \in \mathbb{C}: p(S, x)<|\lambda|<n(S, x)\}$.

Moreover, the following statements are equivalent.
(a) S has the single-valued extension property.
(b) Each S_{x} has the single-valued extension property.
(c) $n(S, x) \leq p(S, x)$ for all nonzero x in \mathcal{H}.

Proof. Let x be a nonzero element of \mathcal{H}. It is clear that S_{x} is similar to the bilateral scalar weighted shift on $l^{p}(\mathbb{Z})$ with the weight sequence $\left(\frac{\left\|B_{n+1} x\right\|}{\left\|B_{n} x\right\|}\right)_{n \in \mathbb{Z}}$. Therefore,

$$
\{\lambda \in \mathbb{C}: p(S, x)<|\lambda|<n(S, x)\} \subset \sigma_{p}\left(S_{x}\right) \subset\{\lambda \in \mathbb{C}: p(S, x) \leq|\lambda| \leq n(S, x)\}
$$

(see [9] and [11]).
(i) Now, suppose that $\lambda \in \mathbb{C}$ is an eigenvalue for S and $y:=\sum_{n \in \mathbb{Z}} \oplus y_{n} \in l^{p}(\mathcal{H}, \mathbb{Z})$ is a corresponding eigenvector. We obviously have $\lambda \neq 0$ and

$$
A_{n} y_{n}=\lambda y_{n+1} \text { for all } n \in \mathbb{Z}
$$

Therefore,

$$
y_{n}=\frac{1}{\lambda^{n}} B_{n} y_{0} \text { for all } n \in \mathbb{Z}
$$

this shows that $y \in E^{p}\left(y_{0}\right)$. Hence, $\lambda \in \sigma_{p}\left(S_{y_{0}}\right)$ and therefore,

$$
\sigma_{p}(S) \subset \bigcup_{x \neq 0} \sigma_{p}\left(S_{x}\right)
$$

The reverse inclusion is trivial since S coincides with S_{x} when it is restricted to each $E^{p}(x)$.
(ii) First, let us prove that for every nonzero $x \in \mathcal{H}$, we have

$$
\begin{equation*}
\sigma_{S}(y)=\sigma_{S_{x}}(y) \text { for all } y \in E^{p}(x) \tag{2.1}
\end{equation*}
$$

Let x be a nonzero element of \mathcal{H}, and let $y=\sum_{n \in \mathbb{Z}} \oplus y_{n} \in E^{p}(x)$. Since S coincides with S_{x} when restricted to $E^{p}(x)$,

$$
\sigma_{S}(y) \subset \sigma_{S_{x}}(y)
$$

Conversely, let $\phi=\sum_{n \in \mathbb{Z}} \oplus \phi_{n}$ be a $l^{p}(\mathcal{H}, \mathbb{Z})$-valued analytic function on some open set $U \subset \rho_{S}(y)$ such that

$$
(S-\lambda) \phi(\lambda)=y(\lambda \in U)
$$

For every $n \in \mathbb{Z}$, we have

$$
\begin{equation*}
A_{n-1} \phi_{n-1}(\lambda)-\lambda \phi_{n}(\lambda)=y_{n}(\lambda \in U) \tag{2.2}
\end{equation*}
$$

For every $n \in \mathbb{Z}$, let

$$
F_{n}(\lambda):=P_{n} \phi_{n}(\lambda)(\lambda \in U)
$$

where P_{n} is the canonical projection from \mathcal{H} onto $M_{n}:=\operatorname{span}\left\{B_{n} x\right\}$. We clearly have $A_{n} M_{n}=M_{n+1}$ for all $n \in \mathbb{Z}$; therefore, it follows from (2.2) that, for every $n \in \mathbb{Z}$,

$$
\begin{equation*}
A_{n-1} F_{n-1}(\lambda)-\lambda F_{n}(\lambda)=y_{n}(\lambda \in U) \tag{2.3}
\end{equation*}
$$

Since $\left\|F_{n}().\right\| \leq\left\|\phi_{n}().\right\|$ for all $n \in \mathbb{Z}$, the function

$$
F(\lambda):=\sum_{n \in \mathbb{Z}} \oplus F_{n}(\lambda)(\lambda \in U)
$$

is well defined and is, in fact, an $E^{p}(x)$-valued analytic function on U. Moreover, in view of (2.3), this function satisfies the equation

$$
(S-\lambda) F(\lambda)=\left(S_{x}-\lambda\right) F(\lambda)=y(\lambda \in U)
$$

This shows that $U \subset \rho_{S_{x}}(y)$; therefore, $\sigma_{S_{x}}(y) \subset \sigma_{S}(y)$. Thus (2.1) is established.
Next, we let x be a nonzero element of \mathcal{H} and note that if $\sigma_{p}\left(S_{x}\right) \neq \emptyset$, we have

$$
(S-\lambda) k_{x}(\lambda)=0\left(\lambda \in \sigma_{p}\left(S_{x}\right)\right)
$$

where

$$
k_{x}(\lambda)=\sum_{n \in \mathbb{Z}} \oplus \frac{1}{\lambda^{n}} B_{n} x
$$

Moreover, we have

$$
\begin{aligned}
\Re\left(S_{x}\right) & =\left\{\lambda \in \mathbb{C}: r_{3}^{+}(S, x)<|\lambda|<r_{2}^{-}(S, x)\right\} \\
& =\left\{\lambda \in \sigma_{p}\left(S_{x}\right): \sigma_{S_{x}}\left(k_{x}(\lambda)\right)=\emptyset\right\} \\
& =\left\{\lambda \in \sigma_{p}\left(S_{x}\right): \sigma_{S}\left(k_{x}(\lambda)\right)=\emptyset\right\} .
\end{aligned}
$$

Indeed, since all eigenvalues of S_{x} are simple (see [9, theorem 9]), the equalities

$$
\begin{aligned}
\Re\left(S_{x}\right) & =\left\{\lambda \in \sigma_{p}\left(S_{x}\right): \sigma_{S_{x}}\left(k_{x}(\lambda)\right)=\emptyset\right\} \\
& =\left\{\lambda \in \sigma_{p}\left(S_{x}\right): \sigma_{S}\left(k_{x}(\lambda)\right)=\emptyset\right\}
\end{aligned}
$$

hold by applying [3, theorem 1.9] and (2.1). Now, let us show that

$$
\Re\left(S_{x}\right)=\{\lambda \in \mathbb{C}: p(S, x)<|\lambda|<n(S, x)\} .
$$

Since $\sigma_{p}\left(S_{x}\right) \subset\{\lambda \in \mathbb{C}: p(S, x) \leq|\lambda| \leq n(S, x)\}$, we have

$$
\begin{equation*}
\Re\left(S_{x}\right) \subset\{\lambda \in \mathbb{C}: p(S, x)<|\lambda|<n(S, x)\} . \tag{2.4}
\end{equation*}
$$

Conversely, suppose that $p(S, x)<n(S, x)$ and let

$$
O:=\{\lambda \in \mathbb{C}: p(S, x)<|\lambda|<n(S, x)\} .
$$

We have $O \subset \sigma_{p}\left(S_{x}\right)$, and k_{x} is clearly a nonzero identically analytic function on O and satisfies the equation

$$
\left(S_{x}-\lambda\right) k_{x}(\lambda)=0(\lambda \in O)
$$

This establishes the reverse inclusion of (2.4), as desired.
Finally, we shall deduce that

$$
\Re(S)=\bigcup_{x \neq 0} \Re\left(S_{x}\right)=\bigcup_{x \neq 0}\{\lambda \in \mathbb{C}: p(S, x)<|\lambda|<n(S, x)\}
$$

Indeed, we trivially see that $\bigcup_{x \neq 0} \Re\left(S_{x}\right) \subset \Re(S)$. Conversely, let $\lambda_{0} \in \Re(S)$. By [3, theorem 1.9] there exists a nonzero $y=\sum_{n \in \mathbb{Z}} \oplus y_{n} \in \operatorname{ker}\left(S-\lambda_{0}\right)$ such that

$$
\sigma_{S}(y)=\emptyset
$$

As in the proof of (i), we see that $y_{0} \neq 0$ and $y=k_{y_{0}}\left(\lambda_{0}\right) \in \operatorname{ker}\left(S_{y_{0}}-\lambda_{0}\right)$. By (2.1), we have

$$
\sigma_{S}(y)=\sigma_{S}\left(k_{y_{0}}\left(\lambda_{0}\right)\right)=\sigma_{S_{y_{0}}}\left(k_{y_{0}}\left(\lambda_{0}\right)\right)=\emptyset
$$

This shows that $\lambda_{0} \in \Re\left(S_{y_{0}}\right)$ and therefore

$$
\Re(S) \subset \bigcup_{x \neq 0} \Re\left(S_{x}\right)
$$

This completes the proof.
Assume that $1 \leq p<+\infty$ and $\frac{1}{p}+\frac{1}{q}=1$. The dual of $l^{p}(\mathcal{H}, \mathbb{Z})$ can be identified with $l^{q}(\mathcal{H}, \mathbb{Z})$, with the duality being implemented by the formula

$$
\langle y, z\rangle=\sum_{n \in \mathbb{Z}}\left\langle y_{n}, z_{n}\right\rangle\left(y=\sum_{n \in \mathbb{Z}} \oplus y_{n} \in l^{q}(\mathcal{H}, \mathbb{Z}), \text { and } z=\sum_{n \in \mathbb{Z}} \oplus z_{n} \in l^{p}(\mathcal{H}, \mathbb{Z})\right) .
$$

The adjoint, S^{*}, of S is given by

$$
S^{*} y=\left(\ldots, A_{-2}^{*} y_{-1}, A_{-1}^{*} y_{0},\left[A_{0}^{*} y_{1}\right], A_{1}^{*} y_{2}, A_{2}^{*} y_{3}, \ldots\right)\left(y=\sum_{n \in \mathbb{Z}} \oplus y_{n} \in l^{q}(\mathcal{H}, \mathbb{Z})\right)
$$

It is similar to the bilateral operator weighted shift, \tilde{S}, on $l^{q}(\mathcal{H}, \mathbb{Z})$ with the weight sequence $\left(\tilde{A}_{n}\right)_{n \in \mathbb{Z}}$, where $\tilde{A}_{n}=A_{-n-1}^{*}$ for all $n \in \mathbb{Z}$.
Corollary 2.2. The following properties hold.
(i) $\sigma_{p}\left(S^{*}\right)=\bigcup_{x \neq 0} \sigma_{p}\left(\tilde{S}_{x}\right)$.
(ii) $\Re\left(S^{*}\right)=\bigcup_{x \neq 0} \Re\left(\tilde{S}_{x}\right)=\bigcup_{x \neq 0}\left\{\lambda \in \mathbb{C}: p^{*}(S, x)<|\lambda|<n^{*}(S, x)\right\}$.

Moreover, the following statements are equivalent.
(a) S^{*} has the single-valued extension property.
(b) Each \tilde{S}_{x} has the single-valued extension property.
(c) $n^{*}(S, x) \leq p^{*}(S, x)$ for all nonzero x in \mathcal{H}.

Unlike in the scalar case, both S and S^{*} need not have the single-valued extension property.
Example 2.3. Assume that $\left(e_{n}\right)_{n \geq 0}$ is an orthonormal basis of \mathcal{H}, and let T and R be the diagonal operators with the diagonal sequences $(2,4,1,1,1, \ldots)$ and $(4,2,1,1,1, \ldots)$, respectively. We set

$$
A_{n}:= \begin{cases}T & \text { if } n \geq 0 \\ R & \text { if } n<0\end{cases}
$$

We have

$$
p\left(S, e_{0}\right)=p^{*}\left(S, e_{1}\right)=2 \text { and } n\left(S, e_{0}\right)=n^{*}\left(S, e_{1}\right)=4
$$

In view of theorem 2.1 and corollary 2.2 we see that

$$
\{\lambda \in \mathbb{C}: 2<|\lambda|<4\} \subset \sigma_{p}(S) \cap \sigma_{p}\left(S^{*}\right)
$$

and neither S nor S^{*} has the single-valued extension property.

In the sequel, for a nonzero $y=\sum_{n \in \mathbb{Z}} \oplus y_{n} \in l^{p}(\mathcal{H}, \mathbb{Z})$, let

$$
R^{-}(S, y):=\limsup _{n \rightarrow+\infty}\left\|B_{-n}^{-1} y_{-n}\right\|^{\frac{1}{n}} \text { and } R^{+}(S, y):=1 / \limsup _{n \rightarrow+\infty}\left\|B_{n}^{-1} y_{n}\right\|^{\frac{1}{n}}
$$

Remark 2.4. Let x be a nonzero element of \mathcal{H}. In view of (2.1) and [5], we have the following results.
(i) For every nonzero finitely supported element y of $E^{p}(x)$,

$$
\sigma_{S}(y)=\{\lambda \in \mathbb{C}: n(S, x) \leq|\lambda| \leq p(S, x)\}
$$

(ii) Assume that $n(S, x) \leq p(S, x)$, and let y be a nonzero element of $E^{p}(x)$. If $R^{-}(S, y)<n(S, x)$ and $p(S, x)<R^{+}(S, y)$, then

$$
\sigma_{S}(y)=\{\lambda \in \mathbb{C}: n(S, x) \leq|\lambda| \leq p(S, x)\}
$$

Otherwise,

$$
\left\{\lambda \in \mathbb{C}: \max \left(R^{-}(S, y), n(S, x)\right)<|\lambda|<\min \left(R^{+}(S, y), p(S, x)\right)\right\} \subset \sigma_{S}(y)
$$

(iii) Assume that $n(S, x)=0$, and let y be a nonzero negatively finitely supported element of $E^{p}(x)$. If $p(S, x)<R^{+}(S, y)$, then

$$
\sigma_{S}(y)=\{\lambda \in \mathbb{C}:|\lambda| \leq p(S, x)\} .
$$

Otherwise,

$$
\left\{\lambda \in \mathbb{C}:|\lambda| \leq R^{+}(S, y)\right\} \subset \sigma_{S}(y)
$$

In [4, Ben-Artzi and Gohberg introduced the concepts of Bohl exponent and canonical splitting projection to describe the spectrum and the essential spectrum of operator weighted shifts of finite multiplicity (see also [10]). However, in the general setting of bilateral operator weighted shifts of infinite multiplicity, the complete description of the spectrum and its parts is not yet settled.

Acknowledgments

The authors thank the referee for useful comments.

References

[1] P. Aiena, T. L. Miller and M. M. Neumann, On a localized single-valued extension property, Proc. Royal Irish Acad. (to appear).
[2] P. Aiena and E. Rosas, Single-valued extension property at the points of the approximate point spectrum, J. Math. Anal. Appl. 279 (2003), no. 1, 180-188. MR 1970499
[3] P. Aiena and O. Monsalve, Operators which do not have the single valued extension property, J. Math. Anal. Appl. 250 (2000), no. 2, 435-448. MR 1786074 (2001g:47005)
[4] A. Ben-Artzi and I. Gohberg, Dichotomy, discrete Bohl exponents, and spectrum of block weighted shifts, Integral Equations and Operator Theory, 14 (1991) 613-677. MR 1118967 (93e:47033)
[5] A. Bourhim, On the local spectral properties of weighted shift operators, (submitted).
[6] I. Colojoara and C. Foias, Theory of generalized spectral operators, Gordon and Breach, New York 1968. MR 0394282 (52:15085)
[7] J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), no. 1, 61-69. MR 0374985 (51:11181)
[8] J. X. Li, The single valued extension property for operator weighted shifts, Northeast Math. J. 10 (1994), no. 1, 99-103. MR 1294367 (95i:47054)
[9] K. B. Laursen and M. M. Neumann, An introduction to local spectral theory, London Mathematical Society Monographs New Series 20 (2000). MR 1747914 (2001k:47002)
[10] J. X. Li, Y. Q. Ji and S. L. Sun, The essential spectrum and Banach reducibility of operator weighted shifts, Acta Math. Sinica, English Series, Vol 17, 3 (2001) 413-424. MR 1852955 (2002g:47063)
[11] A. L. Shields, Weighted shift operators and analytic function theory, in Topics in Operator Theory, Mathematical Surveys, no. 13 (ed. C. Pearcy), pp. 49-128. American Mathematical Society, Providence, Rhode Island 1974. MR 0361899 (50:14341)

The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
E-mail address: bourhim@ictp.trieste.it
The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
E-mail address: chidume@ictp.trieste.it

[^0]: Received by the editors August 29, 2003 and, in revised form, October 14, 2003.
 2000 Mathematics Subject Classification. Primary 47A10; Secondary 47B20.
 This research was supported in part by the Abdus Salam ICTP, Trieste, Italy.

