PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 133, Number 2, Pages 485–491 S 0002-9939(04)07535-5 Article electronically published on September 8, 2004

THE SINGLE-VALUED EXTENSION PROPERTY FOR BILATERAL OPERATOR WEIGHTED SHIFTS

A. BOURHIM AND C. E. CHIDUME

(Communicated by Joseph A. Ball)

ABSTRACT. In this paper, we give necessary and sufficient conditions for a bilateral operator weighted shift to enjoy the single-valued extension property.

1. INTRODUCTION

Let \mathcal{X} be a complex Banach space, and let $\mathcal{L}(\mathcal{X})$ be the algebra of bounded linear operators on \mathcal{X} . For an operator $T \in \mathcal{L}(\mathcal{X})$, we denote, as usual, by $\sigma(T)$ and $\sigma_p(T)$ the spectrum and the point spectrum of T, respectively. An operator $T \in \mathcal{L}(\mathcal{X})$ is said to have the *single-valued extension property* provided that for every open subset U of \mathbb{C} the only analytic solution $\phi: U \to \mathcal{X}$ of the equation

$$(T - \lambda)\phi(\lambda) = 0 \ (\lambda \in U)$$

is the identically zero function.

Throughout this paper, \mathcal{H} will denote a complex Hilbert space and $(A_n)_{n \in \mathbb{Z}}$ is a two-sided sequence of uniformly bounded invertible operators of $\mathcal{L}(\mathcal{H})$. For $1 \leq p < \infty$, let

$$l^{p}(\mathcal{H},\mathbb{Z}) := \left\{ x = (x_{n})_{n \in \mathbb{Z}} \subset \mathcal{H} : \|x\|_{p} = \left(\sum_{n \in \mathbb{Z}} \|x_{n}\|^{p}\right)^{\frac{1}{p}} < +\infty \right\}.$$

It is a Banach space under the norm $\|.\|_p$. For $p = +\infty$, let

$$l^{\infty}(\mathcal{H},\mathbb{Z}) := \left\{ x = (x_n)_{n \in \mathbb{Z}} \subset \mathcal{H} : \|x\|_{\infty} = \sup_{n \in \mathbb{Z}} \|x_n\| < +\infty \right\}.$$

This space is also a Banach space under the norm $\|.\|_{\infty}$. A linear operator S on $l^p(\mathcal{H},\mathbb{Z}), (1 \leq p \leq \infty)$, is called a *bilateral operator weighted shift with the weight sequence* $(A_n)_{n \in \mathbb{Z}}$ if

$$S(..., x_{-2}, x_{-1}, [x_0], x_1, x_2, ...) = (..., A_{-2}x_{-2}, [A_{-1}x_{-1}], A_0x_0, A_1x_1, ...),$$

where for an element $x = (..., x_{-2}, x_{-1}, [x_0], x_1, x_2, ...) \in l^p(\mathcal{H}, \mathbb{Z}), [x_0]$ denotes the central (0th) term of x.

In [8], Li Jue Xian proved that if dim $\mathcal{H} = m < +\infty$, then a bilateral operator weighted shift S has the single-valued extension property if and only if the cardinal number of $\sigma_p(S) \cap \mathbb{R}^+$ is not greater than m, where \mathbb{R}^+ is the set of positive

©2004 American Mathematical Society

Received by the editors August 29, 2003 and, in revised form, October 14, 2003.

²⁰⁰⁰ Mathematics Subject Classification. Primary 47A10; Secondary 47B20.

This research was supported in part by the Abdus Salam ICTP, Trieste, Italy.

real numbers. Here, we completely settle the question of which bilateral operator weighted shift S on $l^p(\mathcal{H}, \mathbb{Z})$ has the single-valued extension property even when \mathcal{H} is an infinite-dimensional Hilbert space. Our proof is simple and is based on a recent result of [3] on a local version of the single-valued extension property.

In the sequel, let $(B_n)_{n\in\mathbb{Z}}$ be the two-sided sequence given by

$$B_n := \begin{cases} A_{n-1}A_{n-2}...A_1A_0 & \text{if } n > 0, \\ 1 & \text{if } n = 0, \\ A_n^{-1}A_{n+1}^{-1}...A_{-2}^{-1}A_{-1}^{-1} & \text{if } n < 0. \end{cases}$$

For a nonzero $x \in \mathcal{H}$, we set

$$n(S,x) := \liminf_{n \to +\infty} \|B_{-n}x\|^{-\frac{1}{n}}, \ p(S,x) := \limsup_{n \to +\infty} \|B_{n}x\|^{\frac{1}{n}},$$
$$n^{*}(S,x) := \liminf_{n \to +\infty} \|(B_{n}^{-1})^{*}x\|^{-\frac{1}{n}}, \text{ and } p^{*}(S,x) := \limsup_{n \to +\infty} \|(B_{-n}^{-1})^{*}x\|^{\frac{1}{n}}.$$

Moreover, we also introduce the following notation:

- (i) $x^{(n)} = (\delta_{n,k}x)_{k \in \mathbb{Z}}, (n \in \mathbb{Z})$, where $\delta_{n,k}$ is the usual Kronecker-delta symbol.
- (*ii*) $E^p(x)$ denotes the closed linear span of $\{(B_n x)^{(n)} : n \in \mathbb{Z}\}$ in $l^p(\mathcal{H}, \mathbb{Z})$.
- (*iii*) S_x denotes the restriction of S to $E^p(x)$.

Finally, wherever it is more convenient, we will write $y = \sum_{n \in \mathbb{Z}} \oplus y_n$ instead of $y = (y_n)_{n \in \mathbb{Z}} \in l^p(\mathcal{H}, \mathbb{Z}).$

2. Main results

The single-valued extension property plays an important and crucial role in local spectral theory. A local version of this property which dates back to Finch [7] has been recently investigated in the local spectral theory and Fredholm theory by many authors (see [1], [2], [3], and the references contained therein). Recall that a bounded linear operator T on a complex Banach space \mathcal{X} is said to have the single-valued extension property at a point $\lambda_0 \in \mathbb{C}$ if for every open disc U centered at λ_0 the only analytic function $\phi: U \to \mathcal{X}$ that satisfies the equation

$$(T - \lambda)\phi(\lambda) = 0 \ (\lambda \in U)$$

is the identically zero function $\phi \equiv 0$. The set of all points on which T fails to have the single-valued extension property will be denoted by $\Re(T)$. It is an open subset of \mathbb{C} contained in $\sigma_p(T)$, and it is empty precisely when T has the single-valued extension property. The local resolvent set, $\rho_T(x)$, of an operator $T \in \mathcal{L}(\mathcal{X})$ at a point $x \in \mathcal{X}$ is the union of all open subsets U of \mathbb{C} for which there is an analytic function $\phi: U \to \mathcal{X}$ that satisfies

$$(T - \lambda)\phi(\lambda) = x \ (\lambda \in U).$$

The local spectrum of T at x is defined by

$$\sigma_{T}(x) := \mathbb{C} \backslash \rho_{T}(x).$$

It is clearly a closed subset of $\sigma(T)$. In [3], P. Aiena and O. Monsalve established a useful characterization of the operators that do not have the single-valued extension property at a given point $\lambda_0 \in \mathbb{C}$. They showed that an operator $T \in \mathcal{L}(\mathcal{X})$ does not have the single-valued extension property at a point $\lambda_0 \in \mathbb{C}$ precisely when there exists a nonzero $x \in \ker(T - \lambda_0)$ for which $\sigma_T(x) = \emptyset$. For more on local spectral theory, the reader may consult [6] and [9].

We are now able to state and prove the main result of this paper.

Theorem 2.1. The following properties hold.

$$\begin{array}{ll} (i) \ \ \sigma_p(S) = \bigcup_{x \neq 0} \sigma_p(S_x). \\ (ii) \ \ \Re(S) = \bigcup_{x \neq 0} \Re(S_x) = \bigcup_{x \neq 0} \{\lambda \in \mathbb{C} : p(S,x) < |\lambda| < n(S,x)\}. \end{array}$$

Moreover, the following statements are equivalent.

- (a) S has the single-valued extension property.
- (b) Each S_x has the single-valued extension property.
- (c) $n(S, x) \leq p(S, x)$ for all nonzero x in \mathcal{H} .

Proof. Let x be a nonzero element of \mathcal{H} . It is clear that S_x is similar to the bilateral scalar weighted shift on $l^p(\mathbb{Z})$ with the weight sequence $\left(\frac{\|B_{n+1}x\|}{\|B_nx\|}\right)_{n\in\mathbb{Z}}$. Therefore,

$$\{\lambda \in \mathbb{C} : p(S, x) < |\lambda| < n(S, x)\} \subset \sigma_p(S_x) \subset \{\lambda \in \mathbb{C} : p(S, x) \le |\lambda| \le n(S, x)\}$$

(see [9] and [11]).

(i) Now, suppose that $\lambda \in \mathbb{C}$ is an eigenvalue for S and $y := \sum_{n \in \mathbb{Z}} \oplus y_n \in l^p(\mathcal{H}, \mathbb{Z})$

is a corresponding eigenvector. We obviously have $\lambda \neq 0$ and

$$A_n y_n = \lambda y_{n+1}$$
 for all $n \in \mathbb{Z}$.

Therefore,

$$y_n = \frac{1}{\lambda^n} B_n y_0$$
 for all $n \in \mathbb{Z}$;

this shows that $y \in E^p(y_0)$. Hence, $\lambda \in \sigma_p(S_{y_0})$ and therefore,

$$\sigma_p(S) \subset \bigcup_{x \neq 0} \sigma_p(S_x).$$

The reverse inclusion is trivial since S coincides with S_x when it is restricted to each $E^p(x)$.

(*ii*) First, let us prove that for every nonzero $x \in \mathcal{H}$, we have

(2.1)
$$\sigma_{s}(y) = \sigma_{s_{x}}(y) \text{ for all } y \in E^{p}(x)$$

Let x be a nonzero element of \mathcal{H} , and let $y = \sum_{n \in \mathbb{Z}} \oplus y_n \in E^p(x)$. Since S coincides with S_x when restricted to $E^p(x)$,

$$\sigma_{\scriptscriptstyle S}(y) \subset \sigma_{\scriptscriptstyle S_{\scriptscriptstyle T}}(y).$$

Conversely, let $\phi = \sum_{n \in \mathbb{Z}} \oplus \phi_n$ be a $l^p(\mathcal{H}, \mathbb{Z})$ -valued analytic function on some open set $U \subset \rho_s(y)$ such that

$$(S - \lambda)\phi(\lambda) = y \ (\lambda \in U)$$

For every $n \in \mathbb{Z}$, we have

(2.2)
$$A_{n-1}\phi_{n-1}(\lambda) - \lambda\phi_n(\lambda) = y_n \ (\lambda \in U).$$

For every $n \in \mathbb{Z}$, let

$$F_n(\lambda) := P_n \phi_n(\lambda) \ (\lambda \in U),$$

where P_n is the canonical projection from \mathcal{H} onto $M_n := \operatorname{span}\{B_n x\}$. We clearly have $A_n M_n = M_{n+1}$ for all $n \in \mathbb{Z}$; therefore, it follows from (2.2) that, for every $n \in \mathbb{Z}$,

(2.3)
$$A_{n-1}F_{n-1}(\lambda) - \lambda F_n(\lambda) = y_n \ (\lambda \in U).$$

Since $||F_n(.)|| \leq ||\phi_n(.)||$ for all $n \in \mathbb{Z}$, the function

$$F(\lambda) := \sum_{n \in \mathbb{Z}} \oplus F_n(\lambda) \ (\lambda \in U)$$

is well defined and is, in fact, an $E^{p}(x)$ -valued analytic function on U. Moreover, in view of (2.3), this function satisfies the equation

$$(S - \lambda)F(\lambda) = (S_x - \lambda)F(\lambda) = y \ (\lambda \in U).$$

This shows that $U \subset \rho_{S_x}(y)$; therefore, $\sigma_{S_x}(y) \subset \sigma_S(y)$. Thus (2.1) is established. Next, we let x be a nonzero element of \mathcal{H} and note that if $\sigma_p(S_x) \neq \emptyset$, we have

$$(S - \lambda)k_x(\lambda) = 0 \ (\lambda \in \sigma_p(S_x)),$$

where

$$k_x(\lambda) = \sum_{n \in \mathbb{Z}} \oplus \frac{1}{\lambda^n} B_n x.$$

Moreover, we have

$$\begin{split} \Re(S_x) &= & \{\lambda \in \mathbb{C} : r_3^+(S, x) < |\lambda| < r_2^-(S, x)\} \\ &= & \{\lambda \in \sigma_p(S_x) : \sigma_{S_x}(k_x(\lambda)) = \emptyset\} \\ &= & \{\lambda \in \sigma_p(S_x) : \sigma_S(k_x(\lambda)) = \emptyset\}. \end{split}$$

Indeed, since all eigenvalues of S_x are simple (see [9, theorem 9]), the equalities

$$\begin{split} \Re(S_x) &= & \{\lambda \in \sigma_p(S_x) : \sigma_{_{S_x}}(k_x(\lambda)) = \emptyset\} \\ &= & \{\lambda \in \sigma_p(S_x) : \sigma_{_S}(k_x(\lambda)) = \emptyset\} \end{split}$$

hold by applying [3, theorem 1.9] and (2.1). Now, let us show that

$$\Re(S_x) = \{\lambda \in \mathbb{C} : p(S, x) < |\lambda| < n(S, x)\}.$$

Since $\sigma_p(S_x) \subset \{\lambda \in \mathbb{C} : p(S, x) \leq |\lambda| \leq n(S, x)\}$, we have

(2.4)
$$\Re(S_x) \subset \{\lambda \in \mathbb{C} : p(S, x) < |\lambda| < n(S, x)\}.$$

Conversely, suppose that p(S, x) < n(S, x) and let

$$O := \{\lambda \in \mathbb{C} : p(S, x) < |\lambda| < n(S, x)\}.$$

We have $O \subset \sigma_p(S_x)$, and k_x is clearly a nonzero identically analytic function on O and satisfies the equation

$$(S_x - \lambda)k_x(\lambda) = 0 \ (\lambda \in O).$$

This establishes the reverse inclusion of (2.4), as desired.

Finally, we shall deduce that

$$\Re(S) = \bigcup_{x \neq 0} \Re(S_x) = \bigcup_{x \neq 0} \{\lambda \in \mathbb{C} : p(S, x) < |\lambda| < n(S, x)\}.$$

Indeed, we trivially see that $\bigcup_{x\neq 0} \Re(S_x) \subset \Re(S)$. Conversely, let $\lambda_0 \in \Re(S)$. By [3, theorem 1.9] there exists a nonzero $y = \sum_{n \in \mathbb{Z}} \oplus y_n \in \ker(S - \lambda_0)$ such that

$$\sigma_{\scriptscriptstyle S}(y) = \emptyset.$$

As in the proof of (i), we see that $y_0 \neq 0$ and $y = k_{y_0}(\lambda_0) \in \ker(S_{y_0} - \lambda_0)$. By (2.1), we have

$$\sigma_{\scriptscriptstyle S}(y) = \sigma_{\scriptscriptstyle S}(k_{y_0}(\lambda_0)) = \sigma_{\scriptscriptstyle S_{y_0}}(k_{y_0}(\lambda_0)) = \emptyset.$$

This shows that $\lambda_0 \in \Re(S_{y_0})$ and therefore

$$\Re(S) \subset \bigcup_{x \neq 0} \Re(S_x).$$

This completes the proof.

Assume that $1 \leq p < +\infty$ and $\frac{1}{p} + \frac{1}{q} = 1$. The dual of $l^p(\mathcal{H}, \mathbb{Z})$ can be identified with $l^q(\mathcal{H}, \mathbb{Z})$, with the duality being implemented by the formula

$$\langle y,z\rangle = \sum_{n\in\mathbb{Z}} \langle y_n,z_n\rangle \ (y=\sum_{n\in\mathbb{Z}} \oplus y_n\in l^q(\mathcal{H},\mathbb{Z}), \text{ and } z=\sum_{n\in\mathbb{Z}} \oplus z_n\in l^p(\mathcal{H},\mathbb{Z})).$$

The adjoint, S^* , of S is given by

$$S^*y = (\dots, A^*_{-2}y_{-1}, A^*_{-1}y_0, [A^*_0y_1], A^*_1y_2, A^*_2y_3, \dots) \ (y = \sum_{n \in \mathbb{Z}} \oplus y_n \in l^q(\mathcal{H}, \mathbb{Z})).$$

It is similar to the bilateral operator weighted shift, \tilde{S} , on $l^q(\mathcal{H}, \mathbb{Z})$ with the weight sequence $(\tilde{A}_n)_{n \in \mathbb{Z}}$, where $\tilde{A}_n = A^*_{-n-1}$ for all $n \in \mathbb{Z}$.

Corollary 2.2. The following properties hold.

$$\begin{array}{ll} (i) & \sigma_p(S^*) = \bigcup_{x \neq 0} \sigma_p(S_x). \\ (ii) & \Re(S^*) = \bigcup_{x \neq 0} \Re(\tilde{S}_x) = \bigcup_{x \neq 0} \{\lambda \in \mathbb{C} : p^*(S,x) < |\lambda| < n^*(S,x)\}. \end{array}$$

Moreover, the following statements are equivalent.

- (a) S^* has the single-valued extension property.
- (b) Each \hat{S}_x has the single-valued extension property.
- (c) $n^*(S, x) \leq p^*(S, x)$ for all nonzero x in \mathcal{H} .

Unlike in the scalar case, both S and S^\ast need not have the single-valued extension property.

Example 2.3. Assume that $(e_n)_{n\geq 0}$ is an orthonormal basis of \mathcal{H} , and let T and R be the diagonal operators with the diagonal sequences (2, 4, 1, 1, 1, ...) and (4, 2, 1, 1, 1, ...), respectively. We set

$$A_n := \begin{cases} T & \text{if } n \ge 0, \\ R & \text{if } n < 0. \end{cases}$$

We have

$$p(S, e_0) = p^*(S, e_1) = 2$$
 and $n(S, e_0) = n^*(S, e_1) = 4$.

In view of theorem 2.1 and corollary 2.2, we see that

$$\{\lambda \in \mathbb{C} : 2 < |\lambda| < 4\} \subset \sigma_p(S) \cap \sigma_p(S^*),$$

and neither S nor S^* has the single-valued extension property.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

In the sequel, for a nonzero $y = \sum_{n \in \mathbb{Z}} \oplus y_n \in l^p(\mathcal{H}, \mathbb{Z})$, let

$$R^{-}(S,y) := \limsup_{n \to +\infty} \|B_{-n}^{-1}y_{-n}\|^{\frac{1}{n}} \text{ and } R^{+}(S,y) := 1/\limsup_{n \to +\infty} \|B_{n}^{-1}y_{n}\|^{\frac{1}{n}}.$$

Remark 2.4. Let x be a nonzero element of \mathcal{H} . In view of (2.1) and [5], we have the following results.

(i) For every nonzero finitely supported element y of $E^p(x)$,

$$\sigma_{\scriptscriptstyle S}(y) = \{\lambda \in \mathbb{C} : n(S, x) \le |\lambda| \le p(S, x)\}.$$

(ii) Assume that $n(S, x) \le p(S, x)$, and let y be a nonzero element of $E^p(x)$. If $R^-(S, y) < n(S, x)$ and $p(S, x) < R^+(S, y)$, then

$$\sigma_{\scriptscriptstyle S}(y) = \{\lambda \in \mathbb{C}: n(S,x) \le |\lambda| \le p(S,x)\}.$$

Otherwise,

$$\{\lambda \in \mathbb{C} : \max\left(R^{-}(S, y), n(S, x)\right) < |\lambda| < \min\left(R^{+}(S, y), p(S, x)\right)\} \subset \sigma_{S}(y).$$

(*iii*) Assume that n(S, x) = 0, and let y be a nonzero negatively finitely supported element of $E^p(x)$. If $p(S, x) < R^+(S, y)$, then

$$\sigma_{S}(y) = \{\lambda \in \mathbb{C} : |\lambda| \le p(S, x)\}.$$

Otherwise,

$$\{\lambda \in \mathbb{C} : |\lambda| \le R^+(S, y)\} \subset \sigma_s(y).$$

In [4], Ben-Artzi and Gohberg introduced the concepts of Bohl exponent and canonical splitting projection to describe the spectrum and the essential spectrum of operator weighted shifts of *finite multiplicity* (see also [10]). However, in the general setting of bilateral operator weighted shifts of *infinite multiplicity*, the complete description of the spectrum and its parts is not yet settled.

Acknowledgments

The authors thank the referee for useful comments.

References

- P. Aiena, T. L. Miller and M. M. Neumann, On a localized single-valued extension property, Proc. Royal Irish Acad. (to appear).
- [2] P. Aiena and E. Rosas, Single-valued extension property at the points of the approximate point spectrum, J. Math. Anal. Appl. 279 (2003), no. 1, 180–188. MR 1970499
- [3] P. Aiena and O. Monsalve, Operators which do not have the single valued extension property, J. Math. Anal. Appl. 250 (2000), no. 2, 435–448. MR 1786074 (2001g:47005)
- [4] A. Ben-Artzi and I. Gohberg, Dichotomy, discrete Bohl exponents, and spectrum of block weighted shifts, Integral Equations and Operator Theory, 14 (1991) 613-677. MR 1118967 (93e:47033)
- [5] A. Bourhim, On the local spectral properties of weighted shift operators, (submitted).
- [6] I. Colojoara and C. Foias, *Theory of generalized spectral operators*, Gordon and Breach, New York 1968. MR 0394282 (52:15085)
- J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), no. 1, 61–69. MR 0374985 (51:11181)
- [8] J. X. Li, The single valued extension property for operator weighted shifts, Northeast Math. J. 10 (1994), no. 1, 99-103. MR 1294367 (95i:47054)
- [9] K. B. Laursen and M. M. Neumann, An introduction to local spectral theory, London Mathematical Society Monographs New Series 20 (2000). MR 1747914 (2001k:47002)

490

- [10] J. X. Li, Y. Q. Ji and S. L. Sun, The essential spectrum and Banach reducibility of operator weighted shifts, Acta Math. Sinica, English Series, Vol 17, 3 (2001) 413-424. MR 1852955 (2002g:47063)
- [11] A. L. Shields, Weighted shift operators and analytic function theory, in Topics in Operator Theory, Mathematical Surveys, no. 13 (ed. C. Pearcy), pp. 49-128. American Mathematical Society, Providence, Rhode Island 1974. MR 0361899 (50:14341)

The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy $E\text{-}mail\ address:\ bourhim@ictp.trieste.it$

The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy $E\text{-}mail\ address:\ chidume@ictp.trieste.it$