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ABSTRACT

The study of the statistical properties of coronal mass ejections (CMEs) reveals that their properties depend on
the period of solar activity. In particular, when investigating the origin of the waiting time distribution between
CMEs, a significant departure from a Poisson process during periods of high solar activity has been found, thus
suggesting the existence of at least two physical processes underlying the origin of CMEs. One acts continuously,
perhaps related to randomly occurring magnetic reconfigurations of the solar corona at large scales. The other
plays a role only during the solar maximum, probably due to the photospheric emergence of magnetic flux as a
statistically persistent mechanism, which generates long correlation times among CME events strong enough not
to be destroyed by the former random process.
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1. INTRODUCTION

The distribution of the time interval between two successive
coronal mass ejections (CMEs) provides information regarding
whether CMEs occur as independent events, which may cast
some light on the nature of the processes underlying their
origin and on the understanding of their relationship with solar
flares.

The waiting time distribution (WTD) of CMEs has re-
cently been the object of investigation. Using the catalog of
CME events from the Large Angle Spectrometric Corona-
graph (LASCO; Brueckner et al. 1995) onboard the Solar and
Heliospheric Observatory (SOHO; Domingo et al. 1995) from
1996–2001, Yeh et al. (2002) and Wheatland (2003) have in-
dependently claimed that the distribution follows a power-law
behavior, P (Δt) ∼ Δt−γ , for waiting times larger than a few
hours, Δt � 10 h, with a power-index γ � 2.36 ± 0.11. This
result is interesting due to the fact that this scaling is very close
to that for solar flares in the same time period (Boffetta et al.
1999; Wheatland 2000; Aschwanden & McTiernan 2010). The
observational evidence that flares and CMEs share the same
waiting time statistics led these authors to suggest a com-
mon origin for the two phenomena. Furthermore, Wheatland
(2003) has shown that the power-law distribution for CMEs
varies with the solar cycle, being steeper during the period
of higher activity (1999–2001). Yeh et al. (2005) have ex-
tended the data sample to the year 2003 and have investigated
the WTDs of fast and slow CMEs separately, finding further
clues in support of a scenario in which solar flares and both
types of CMEs are different manifestations of the same eruptive
process.

A possible interpretation for the origin of the power-law-
like WTD of CMEs and for its variation with the solar cycle
(Wheatland 2003), resides in the fact that the observed occur-
rence of CMEs might be interpreted as a time-dependent Poisson
process, i.e., as a realization of renewal Poisson processes with
a variable rate, λ = λ(t). As a matter of fact, the WTD P (Δt) for
a piecewise-constant Poisson process involving a large number

of rates may be easily derived as (Wheatland 2003)

P (Δt) = 1

λ0

∫ ∞

0
λ2f (λ)e−λΔt dλ, (1)

where λ0 is the mean CME rate and f (λ) is the time distribution,
say the probability density function, of the CME rate. If the
distribution of the CME rates follows a power-law function,
f (λ) ∝ λα , Equation (1) predicts a power-law tail ∝ Δt−(3+α),
which thus seems to reproduce the qualitative features of the
observed WTD. However, it is worth noting that the CME
power-law distribution for large Δt arises from two a priori
assumptions, not tested for consistency with observations: (1) a
local Poisson hypothesis (Lepreti et al. 2001), and (2) a power-
law behavior, ∝ λα , of the rate probability density (whose index
α is furthermore constrained to be larger than −3 to ensure that
the result holds). Finally, concerning the variation of the slope of
the WTDs for CMEs during the solar cycle, Wheatland (2003)
attributed its origin simply to the modulation in time of the
CME rate.

In this Letter the WTD for CMEs observed from
SOHO/LASCO is reexamined as follows. Section 2 provides a
statistical analysis to test whether or not the sequence of CMEs
is consistent with a time-varying Poisson process: it is shown
that the local Poisson hypothesis does not generally hold for
the temporal distribution of CMEs. Rather, the observed CME
WTD can be explained by simply assuming the presence of
correlations in the CME time series, which leads to the intro-
duction of the Weibull distribution to fit the WTD for CMEs,
as discussed in Section 3. Section 4 presents the results of how
the statistical properties of the CME distribution vary over the
course of solar activity, outlining their physical relevance in
light of the mechanisms driving the eruption of CMEs.

2. DEPARTURE FROM A LOCAL
POISSON DISTRIBUTION

The CME data used in this Letter to analyze the WTD for
CMEs come from the SOHO/LASCO catalog, which spans
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Figure 1. Left: temporal evolution of the waiting times of CMEs observed with SOHO/LASCO from the beginning of 1996 to the end of 2012, as a function of
CME occurrence time. Right: WTD P (Δt) for the SOHO/LASCO CMEs, fitted by a exponentiated Weibull function (red curve), which accounts for the presence of
correlations among the waiting times; the theoretical distribution function expected under Poisson statistics is also shown (blue curve).

(A color version of this figure is available in the online journal.)

17 yr from 1996 to 2012, i.e., from the minimum of solar
cycle 23 to the rise to the maximum phase of solar cycle 24.
According to Wheatland (2003), the waiting times Δt , shown in
the left panel of Figure 1 as a function of the time occurrence
of CMEs, are estimated as the differences between the times of
the first appearance of successive CMEs in the field of view of
the LASCO coronagraph. The distribution P (Δt) of the CME
waiting times, sampled in intervals of 1 hr, is shown in the
right-hand panel of Figure 1.

A power-law tail ∝Δt−γ with scaling exponent γ � 2.97 ±
0.10 (the corresponding χ2 is 0.03), is more or less recovered
for a small range for Δt larger than a few hours, thus pointing
to a significant departure of the process from Poisson statistics,
which is further suggested by the unsuitability of the Poisson
distribution function (given by P (Δt) = λ̄e−λ̄Δt , where λ̄ =
0.13 h−1 is the average CME occurrence rate over the period
1996–2012) to reproduce the observed WTD for Δt � 10 h in
the hypothesis of a random, say Gaussian, occurrence of CMEs.
It is indeed readily seen that the CME WTD is systematically
smaller than the theoretical distribution expected under Poisson
statistics (blue line in the right panel of Figure 1), thus indicating
that long waiting times rarely occur in the CME catalog, namely
that non-stochastic, correlated clusters are present in the CME
time sequence.

In order to prove the nonreliability of the Poisson hypothesis
and to investigate the statistics of persistence times between
CME events, thus characterizing their temporal clustering and
quantifying their degree of correlation, a statistical analysis
based on the Kolmogorov–Smirnov (K–S) test (Bi et al. 1989;
Lepreti et al. 2001) is required. The K–S test is indeed a
nonparametric and distribution-free test usually used to compare
a data sample with a reference probability distribution, by
quantifying the maximum distance D between the empirical
and the reference distribution functions. It is based on the study
of the statistical properties of the stochastic variable h defined
as (Bi et al. 1989; Lepreti et al. 2001)

hi(δti, δτi) = 2δti

2δti + δτi

, (2)

where δti and δτi are the waiting times between a CME occurring
at ti and the two (either following or preceding) nearest events:

δti = min {ti+1 − ti , ti − ti−1} , (3)

δτi =
{
ti−1 − ti−2 if δti = ti − ti−1

ti+2 − ti+1 if δti = ti+1 − ti .
(4)

The stochastic variable h thus simply represents the suitably
normalized time between CME events. Under the null hypoth-
esis that the data sample is drawn from the Poisson reference
distribution, that is in the hypothesis that δti and δτi are indepen-
dently distributed with exponential probability densities given
by P (δti) = 2λi exp(−2λiδti) and P (δτi) = λi exp(−λiδτi),
where λi is the local (not constant) event rate, it can easily
be shown that the cumulative distribution function (CDF) of
h, P (h < H ), is simply P (h < H ) = H , where P (h) is
the probability distribution function (PDF) of h. Hence, if the
local Poisson hypothesis holds, the stochastic variable h is uni-
formly distributed in [0:1]. The maximum deviation D of the
empirical CDF of the CME events from the reference relation
P (h < H ) = H , quantifies the degree of departure of the pro-
cess from the Poisson statistics or, in other words, the level of
correlation among the CME eruptions.

The PDF P (h) of the normalized waiting time h between
CMEs, and the corresponding CDF P (h < H ), are shown in the
left- and right-hand panels of Figure 2, respectively, where they
are compared with the theoretical Poisson probability (dotted
lines).

A significant deviation from the uniform distributions ex-
pected if the Poisson hypothesis holds can clearly be ob-
served (being the significance level of the K–S test smaller
than 10−9%). In particular, the probability function P (h), which
roughly flattens in the range 0.2 � h � 0.8 (though at a value
somewhat larger than that expected under Poisson statistics),
significantly decreases toward h ≈ 0 and h ≈ 1. Similarly,
the cumulative function P (h < H ) strongly departs from the
Poisson theoretical distribution P (h < H ) = H , being mostly
lower than the latter for H < 1/2. This observational evidence
represents unambiguous indications of temporal clustering of
the CME events, thus fully confirming the results outlined by
looking at the WTD of CMEs.

It turns out that the results presented here clearly show that,
at least when looking at the whole solar cycle, Poisson statistics
cannot account for the WTD of CMEs, thus fully contradicting
the conclusions by Wheatland (2003) that imply that the power
law does not have fundamental significance arising from the
statistics of independent CMEs with time-varying rates; rather,
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Figure 2. PDF P (h) (left) and corresponding CDF P (h < H ) (right) of the normalized waiting time h between CMEs; the dotted lines represent the theoretical
probability expected under Poisson statistics; the vertical line indicates where the CDF mostly deviates from it.

the observed power-law WTD is due to the presence of long-
term correlations between events, which implies that the process
underlying the origin of CMEs is characterized by a significant
degree of persistence, i.e., memory.

3. THE ORIGIN OF THE POWER-LAW DISTRIBUTION

The observed form of the WTD can be simply understood in
terms of a process characterized by a certain amount of memory.
In order to outline the necessary theory, it is worthwhile to
introduce the function z(Δt) as

z(Δt) = P (Δt)

P (Δt � ΔT )
, (5)

where P (Δt) and P (Δt � ΔT ) are the PDF and the surviving
distribution function for the CME waiting times, respectively.
That is, z(Δt) represents the local CME rate given that a time
interval Δt has elapsed, with a probability of P (Δt � ΔT ),
between two consecutive CMEs. This easily gives

P (Δt) = z(Δt)e− ∫ Δt

0 z(x)dx. (6)

In a memoryless stochastic process, the probability of the
occurrence of an event remains constant (Feller 1968), i.e.,
z(Δt) = λ, thus obtaining the Poisson distribution P (Δt) =
λe−λΔt . On the other hand, if the probability of occurrence
changes with time (namely, the process has memory), z(Δt)
can be expressed as

z(Δt) = λkkΔt k−1, (7)

where k is the key parameter describing the statistical properties
of the process: k ≶ 1 indicates that the probability of occurrence
decreases (increases) over time, hence clusters (voids) are
present in the system, whilst for k = 1 Equation (7) trivially
reduces to z(Δt) = λ, thus indicating, as discussed above,
random (i.e., uncorrelated) events. Substituting Equation (7)
into Equation (6), the PDF P (Δt) can be easily rewritten as

P (Δt) = k

β

(
Δt

β

)k−1

e
−
(

Δt
β

)k

, (8)

which is the probability function for the Weibull distribution
(Weibull 1951), where β = 1/λ is the reciprocal of the
occurrence rate of the events.

The Weibull distribution is a special case of the four parameter
exponentiated Weibull distribution:

P (Δt) = α
k

β

(
Δt − θ

β

)k−1 [
1 − e

−
(

Δt−θ
β

)k
]α−1

e
−
(

Δt−θ
β

)k

,

(9)
where θ < 0 accounts for the realistic possibility that the
probability of occurrence of an event is not zero and finite for
Δt → 0, i.e., it accounts for simultaneous events (a limitation of
Weibull’s equation for z(Δt): z(0) is indeed either zero or infinite
in Equation 7): the number of events occurring at the same time
is greater and greater with a decreasing value of θ . The additional
parameter α (α = 1 gives the Weibull distribution) accounts for
the possibility that the statistics change during time: for instance,
assuming the presence of clusters in the system (that is k < 1)
for kα ≶ 1, the level of clustering is not constant and there
exists a time period when this is minimum (maximum). It can
be easily seen that for large waiting times the exponentiated
Weibull function displays a power-law tail, P (Δt) ∼ Δt−μ,
where μ = kα − 1.

The observed WTD displayed in the right panel of Figure 1
has been fitted with the exponentiated Weibull function (by
applying a Levenberg–Marquardt least-squares minimization
method), inferring as best values for the parameters k =
0.477 ± 0.006, β = 0.70 ± 0.04, θ = −1.31 ± 0.02, and
α = 8.8 ± 0.4. The probability function P (Δt) obtained by
substituting this set of parameters in Equation (9) is shown (as a
red line in the right panel of Figure 1) to reproduce the observed
WTD for CMEs very well. It is worth noting some important
results concerning the use of Equation (9) to fit the distribution
of the CME waiting times and their physical relevance in light
of the statistical properties of the CME time sequence: (1) the
corresponding χ2 is very low, χ2 = 3.4 × 10−5, hence the fit
is very robust; (2) k is lower than 1, which represents the
evidence for the presence of clusters in the CME time sequence;
(3) θ is negative, which indicates that there exists a not-
null probability that two or more CMEs occur simultaneously,
further evidence for the temporal clustering of the CME events;
(4) kα is larger than 1, which reveals that the clustering of
CME events is not constant during the solar cycle, but there
exists a period where the CME eruptions are more clustered; (5)
asymptotically, the exponentiated Weibull function reproduces
well the power-law tail of the observed WTD. In particular,
the estimate of the power-law index inferred in the previous
section, γ = 2.97 ± 0.10, is in striking agreement with the
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Figure 3. Left: PDFs P (h) (top) and corresponding CDFs P (h < H ) (bottom) of the normalized waiting time h between CME events sampled in the years 1997,
2001, 2009, and 2012 (violet, light blue, orange and red curves, respectively); the dotted lines represent the theoretical probability expected under Poisson statistics;
the vertical lines indicate where the CDFs mostly deviate from it (the different colors refer to the different years as shown in the legend). Right: occurrence rate λ of
CME eruptions (top), maximum deviation D between the empirical and the reference (i.e., Poisson) CDFs (middle), and significance level P of the K–S test compared
with the monthly sunspot number (bottom), as functions of the time during the period 1996–2012 encompassed by the SOHO/LASCO catalog; colors, in the rainbow
scale, are the same as used for the left panels.

(A color version of this figure is available in the online journal.)

exponent scaling predicted by Equation (9) for large waiting
times, μ = kα − 1 = 3.20 ± 0.20: the indices are the same
within the statistical uncertainties. Hence, it can be concluded
that the Weibull distribution can satisfactorily account for the
observed WTD for CMEs, by simply supposing that they
are correlated to some degree. That is, the eruptions of CMEs
are regulated by a persistent process, namely characterized by
some memory, which generates correlations among the CME
events.

4. THE NATURE OF THE PHYSICAL PROCESSES
UNDERLYING THE CME ORIGIN

The results outlined in the previous sections refer to the
SOHO/LASCO CME dataset as a whole (encompassing one
and a half solar cycles). In order to investigate the variation
with the solar cycle of the CME waiting time statistics and to
localize when the CMEs are more clustered, thus looking for
the periods where the process underlying the CME eruptions is
characterized by a higher level of persistency, the K–S test is
applied to 5845 year-long-windows running day-by-day along
the period 1996–2012. The results are shown in Figure 3.

At a first glance, the behaviors of P (h) and P (h < H )
corresponding to the minimum years (1997 and 2009) of solar
cycles 23 and 24, to the maximum year (2001) of solar cycle
23, and to the year 2012, that is to the rise to the maximum
phase of solar cycle 24 (top and bottom left panels of Figure 3,
respectively) seem to be similar to the typical shapes of the
probability and cumulative functions obtained by considering
the entire SOHO/LASCO catalog of CMEs (left and right
panels of Figure 2, respectively), thus appearing to deviate from
the uniform, say Poisson, distribution (dotted lines). However,
by looking at the significance level P of the K–S test as a
function of time during the period 1996–2012 (bottom right
panel of Figure 3) and by comparing it with the monthly
sunspot number compiled by the Solar Influences Data Analysis
Center in Belgium (black curve), it is readily seen that the
CME temporal distribution clearly departs from the Poisson
statistics in the years 1998–2007 and 2010–2012, namely just
outside the minimum activity phases of solar cycles 23 and 24,
where instead the Poisson hypothesis holds at a high degree
of confidence (the maximum distance D between the empirical
and the reference distributions is shown as a function of time
in the middle right panel of the same figure). That is, the
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correlations shown in Sections 2 and 3 to exist among the
CME events are actually present solely during the periods of
higher solar activity: at the minimum of the solar cycle the
CMEs are stochastically distributed in time. Furthermore, those
correlations are suggested to be so numerous and so strong,
with respect to the uncorrelated, i.e., random, waiting times
observed during the minimum phases of solar activity, as to be
revealed when investigating the global waiting time statistics
in the years 1996–2012 (Figures 1 and 2). In this respect,
it is fair to note that during the solar minimum, when the
distribution of the CME events is consistent with the Poisson
statistics, the power-law behavior of the WTD (see Figure 3
in Wheatland 2003) might likely be due to a non-stationary
Poisson process. On the contrary, a piecewise-constant Poisson
process cannot account for the observed WTD for the CMEs
which occurred during the periods of higher activity when
the analysis presented here clearly represents observational
evidence of the departure of CME statistics from a local Poisson
distribution.

The different degrees of departure of the CME WTD from
the Poisson distribution point to different physical conditions
during the different phases of the solar cycle, that is either
to a temporal evolution of the efficiency of the mechanism
underlying the origin of CMEs or, more likely, to the existence
of two or more physical processes driving their eruptions. In the
latter case, it can be suggested that a first stochastic mechanism
might act during the entire solar cycle, generating uncorrelated
CME events. This might likely be related to global magnetic
rearrangements of the solar corona at large scales to account
for the CMEs originated at times of solar minimum, when
they often form primarily in the coronal streamer belt near the
solar magnetic equator. Hence, the absence of correlations in
the CME sequence during the intervals of minimum activity
might be thus understood. A second persistent mechanism,
superposed to the former, might be instead initiated during
the periods of higher solar activity driving the formation and
eruption of temporally correlated CMEs. In this context, by
comparing the top and the bottom panels of Figure 3, it is
worth noting that, quite interestingly, the occurrence rate of
CMEs is not correlated with the significance level of the K–S
test, namely with the degree of correlation of the CME waiting
times. Hence, it looks as if the mechanism generating long
correlation times among the CME events during solar maximum
was related to the increased emergence of magnetic flux within
active regions, rather than to their effective number, which is
instead strictly associated to the activity phase of the solar cycle
and with the frequency of CMEs (Webb & Howard 1994).
Since during solar maximum CMEs mostly originate from

active regions, these results seem to depict a scenario in which
the correlations present among the CME events are related to
solar surface perturbations characterizing the activity in the area
where the CMEs form, somehow similar to what is observed for
the temporal distribution of earthquakes, where major seismic
events often mark the beginning of a series of (temporally and
spatially correlated) earthquakes (aftershocks), leading to their
clustering. As a matter of fact, spatial correlations among CMEs
have already been the subject of scrutiny: Moon et al. (2003)
have indeed found a sympathetic CME pair, of which the second
CME may have been initiated by the eruption of the first one,
thus providing clues supporting the existence of interdependent
CMEs occurring sequentially in different locations and with
a certain physical connection. Hence, the existence of a high
degree of correlation at times of higher solar activity can thus
be explained, as long as the consequent CME clustering is strong
enough so as to not be destroyed by the declustering effect of the
random CME events due to the underlying Gaussian process,
which is continuously acting during the entire solar cycle.

To summarize, the increase of the level of correlation among
CME events during the solar cycle from the minimum to the
maximum provides some clues on the physical processes at
the basis of the origin of CMEs, indicating that at least two
mechanisms, in some sense opposite, should be working at the
same time, one related to stochastic large-scale reconfigurations
of the coronal magnetic field and the other to the persistent
spatiotemporal variability of solar surface activity.

This work was supported by the Italian Space Agency (ASI)
grants (I/013/12/0).
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