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Abstract. The present work develops an approach which reduces operator equations arising
in the engineering problems to the problem of minimizing the discrepancy functional. For this
minimization, an algorithm of random global search is proposed, which is allied to some genetic
algorithms. The efficiency of the method is demonstrated by the solving problem of simultaneous
identification of several linear cracks forming an array in an elastic medium by using the circular
Ultrasonic scanning.

1. Introduction

Various optimization methods are widespread in the engineering science due to their efficiency
when applied to both theoretical and practical problems, see, e.g., [1–3]. Classical regular
methods are typically applied to optimize regular functionals, see [4]. If it is required to find
the global minimum or maximum of a certain functional of a complex structure, then classical
standard algorithms can hardly be used. However, some advanced algorithms of global random
search demonstrate high efficiency just in applications to the problems with complicated target
functionals, see, e.g., [5].

In the present paper, we demonstrate that many problems in engineering science can be
reduced to certain classes of operator equations which can then be reduced to optimization
problems. We construct an algorithm which permits efficient numerical treatment of the
arising optimization problems and demonstrate the application of the proposed approach to
the important problem of defect identification by using the Ultrasonic (US) scanning with an
example, where the defects are represented by a finite array of linear cracks.

Many published works were currently dealing with inverse identification problems. This
interest is caused by the importance of such investigations in many practical applications, in
particular, as discussed above, in the US Nondestructive Testing. Chronologically, the first
recognition methods were based on an approximation of weak wave interaction, namely on the
theories of Born and Rytov [6]. The well-developed methods of acoustical tomography based
on the Radon transformation are also related to the class of theories using the weak scattering
hypothesis [7]. More strict diffraction theories are based on direct and inverse mathematical
diffraction problems [8, 9]. The present authors have published a series of works on the image
identification of single defects [10, 11]. Here we demonstrate that the optimization methods can
also efficiently be applied to identify several defects simultaneously, on the basis of US methods.

http://creativecommons.org/licenses/by/3.0
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2. Operator equations and optimization problems

Many problems in engineering science can mathematically be reduced to operator equations of
the form

Aϕ = f, ϕ ∈ Dϕ ⊂ RN , f ∈ Df ⊂ RM , (1)

where f is known but ϕ is unknown. In principle, Eq. (1) can be studied in a pair of Hilbert
spaces, however for the applications discussed below it is sufficient to consider operator A acting
from a finite-dimensional Euclidean space RN of dimension N to another Euclidean space RM of
dimensionM . To be more specific, we assume thatDϕ andDf are some simply connected convex
bounded domains in RN and RM , respectively. Very often, the operator A is strongly nonlinear,
and in such cases it is impossible to draw a conclusion about the existence and uniqueness of the
solution of Eq. (1). However, in practice, a solution to Eq. (1) must be constructed even under
the condition of such an uncertainty.

Let us assume that there is a priori information that there exists a certain solution ϕ0 to
Eq. (1). Then the key point is to construct an algorithm for determining this solution or finding
at least a good approximation to ϕ0. In the case where the operator A is continuous, even being
nonlinear, an approximate solution ϕ∗ close to ϕ0 corresponds to the respective right-hand
side f∗ close to f . Let us introduce the following discrepancy functional:

Ω(ϕ) = ‖Aϕ− f‖2. (2)

Obviously, it is nonnegative: Ω(ϕ) ≥ 0, and Ω(ϕ0) = 0 since Aϕ0 = f . Therefore, the
minimization of the functional Ω(ϕ) may give a good approximation to the solution ϕ0. In the
case where the operator A has a continuous inverse operator in the considered domain, the lower
is the attained minimal value Ωmin ≥ 0 of the functional, the more precise is the constructed
approximation ϕ∗ ≈ ϕ0. It should be noted that, in nonlinear problems, the existence of the
inverse operator cannot, as a rule, be proved as a theorem, but sometimes this fact is evident
from the physical point of view. The important question regarding the uniqueness of the solution
is beyond the present study.

3. Key properties of the applied algorithm

The functional (2) can be minimized by any classical optimization method [4]. However, the main
restriction of regular iterative schemes is that they give only a local minimum of the respective
functional. Under such conditions, it is not evident that a local minimum is simultaneously the
global minimum of the functional. In fact, it is well known that, for nonlinear equations, such
values of local minima may be too far from the desired value Ω = 0.

The described property is demonstrated with an example of a one-dimensional functional
which, in the one-dimensional case, is simply a normal function of the variable ϕ:

Ω(ϕ) = | sin(10ϕ) + 0.8 cos(20
√
2ϕ) + 0.5 sin(15

√
3ϕ)|, ϕ ∈ (0, 2π) (3)

This function is plotted in figure 1. This is a strongly oscillating continuous nonnegative function,
which has several minimal zero values. These points arise every time when the function inside
the modulus symbol in (3) changes its sign as the argument ϕ monotonically increases.

If the analytical structure of function (3) is unknown, then one needs to apply an appropriate
numerical algorithm for minimization. Obviously, if in the frames of any regular iteration process
like the steepest descent method or Newton method, one starts from a certain initial point, then
one arrives at a local minimum of the function at hand. Therefore, the global minimization
cannot be resolved by such regular algorithms.

For this reason, in our numerical experiments, we use a version of the global random search
method [5] contiguous to the one described in detail in [12]. This algorithm was developed to
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Figure 1. An example of the minimized function.

seek maxima, but it can also be used to seek minima. It is constructed so that it moves both up
and downhill and, as the optimization process proceeds, focuses on the most promising area. As
the first step, it randomly chooses a trial point within the step from the starting point selected
by the user. The function is evaluated at this trial point, and its value is compared with its
value at the initial point. In the minimization problem, all downhill moves are accepted and
the algorithm continues from that trial point. The relationship between the initial value of Ω
and the resulting step length is function dependent. This algorithm shows perfect convergence
for many problems, also for our inverse identification problem, but unfortunately it sometimes
arrives at a local extremum instead of the global one in the cases where there are a lot of global
minima of the objective function.

The algorithm applied is a slight modification of these ideas. It possesses the following
two specific features: (1) random sampling of values in a neighborhood of the points at which
the values of the functional are smaller happens more frequently than in a neighborhood of
worse points, and (2) the domains in which random values of variables are chosen are gradually
contracted to small neighborhoods of the points with smaller values of the functional. This
technique demonstrates remarkable convergence for many known multidimensional functions of
irregular behavior, like Rosenbrock’s function, Rastrigin function, Himmelblau’s function, and
many other test functions. This turns out very efficient also in the engineering problem discussed
below and dealing with crack identification by the Ultrasonic (US) scanning echo-method.

4. Formulation of the crack identification problem

Let a finite array of linear cracks be located in a linear isotropic homogeneous elastic medium
inside a certain bounded domain; ln (n = 1, . . . , Nc) denotes the surface of the nth crack, and

L =
Nc
⋃

n=1
ln denotes the full set of cracks. Let us choose the origin of the Cartesian coordinate

system somewhere in this domain, close to the cluster of cracks. In order to identify the geometry
of each crack in this array, we apply a circular scanning by an US sensor which operates in the
echo-regime, see figure 2. The current position of the sensor is given by the Cartesian coordinates
(R cosα,R sinα), and it is assumed that the amplitude of the back-scattered impulse is known
for the full angular scanning: α ∈ (0, 2π).

Let us cite the governing equations in the problem under study. In the case of the so-
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Figure 2. Circular scanning of the array of linear cracks by the US transducer in the echo-
regime.

called “anti-plane” (or “shear-stress,” SH) problem, this stress is directed perpendicularly to
the considered plane (x, y), so that the deformation mode is identical for all cross-sections
z = const. Then in the fixed rectangular Cartesian coordinate system Oxyz, the displacement
vector components are ū = {0, 0, uz(x, y)}, and this determines the two nontrivial components
of the stress tensor

τxz(x, y) = µ
∂uz(x, y)

∂x
, τyz(x, y) = µ

∂uz(x, y)

∂y
, (4)

where µ is the shear elastic modulus. Under such conditions the equations of motion reduce to
the single scalar Helmholtz equation for the function uz(x, y)

∂2uz(x, y)

∂x2
+

∂2uz(x, y)

∂y2
+ k2uz(x, y) = 0, k =

ω

cs
, (5)

where k is the wave number related to the transverse wave speed, the time-dependent factor
e−iωt is omitted in all formulas, and cs is the transverse wave speed.

The internal stress vector T̄ = {Tx, Ty, Tz} over an arbitrary elemental area with the
normal n̄ = {nx, ny, 0} in the considered case of anti-plane deformation has the only nontrivial
component

Tx = Ty = 0, Tz = τxznx + τyzny = µ

(

∂uz
∂x

nx +
∂uz
∂y

ny

)

= µ
∂uz
∂n

. (6)

Then the boundary conditions over the set of cracks L located in the medium should be satisfied
over the faces of all defects which are free of load. Let us represent the full wave field as a sum
of the incident and the scattered ones

uz = uincz + uscz (x, y), uincz (x, y) = e−ik(x cosα+y sinα), w(x, y) = uscz (x, y),

Tz = T inc
z + T sc

z , T inc
z = −ikµ(nx cosα+ ny sinα) e

−ik(x cosα+y sinα),
(7)

where α is the angle of incidence.
It is obvious that the boundary condition for the scattered wave field implies that the crack

faces are loaded by a certain tangential stress:

Tz

∣

∣

L
= 0 ∼ T sc

z

∣

∣

L
= −T inc

z

∣

∣

L
=⇒ ∂uz

∂n

∣

∣

∣

∣

L

= 0 ∼ ∂w

∂n

∣

∣

∣

∣

L

= −T inc
z

µ

∣

∣

∣

∣

L

. (8)
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In discrete formulation, in order to apply a numerical algorithm, all cracks are subdivided
into I small elementary cracks. Then, by applying some known results of the classical potential
theory, the diffraction problem can be reduced to a system of linear algebraic equations (SLAE)
of the form

I
∑

j=1

Kljgj = ik(nlx cosα+ nly sinα) exp[−i k(xl cosα+ yl sinα)], l = 1, 2, . . . , I, (9)

where

Klj = τ ′′scxz n̄l · t̄j + τ ′′scyz n̄l · n̄j, (10)

τ ′′scxz = − iy′′l
4

[

K

(

εj
2

− x′′l , y
′′

l

)

−K

(

− εj
2

− x′′l , y
′′

l

)]

,

τ ′′scyz =
i

4

〈

εj
2
Qy

(

εj
2

− x′′l , y
′′

l

)

+Qy

(

εj
2

+ x′′l , y
′′

l

)

+
2i

π

[

x′′l − εj/2

(x′′l − εj/2)2 + (y′′l )
2
+

x′′l + εj/2

(x′′l + εj/2)2 + (y′′l )
2

]〉

,

(11)

x′′l = (r̄j − r̄l) · t̄j, y′′l = (r̄j − r̄l) · n̄j. (12)

Here r̄j is the radius vector of the jth elementary crack in the chosen Cartesian coordinate
system, n̄j and τ̄j are the unit normal and unit tangential vectors to this elementary crack, εj
is its length, k is the wave number which is assumed to be fixed, and α is the angle of incidence
with respect to the axis x. Besides,

K(x, y) =
kH

(1)
1 (kρ)

ρ
, Q(x, y) =

kH
(1)
1 (kρ)

ρ
+

2i

πρ2
, Qy =

∂(yQ)

∂y
, ρ2 = x2 + y2, (13)

where H
(1)
1 is the Hankel function. Once SLAE (9) is solved, i.e., all quantities gj are found,

the amplitude of the back-scattered far-field wave can be calculated as

A(α) =

∣

∣

∣

∣

I
∑

j=1

gj tan[arccos(tjx cosα+ tjy sinα)] sin
k(tjx cosα+ tjy sinα)εj

2

∣

∣

∣

∣

. (14)

Let the system under identification be an array of linear cracks ln, n = 1, . . . , Nc. Each crack
is defined by its central point with the Cartesian coordinates (an, bn), by its length ζn, and by
the angle of slope θn (|θn| ≤ π/2) with respect to the axis x. If the nth crack contains Jn
elementary cracks of length εn = ζn/Jn, then the full set of elementary cracks is a union of ones
when running over the given system of linear cracks:











xi = an +
[

εn(q − 0.5) − ζn
2

]

cos θn,

yi = bn +
[

εn(q − 0.5)− ζn
2

]

sin θn,
(q = 1, . . . , Jn;n = 1, . . . , Nc). (15)

Coming to the formulated identification problem, let us estimate the total number of unknown
parameters to be reconstructed. If the number of linear cracks is Nc, then one has four unknown
parameters for each of them: an, bn, ζn, θn (n = 1, . . . , Nc). Therefore, the total number of the
unknown parameters to be reconstructed is 4Nc.
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In order to find all these unknowns, we construct an objective functional, and reduce the
reconstruction to an optimization problem for this functional, as discussed in section 2. For
this, we represent the SLAE (9) in operator form

Kg = f, K = {Klj}, g = {gl}, f = {fl}, (l, j = 1, . . . , I), (16)

whose solution can be expressed in terms of the inverse matrix as

g = K−1f =⇒ gl = (K−1f)l. (17)

Obviously, the right-hand side of Eq. (17) depends on all 4Nc unknown parameters, as well as
on the angle of incidence α: K−1f = (K−1f)(an, bn, ζn, θn, α).

Now, let us pass to the question: What is the measured information which can be used as the
input data for the inverse identification problem? We assume that the scanning US sensor can
measure the amplitude of the echo-impulse at a fixed distance R, in a far zone, for M positions
of the sensor corresponding to the values of the irradiation angle α = αm (m = 1, . . . ,M). To
be more specific, we assume that the values αm are uniformly distributed over the full circular
interval (0, 2π). The registered values of the back-scattered amplitude form an array of the input
data Fm, (m = 1, . . . ,M). In our numerical experiments, the quantities Fm may be taken as the
amplitude A(α) calculated from the solution of the respective direct problem: Fm = A(αm), see
Eq. (14). Then, by substituting (17) into (14), one comes to the system of nonlinear equations
for the parameters an, bn, ζn, θn written in discrete form

∣

∣

∣

∣

I
∑

j=1

(K−1f)(an, bn, ζn, θn, αm) tan[arccos(tjx cosαm + tjy sinαm)]

× sin

[

k(tjx cosαm + tjy sinαm)εj
2

]
∣

∣

∣

∣

= F ∗

m (m = 1, . . . ,M). (18)

5. Numerical algorithm

The system of equations (18) can be resolved by minimizing the discrepancy functional, as
discussed in section 2:

min[Ω(an, bn, ζn, θn)],

Ω(an, bn, ζn, θn) =

∥

∥

∥

∥

∣

∣

∣

∣

I
∑

j=1

(K−1f)(an, bn, ζn, θn, αm) tan[arccos(tjx cosαm + tjy sinαm)]

× sin

[

k(tjx cosαm + tjy sinαm)εj
2

]∣

∣

∣

∣

− F ∗

m

∥

∥

∥

∥

2

=
M
∑

m=1

{∣

∣

∣

∣

I
∑

j=1

(K−1f)(an, bn, ζn, θn, αm) tan[arccos(tjx cosαm + tjy sinαm)]

× sin

[

k(tjx cosαm + tjy sinαm)εj
2

]
∣

∣

∣

∣

− F ∗

m

}2

.

(19)

The algorithm in such a form was realized in [13]. This shows a brilliant precision in
reconstruction of the inclination angles θ and crack length ζ for each crack. The position of
the cracks forming the array is identified incorrectly. This can easily be explained by the fact
that the far-field scattered wave field, see expression (14), is free from the coordinates xj , yj
and depends only on the angle of incidence. It is obvious that one cannot identify the real
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Table 1. Identification of the single crack (1), see figure 3.

Configuration a,mm b, mm ζ,mm θ

Exact 6.000 −3.000 12.000 −π/9 = −0.349

One crack 6.000 −3.003 11.984 −0.349

Two cracks 5.998 −2.996 11.993 −0.349
−18.596 15.354 17.611 0.521

Three cracks 6.002 −2.998 11.991 −0.348
4.026 0.017 11.428 0.177
10.337 −5.570 14.357 0.745

Four cracks 6.001 −3.011 11.999 −0.348
−9.814 0.318 13.572 −0.149
−10.578 8.882 10.376 0.918
−7.056 −3.159 7.897 0.070

position of a reflector by using only the information from the far-field zone. In order to improve
the identification of the position of cracks, i.e., the parameters a and b, let us involve the
information about the “time-of-flight” of the US impulse. The latter is always reflected in the
echo-regime from the point which is the nearest to the sensor; hence this information gives the
value of the most distant point on the cracks in each direction of incidence, i.e., the quantity dm,

dm = max
j

{xj cosαm + yj sinαm}. (20)

Therefore, it is reasonable to add an analogous discrepancy functional of the operator
relation (20) to the functional (19):

Ωd =

M
∑

m=1

(

max
j

{xj cosαm + yj sinαm} − dm

)2

. (21)

The final functional is thus constructed as a sum of expressions presented in equations (19)
and (21) with appropriate weights. Numerous tests show that, to provide good precision for all
geometric parameters under identification, the weight in front of functional (21) should be at
least by an order of magnitude greater than the one for functional (19),

For multiple crack array, the algorithm operates so that it selects the most likely geometry,
sequentially for the number of cracks Nc = 1, 2, 3, 4. Then, in the set of these four geometries,
the algorithm chooses the best value of the functional Ω to come to the true solution including
the recognition of the true number of cracks by itself.

Let us test the proposed method with some examples of the simultaneous identification of
several cracks. If one applies US probes with the cyclic frequency f = 1mHz and the wave speed
in the medium is 6 km/s, then the wave length is λ = 6× 103/1 × 106 = 6× 10−3 m = 6mm.

For all examples listed below the input data for the reconstruction are taken from the
solution of the respective direct problem. In our simulation, we always use M = 72
points of measurements uniformly distributed over the total circular interval of the polar
angle αm ∈ (0, 2π), m = 1, . . . ,M , of incidence, with the step 360◦/72 = 5◦. For all examples
demonstrated below, the maximum possible number of cracks in the cluster is taken Nc = 4.
The real number of cracks is an additional parameter to be identified. Some examples of the
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Figure 3. Array of four cracks to be identified in the (−20, 20) × (−20, 20) mm quadratic
domain.

Table 2. Identification of two cracks (1) and (2), see figure 3.

Configuration a,mm b, mm ζ, mm θ

Exact 6.000 −3.000 12.000 −π/9 = −0.349
−1.500 4.000 16.000 π/3 = 1.047

One crack 3.140 0.974 18.278 1.050

Two cracks 6.101 −2.958 11.906 −0.348
−1.483 4.000 15.990 1.047

Three cracks 6.013 −3.013 11.930 −0.349
−1.510 3.994 16.054 1.048
−16.346 −13.390 16.681 −1.506

Four cracks 5.995 −2.986 12.030 −0.350
−1.492 4.011 16.021 1.047
−2.380 4.088 18.244 −0.976
9.366 5.367 15.416 −0.006

reconstruction are presented in Tables 1–4. All sizes are given in mm. The configuration of the
system of cracks is shown in figure 3.

Conclusions

1. The number of cracks, parameter Nc, for any configuration, as a rule, is identified correctly.
In practice, this property takes place for both good and rough precision of the identification.

2. Following the conclusions of [13], one can see that, when ignoring the time-of-flight factor,
i.e. with identification by minimizing functional (19) only and ignoring functional (21), the
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Table 3. Identification of three cracks (1), (2), and (3), see figure 3.

Configuration a, mm b,mm ζ,mm θ

Exact 6.000 −3.000 12.000 −π/9 = −0.349
−1.500 4.000 16.000 π/3 = 1.047
−10.000 −6.000 11.000 −π/4 = −0.785

One crack −0.711 −0.728 20.000 −0.157

Two cracks 7.808 −3.215 9.093 −0.540
−7.253 2.445 19.996 1.015

Three cracks 6.424 −3.022 11.126 −0.353
−1.393 4.139 15.567 1.051
−9.710 −5.988 11.729 −0.789

Four cracks 6.088 −3.083 11.547 −0.333
−0.985 4.700 14.254 1.045
−10.079 −6.034 10.589 −0.775
−4.629 3.940 13.068 0.594

Table 4. Identification of four cracks (1), (2), (3), and (4), see figure 3.

Configuration a, mm b, mm ζ, mm θ

Exact 6.000 −3.000 12.000 −π/9 = −0.349
−1.500 4.000 16.000 π/3 = 1.047
−10.000 −6.000 11.000 −π/4 = −0.785
−4.000 −12.200 19.000 π/6 = 0.524

One crack −2.290 −3.822 20.000 0.593

Two cracks 4.901 4.072 19.797 −0.690
−5.382 −11.338 19.566 0.500

Three cracks 6.034 −0.260 14.171 −0.710
−4.293 5.820 17.991 0.544
−8.120 −10.664 15.425 1.007

Four cracks 5.861 −3.063 12.193 −0.348
−1.652 3.978 16.149 1.043
−10.162 −5.988 10.616 −0.779
−4.183 −12.294 18.555 0.525

length of the crack (parameter ζ) and the inclination angle (parameter θ) are identified quite
precisely. The Cartesian coordinates of the cracks cannot be correctly identified with this
particular technique, which takes into account only the back-scattered amplitude of the US
impulse. This is quite natural from the physical point of view when the impulse amplitude
is measured in the far-field zone, where the value of the registered signal is insensitive to
the real position of a defect.

3. It can also be seen from the presented Tables 1–4 that, by involving the time-of-flight
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information, one can attain more precise identification of cracks’ location too. This is
also physically natural, since the time-of-flight information is directly connected with the
distance between a defect and the sensor.

4. It is very interesting to notice that even with an incorrect number of cracks, the
identification, as a rule, contains the information about some true cracks. This can easily
be seen on example of table 2, where the first crack among others, for “Three cracks”
identification, has all four reconstructed parameters very close to the one for the first of the
two real cracks.

5. It should be finally noted that in some extreme situations the identification cannot in
principle be performed precisely. We mean the cases when a certain crack is hidden in an
acoustic “shadow” of other cracks, like a crack located between a pair of two long parallel
cracks.
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