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Abstract. We investigate a recently proposed effect of strong magnetic fields in Fermionic
matter that is important to the structure of magnetic white dwarfs. This work is highly
relevant in view of the recent observations of magnetized white dwarfs (B ∼ 108−9 G), and
possible candidates for white dwarfs pulsars as an alternative descriptions for SGRs and AXPs.
Here, we consider the matter inside white dwarfs composed by ions surrounded by an electron
degenerate Fermi gas subject to a strong magnetic field. We investigate the effect of the Landau
levels due to the huge magnetic field on the equation of state (EoS). We see that the behaviour
of the equation of state as a function of the mass and energy density is much stiffer when only
one Landau level is occupied. We also investigate the regime of lower magnetic fields where
many Landau levels are occupied.

1. Introduction
.

The study of white dwarf allows to improve our understanding of nuclear matter under
extreme densities and high magnetic fields [1] [2]. The interior of these stars offers an unique
point of encounter among astrophysics and atomic physics, since the macroscopic properties of
compact stars, such as mass, radius, rotation and thermal evolution depend on the microscopic
composition of the stellar matter. This composition can change under the presence of strong
magnetic fields, affecting the equation of state, and as a consequence the structure of the star.

Recently, Coelho et al. discussed some basic equilibrium properties of magnetized white
dwarfs, in particular the condition for dynamical instability of the star in the presence of
an extremely large magnetic field [3]. This analysis was done in the context of the virial
theorem extended to include a magnetic term. Following the work of Chandrasekhar & Fermi
of 1953, when the star magnetic energy WB exceeds its gravitational potential energy |WG|
(WB > |WG|), the system becomes dynamically unstable [4]. In light of this, the new mass limit
for very magnetized and spherical white dwarf of 2.58M�, recently calculated by [5], should be
considered carefully, since these objects are unstable and unbound. Furthermore, it was showed
that the new mass limit was obtained neglecting several macro and micro physical aspects such
as gravitational, dynamical stability, breaking of spherical symmetry, general relativity, inverse
β decay, and pycnonuclear fusion reactions. These effects are relevant for the self-consistent
description of the structure and assessment of stability of these objects. When accounted for,
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they lead to the conclusion that the existence of such ultramagnetized white dwarfs in nature is
very unlikely due to violation of minimal requirements of stability, and therefore the canonical
Chandrasekhar mass limit of white dwarfs has to be still applied.

2. Fermion matter
.

Our starting point will be the microscopic energy-momentum tensor obtained from the system
Lagrangian. The Lagrangian density of a fermionic system in the presence of a magnetic field
is given by

L = ψ(ı /D −m)ψ +
1

4
FµνFµν , (1)

where we used the notation usual /a = γµaµ and Dµ = 1
2(
−→
∂ −←−∂ ) + Γµ + ı|q|Aµ with Γµ being

the spin connection which is zero in flat space, and Fµν is the field strength tensor of the
electromagnetic field We have still the vector potential chosen as

Aµ(x) = δµ2x1B

that produces a constant magnetic field in the Z direction.
Solving the Dirac equation from the Lagrangian density we determined the dispersion relation:

Eν =
√
p2
zc

2 +m2
ec

4 + 2ν|q|h̄Bc. (2)

where pz is the longitudinal momentum, q electric charge, me the electron mass, c the speed
light, and ν the Landau level given by

ν = (l +
1

2
+ s)

being s = ±1.

2.1. Zero Temperature
.

The integration in momentum for a electron gas with charge |q| immersed in magnetic field,
restricted to discrete Landau levels of magnetic field is [6]:∫

pz(ν)
→ 2eB

(2πh̄)2c

∑
ν

gν0

∫ ∞
−∞

f(E)dpz(ν)

where f(E) = 1
eβ(E−εF (0))+1

is the Fermi-Dirac function, β = 1/KBT . and gν0 = (2− δν0) is the

degeneracy in each Landau level. At zero temperature the distribution function is given by a
theta function to one-particle

f(E) = Θ(µ− E)

where µ is the chemical potential.

2.2. Basic Equations for Landau Level Systems of Degenerate Electrons
.

In term of the chemical potential µ, the maximum pz is defined

pz =

√
p2
F −

2ν|q|Bh̄
c

(3)
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Rewriting the equation above,introducting of the dimensionless parameter xF = pF /mec we
have still x2

F = µ2 − 1 where µ2 = εe/mc
2 this leads to

pz/mec = χ(ν) =
√
µ2 − 1− 2νγ

being Bc = |q|h̄
m2
ec

3 ∼ 4.414×1013G, γ = B/Bc, and νmax is the maximum number of Landau level

given by [7],

ν ≤ νmax =
µ2 − 1

2γ
(4)

If the lowest Landau level ν = 0 is occupied, νmax = 1. Similarly, for two level system, when
gthe lowest ν = 0, and first, ν = 1, levels are occupied, νmax = 2, and so on [2] .

3. Equation of State

3.1. Number Density Equation
.

The number density is given by

ne =
2γ

(2π)2λ3

∑
ν

gν0

∫
dχ(ν)

where λ = h̄
mec

. Integrating the equation above we have:

ne =
2γ

(2π)2λ3

∑
ν

gν0

√
µ2 − 1− 2νγ (5)

3.2. Mass Density
.

We can relate the matter density with the electron number density ne from

ρ = mn
A

Z
ne

where Z is the atomic number, A the mass number, and mn the neutron mass. The matter
density can be rewritten in the following way,

ρ = K1

∑
ν

gν0

√
µ2 − 1− 2νγ (6)

being K1 = 2γmNµe
(2π)2λ3

, However, we see that K1 changes with the magnetic field due to the term
γ.

3.3. Energy Equation and Longitudinal Pressure
.

The total energy density to zero temperature is given by

ε = ρc2 + εe
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where

εe = K2

∑
ν

gν0

∫
Eνdχ(ν)

is the electron energy density of the magnetized fermi gas and k2 = γmec2

(2π)2λ3
. Then, by integration

in the zero temperature limit

εe = K2

∑
ν

gν0(1 + 2νγ)ξ+

[
χ(x)√
1 + 2νγ

]
(7)

As the previous case, we obtain the equation of state for the pressure

P‖ = K2

∑
ν

gν0(1 + 2νγ)ξ−

[
χ(x)√
1 + 2νγ

]
(8)

where the function ξ is given by

ξ± = µ
√

1 + µ2 ± ln
(
µ+

√
1 + µ2

)
(9)

4. Results
.

In this section we present the numerical values for the longitudinal pressure, mass density and
the mass-radius relations.

In Figure 1. we see the longitudinal pressure as a function of the density, we observe in graphs
(a), (b), and (c) that for magnetic fields up to B = 1013G the equation of state with magnetic
field behaves like non-magnetic equation of state, with no significant effect caused by Landau
levels.
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Figure 1.The figures above show the calculation of the longitudinal pressure versus mass
density for a gas of strongly magnetized electron. All cases are plotted with solid line for
magnetic fields below Bc = 4.414 × 1013G (a) B = 1011G, (b)B = 1012G and (c)B = 1013G.
The dashed line represent the EOS without magnetic field (B = 0).

The next figure shows the effects caused by the Landau levels in the equations of state with
magnetic fields up to 8.8 × 1015G. We see that for fields of this magnitude the EOS becomes
stiffer than when we have only the the lowest state occupied. As we increase the number of
occupied levels, as in Figure 2., the equation of state approaches the nonmagnetic case as can
be seen in Figure 1..
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Figure 2.The graph 2 shows the pressure versus mass density for the Fermi energy
EF = 20mec

2, The black line B = 8.8 × 1015, the dash point line for B = 4.4 × 1015, and
the dashed and point line B = 2.94 × 1015. Each of these curves are for one, two, and three
Landau levels, respectively. The dashed line is the EOS without magnetic field (B = 0).

In the Fig. 3 show the solution of a Tolman-Oppenheimer-Volkoff equation (TOV), In this
figure we observe that for magnetic fields of values up to Bc = 4.414 × 1013G the radius-mass
curve behaves similarly to non-magnetic case, but for value B = 8.8 × 1015 the mass becomes
independent of the radius reaching values of M = 2.58M�.
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Figure 3. The figure shows the star radius R as a function of the mass with EF = 20mec
2

as the maximum Fermi energy. The vertical solid line marks the 1.44M� Chandrasekhar limit.
The solid line B = 1011G, and dashed B = 1013G are obtained with the EOS magnetized. The
pointed-dashed B = 0 is obtained with the EOS non-magnetized. The dotted-dashed represent
the one-level to magnetic field B = 8.8× 1015G.

5. Conclusions
.

In this work we solve the equations of state for an degenerate electron Fermi gas under the
presence of strong magnetic fields. We investigate the effect of the Landau levels due to a
strong magnetic field in the equation of state (EOS) for several values of the magnetic field. We
conclude that for strong magnetic fields the separation among Landau levels is large, so electrons
with lower energy (non-relativistic) can only occupy the ground state. As the magnetic field
decreases, the separation between Landau levels decreases, as shown in Fig. 2. Hence it becomes
energetically favorable for electrons to jump to a higher level, so the number of occupied Landau
levels increases accordingly. Likewise, in the case of relativistic electrons, if the magnetic field
is low, the separation of Landau levels is comparable to the rest energy of the electrons and
hence the electrons can pass freely between the highest Landau levels making the EOS similar
to nonmagnetic case as we can see in the Fig. 1. This case is also shown in Fig. 1, which for low
values of the magnetic field the Landau levels behave almost continuously and it is no longer
possible to see the peaks shown in Fig. 2, that represent precisely the critical density for each
Landau level.

We also conclude that for magnetic fields below Bc the mass radius relation of the star is
similar to the nonmagnetic with M = 1.44M� as the mass limit case. Furthermore, for fields
of the order B ∼ 1015G the mass exceeds the well-known limit for a white dwarf, may reach
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masses M = 2.58M�. However, as has been discussed in [3], these white dwarfs are unstable
and not reliable.
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Astrophysical Journal 794 86
[4] Chandrasekhar S and Fermi E 1953 Astrophysical Journal 118 116
[5] Das U and Mukhopadhyay B 2013 Phys. Rev. Lett. 110 071102
[6] Strickland M, Dexheimer V and Menezes D P 2012 Phys. Rev. D 86 125032
[7] Lai D and Shapiro S L 1991 The Astrophysical Journal 383 745–751

XXXVII Brazilian Meeting on Nuclear Physics IOP Publishing
Journal of Physics: Conference Series 630 (2015) 012039 doi:10.1088/1742-6596/630/1/012039

7




