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1 Introduction

Cascading 4-dimensional gauge theories have been intensely studied over the past decade.

In string theory there are two approaches to realizing these theories, using Hanany-Witten

brane cartoons [1] of D4-branes stretched between NS5-branes and using branes wrapping

cycles in a space which is topologically S2 × S3 as in [2–4]. In such constructions there

are two RR charges, corresponding to the rank of one gauge group and to the difference

between the ranks. The former runs while the latter is fixed. The running of the former may

be seen [5] in the brane cartoon as the fact that a D4 stretched between two NS5-branes

wraps a compactified circle one less time each time that an NS5-brane moves around the

circle. In the geometric realization the running is the result of a twisted Bianchi identity

for the improved field strength F5. The Bianchi identity for the field strength F3 is not

twisted and so the other charge does not run.

Cascading 3-dimensional Chern-Simons theories, as studied in [6–10], are different. In

these cases both charges run. In the brane cartoon the D3-branes are now extended between

5-branes with different charges, and so when the 5-branes cross the Hanany-Witten effect

leads to brane creation which changes the second charge. The geometric realization is a

discrete quotient of S7 and the two charges correspond to M2-branes and M5-branes. The

first charge, as in the 4-dimensional case, is violated by a twisted Bianchi identity for the

field ∗G4. As in the 4-dimensional case, the other Bianchi identity, that for G4, is not

twisted. However the M5-brane charge runs nonetheless because the M5-branes wrap a

3-cycle which, unlike the S2 in the 4-dimensional case, represents a Zk torsion homology

class. Therefore the number of M5-branes with this wrapping is only conserved modulo k.

– 1 –
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This approach to fractional M2-brane charge is quite different from that commonly

found in the literature, as in our solutions G4 is closed. In the case of the D3-brane charge

flow in the Klebanov-Strassler model [4] F5 = dC4 is also closed, however the D3-brane

charge is measured not by F5, but by the exterior derivative of the improved field strength

d(dC4 + B2 ∧ dC2) = H3 ∧ F3 6= 0. (1.1)

In the present case, we use a similar improved field strength for the running of the M2-brane

charge but no 11-dimensional analogue exists for the M5-brane charge.

However our solutions are topologically S1 bundles, and after dimensionally reducing

the S1 we obtain a non-closed 4-form field strength in the remaining 10 dimensions. Thus

in the reduced theory one may define a D4-brane charge to be the exterior derivative of

this 4-form. We define the M5-brane charge on the S1 to be equal to this charge in the

reduced theory. The T-dual brane cartoon suggests that this notion of charge agrees with

the rank of the gauge group. This definition of charge via a dimensionally-reduced theory

is already familiar in torsional heterotic compactifications on T 2 bundles over K3, where

the tadpole condition counts 5-branes wrapped on the topologically trivial T 2 and so is

measured by a dimensionally-reduced charge on the K3 base [11–13].

The 3-dimensional gauge theories that we will consider in this note are also different

from 4-dimensional gauge theories in that the existence of supersymmetric vacua depends

on the choice of the gauge group. In [14] (ABJ) the authors showed that a necessary

condition for N = 6 supersymmetry in a U(N)k ×U(N +M)k Chern-Simons gauge theory

is k > M . We will extend this result to argue that N = 3 supersymmetry requires the

weaker bound 2kN > M(M−k). The two sides of this inequality are suggestive of numbers

of particles in a multiplet, for example the left side may refer to 2k flavors of particles that

transform in the fundamental representation of U(N), and the right hand side to adjoint

U(M) fields minus those that are Higgsed by k fields transforming in the fundamental of

U(M). At first it may seem counterintuitive that k would lead to a number of particles,

as it is simply the Chern-Simons level. However the parity anomaly demonstrates that

a Chern-Simons term at level k has the same contribution to the path integral as, for

example, k families of fermions with infinite real masses. Thus an alternate formulation of

these theories may exist where the Chern-Simons coupling is replaced by particles whose

role in the violation of the second charge may be understood.

The paper is organized as follows. In section 2 we review the type IIB brane construc-

tion that we will use and derive the N = 3 S-rule bound, which is weaker than ABJ’s

N = 6 supersymmmetry condition. We then repeat the arguments of [6] for a duality

cascade. Section 3 is devoted to the T-dual and the M-theory lift of the brane configura-

tion. In particular we find that the distance between the 5-branes in type IIB corresponds

to certain potentials in type IIA and M-theory. In section 4 we describe how the various

brane charges are encoded in the fluxes in M-theory, arguing that the flow of the ranks in

the cascade may be determined from the topology of the configuration, with the torsion

third homology group responsible for the fact that both charges flow. We conclude with

some remarks on the possibility of finding a corresponding M-theory solution.

– 2 –
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This morning the preprint [15] appeared which derives many of our results from a

complimentary perspective. The discussion of the IIB brane cartoons is quite similar,

however while our note emphasizes the M-theory dual, the authors of [15] worked largely

in type IIA.

2 The type IIB brane cartoon

In [16] the authors consider a configuration of intersecting branes in type IIB string the-

ory preserving 6 supercharges, and demonstrate that the M-theory lift of its T-dual is a

compactification on an 8-dimensional hyper-Kähler manifold. This construction has been

exploited in [17] (ABJM), where it is argued that the (2+1)-dimensional 6 supercharge

U(N) ×U(N) Chern-Simons gauge theory has a U(N) ×U(N) Chern-Simons theory with

12 supercharges as an infrared fixed point, and in fact describes a stack of M2-branes

on the orbifold C
4/Zk (see [18–20] for various generalizations with less supersymmetry).

In [14] this construction was generalized to the case of a U(N + M) × U(N) gauge theory

by including fractional M2-branes. These fractional M2-branes are rather subtle objects,

as for example when k = 1 there is no singularity in the geometry, and we will describe

them in more detail below. On the other hand they are quite easy to understand in the

IIB brane cartoon. And so we will begin by describing the configuration in type IIB and

then in the next section carefully T-dualize and lift to M-theory.

2.1 The N = 3 bound

Consider type IIB string theory on R
8,1 × S1, where the circle direction is named x6 and

has period one. There is an NS5-brane extended along the directions x0 through x5 and

at x6 = x7 = x8 = x9 = 0. In the configurations of the above references there is also a

(k,1) 5-brane, which is a bound state of k D5-branes and a single NS5-brane. In the special

case k = 1 we may S-dualize the (k,1) 5-brane to a D5-brane. While this S-duality is not

essential, it will make the following arguments somewhat simpler. The (k,1) 5-brane is

placed diagonally with respect to the NS5-brane, extending again along x0 through x5 but

now located at x7 = kx3, x8 = kx4 and x9 = kx5. We will name its position on the circle

x6 = y < 1.

The 3-dimensional gauge theory lives on D3-branes which extend along the coordinates

x0, x1, x2 and x6 with all other coordinates equal to zero. Following [16], we will draw

a distinction between overlapping and intersecting branes. The first are branes that are

coincident but may move independently. The latter are branes that are actually attached,

so that it would at least require some energy, if not some charge conservation violation, to

separate them. While the branes in the above references are all overlapping, we will also

consider branes which are intersecting.

In particular, we consider N D3-branes which wrap the entire x6 circle. These are

the overlapping branes of [17]. In addition we include M D3-branes, which we will call

fractional branes anticipating their T-duality although in type IIB they are ordinary D3-

branes, which extend from x6 = 0 to x6 = y. These are in general intersecting branes,

attached to the NS5-brane on one side and a (k, 1) 5-brane on the other. The S-rule [1] limits

how many of these intersecting D3-branes may exist in a supersymmetric configuration.

We will now determine this bound.

– 3 –
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If N = 0 the bound is just M 6 k [14], as one obtains by compactifying the results

of [21, 22] on the x6 circle (see also [23, 24] for a related discussion of the S-rule for

configurations of rotated branes). The corresponding brane cartoon is identical to that

of [21, 22] except that now the x6 direction is compactified. The physics on a space with a

compactified direction is the same as that on the universal cover, but restricting to periodic

configurations. On the universal cover x6 is replaced with an infinite line with periodically

spaced and alternating NS5-branes and (k, 1) 5-branes, there is no compactified direction,

and so we may use the S-rule of [21, 22] to conclude that the number of D3-branes stretched

between any NS5-brane and (k, 1) 5-brane on the cover is at most equal to k.

We may decompose the length of this D3-brane into a greatest integral part j and a

non integral part equal to y. The integer j is the number of NS5-branes that it overlaps in

the universal cover, or equivalently the number of times that it wraps the x6 circle. In the

compactified space the world-volume theory of this brane contains a U(j +1)×U(j) gauge

theory, as it extends j+1 times between the NS5-brane and (k, 1) 5-brane and only j times

around on the other side. More generally, the S-rule tells us that a stack of at most k such

D3-branes may exist in a supersymmetric configuration, yielding a U((j + 1)k) × U(jk)

gauge theory.

At this point one may object that the lift to the universal cover contains more in-

formation, the number j, than was present in the original theory and so is inequivalent.

However at any finite gs the D3-branes are described by a BIon-like solution in which they

are blown up into 2-spheres of 5-brane which carry D3-brane charge. The radius of this

2-sphere depends on x6, and this dependence determines the number j. Thus the number

j is not only evident in the universal cover, but also in the original compactification at

finite gs. Our S-rule may therefore be interpreted as a bound on the number of tubes of

D5-brane with each radius profile.

This brings us to the question of just how large the difference M between the ranks of

the two gauge groups may be. In the above example the difference M is equal to k, which

satisfies ABJ’s bound for N = 6 supersymmetry M 6 k. However combining two stacks of

k branes with different values of j one easily violates the bound. For example in figure 1 we

see an example with j = 1, 2 and 3 all superimposed yielding a U(3k)×U(6k) gauge theory.

Now M = 3k > k and so ABJ’s bound is not satisfied, the N = 6 supersymmetry is broken.

However the S-rule is satisfied and so not all of the supersymmetry is necessarily broken.

In fact, in a small coupling limit in which the 5-branes do not bend, N = 3 supersymmetry

is preserved. This does not mean that the full N = 3 supersymmetry really is preserved

at finite coupling, although at finite coupling the SO(3) isometries corresponding to the

SU(2) R-symmetry do appear to be preserved and so it does seem plausible that the full

N = 3 supersymmetry is preserved in such cases. However we will make the more modest

claim, that when such combinations of j’s do not exist for a given M , that is to say when

the S-rule is violated on the universal cover, then N = 3 supersymmetry is broken. This

leaves us with a simple task, we need only determine for which values of M , N and k one

can construct a brane cartoon whose universal cover satisfies the S-rule.

When M = 0 there are no intersecting branes and so the S-rule places no constraint.

Instead we will seek an upper bound for M at a given value of N , analogous to that of

– 4 –
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x  =06 x  =z+16

x  =y6

x  =z6

NS5−brane

(k,1) 5−brane

k D3−branes

2k D3−branesk D3−branes

2k D3−branes 2k D3−branes3k D3−branes

k D3−branes

j=0
D3−branes

D3−branes

D3−branes

j=1

j=2

Figure 1. This is a N = 3 supersymmetric brane cartoon with D3-branes corresponding to j = 0,

j = 1 and j = 2 extended between 5-branes. The total gauge group is U(3k)×U(6k) which violates

ABJ’s N = 6 bound but satisfies the N = 3 bound of (2.2). It consists of 3k D3-branes which wrap

the compactified x6 circle various numbers of times.

ABJ. For a fixed value of N , one may obtain the largest value of M by saturating the

S-rule for the smallest values of j. In other words, the largest value of M is obtained by

having k D3-branes at j = 0, another k at j = 1 and so on up to a maximum j = i (for

example, i = 2 for the configuration on figure 1). At each value of j the D3-branes lead to

a gauge group U((j + 1)k) × U(jk). Therefore the total gauge symmetry is

G = U

(

(i + 1)(i + 2)k

2

)

× U

(

i(i + 1)k

2

)

, N =
i(i + 1)k

2
, M = (i + 1)k. (2.1)

Inverting this equation to find N one obtains the lower bound on N for a given k and M

N >
M(M − k)

2k
. (2.2)

Notice that when the ABJ N = 6 bound is satisfied the right hand side of the N = 3

bound (2.2) is non positive, therefore the N = 3 bound is trivially satisfied.

2.2 RG flow

As in the case of 4-dimensional gauge theories, the renormalization group flow of the

coupling constant may be read from the brane cartoon. The inverse coupling squared at

a given energy scale is just the x6 separation of the 5-branes at a given position in the

transverse directions. Therefore the RG flow of the coupling constant is determined by the

change in separation, or more intuitively, by the curvature of the 5-branes resulting from

the fact that they are pulled by the D3-branes.

In particular a conformal N = 6 theory may exist only if the 5-branes are not curved.

In general, this means that there must be the same number of D3-branes pulling on each

5-brane from each direction. This is the case for example when M = 0, in which case the

D3-branes are merely overlapping the 5-branes and so exert no force. Any nonzero value of

M will imply that there are M more D3-branes pulling each 5-brane in one direction, and

so generically will cause the 5-branes to bend. There is only one exception to this heuristic

rule, if the D3-branes have zero length. In other words, if the two 5-branes are at the same

x6 position, so that y = 0, then the 3-branes exert no net force.

– 5 –
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If one separates the 5-branes by a small distance y > 0, then there will be M D3-branes

connecting them. Solving the 3-dimensional1 Laplace equation for the transverse positions

of the 5-branes, one finds that the D3-branes bend the D5-branes only very close to the

origin, and only by a small amount. In the limit y 7→ 0 the 5-branes are coincident as above.

One may also consider a small displacement in the other direction y < 0. As the 5-branes

cross, the Hanany-Witten transition implies that there are now k − M D3-branes. Again

one may take the limit y 7→ 0, and one arrives at the same coincident 5-brane configuration,

but now with k − M infinitesimal D3-branes instead of M . The assertion that these two

configurations, obtained by taking the limit as y goes to zero from above and below, must

describe the same physics is the

M −→ k − M (2.3)

duality postulated by ABJ for y = 0. However the N = 6 supersymmetry only exists when

the 5-branes do not bend (recall that the N = 6 supersymmetry imposes conformality),

which implies y = 0. In the next section we will see that in type IIA this corresponds also

to a quantized B-field, explaining the quantization of the B-field observed by ABJ.

If the N = 3 theory is not conformal, ABJM’s IR N = 6 fixed point does not ex-

ist. Instead as one flows into the IR, corresponding to moving towards the origin in the

transverse directions along the branes, the 5-branes appear to approach and cross. This is

quite similar to the duality cascade braneology of [4], except that now the Hanany-Witten

transition implies an additional shift of k, as noted in [6, 14]. In the covering space these

steps are quite simple, each value of j simply decreases by one and all k of the j = 0

D3-branes disappear. More generally if there are M j = 0 branes, they are replaced by

k − M . In general one arrives at the duality conjectured for the N = 2 case in [6]

U(N)k × U(N + M)−k −→ U(N)−k × U(N + k − M)k. (2.4)

For example consider the the U(6k) × U(3k) configuration of figure 1, corresponding

to N = M = 3k. After one step this becomes the U(3k) × U(k) configuration of figure 2.

Notice that the N = 3 condition (2.2) is invariant under the step (2.4). This implies

that the conjecture that (2.2) is a necessary and sufficient condition for the existence of an

N = 3 vacuum is compatible with the Seiberg-like duality (2.4) of [6].

3 Duality to M-theory

3.1 T-duality to IIA

Now we are ready to T-dualize along x6 to obtain a type IIA configuration. For simplicity

we first consider k = 1 and S-dualize the brane cartoon so that there is a single NS5-brane

and a single D5-brane. Later we will describe how the situation changes for general k and

without the S-duality. The case y = 0 was already considered in [16], more precisely they

smeared all branes in the x6 direction and so y was not defined. We will also refer to the

new circle in the type IIA compactification as x6. We set α′ to one, and so x6 still has

periodicity equal to one.

1The 3d space is spanned by (x3, x4, x5) or alternatively by (x7, x8, x9).

– 6 –
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NS5−brane

(k,1) 5−brane

x  =z6 x  = z+16

x  =y6

x  =06

k D3−branes

2k D3−branes k D3−branes

k D3−branes

2k D3−branes

j=0
D3−branes

j=1
D3−branes

Figure 2. This is a N = 3 supersymmetric brane cartoon with D3-branes corresponding to j = 0

and j = 1 extended between 5-branes. The total gauge group is U(2k)×U(k) which violates ABJ’s

N = 6 bound but satisfies the N = 3 bound of (2.2). It consists of 2k D3-branes which wrap the

compactified x6 circle various numbers of times.

A
   

=
 y

6

D4−brane with y units of D2 charge

D6−brane

F=y KK monopole

Figure 3. In the case k = 1 the S-dual type IIA configuration consists of a D6-brane which

intersects a KK-monopole. In general there are fractional D2-branes at the intersection. In this

picture the fractional branes have been moved off of the singularity, becoming D4-branes. Their

world-volume gauge theories have nontrivial Wilson lines, which implies by Stokes’ theorem that

they have nontrivial gauge field strengths, yielding fractional D2-brane charge.

The NS5-brane is T-dual to a KK monopole with respect to the x6 circle, located again

at x7 = x8 = x9 = 0. The D5-brane is T-dual to a D6-brane located again at x7 = x3,

x8 = x4 and x9 = x5 and wrapping the x6 circle. The x6 circle degenerates at the origin in

the x7, x8 and x9 directions, and so one may wish, when possible, to slightly displace the

various D6-branes from this point to better visualize the geometry in what follows. The x6

coordinate y of the D5-brane becomes a Wilson line on the D6-brane along the x6 direction

A = ydx6.

The N D3-branes are now D2-branes located at the origin and extending along x0

through x2. The M fractional D3-branes are also mapped to the origin, where one would

expect them to carry My units of D2-brane charge. To see that this is indeed the case, we

may break the supersymmetry by slightly displacing the D2-branes from the intersection

of the KK monopole and D6-brane as in figure 3. Now the fractional branes are D4-branes

– 7 –
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which extend from the KK monopole to the D6-brane. They wrap the x6 circle, which

degenerates at the KK monopole but not at the D6-brane. Therefore they are cylinders

which shrink at one end, and so they have disc topology. Their boundary is the x6 circle

on the D6-brane.

At finite orders in gs the boundary is really not a sharp angle, but instead a BIon

configuration where the D4-brane grows into a sphere of the D6-brane which continuously

merges with the D6. This means that the D4-branes share the D6-brane’s Wilson loop

A6 = y. However unlike the D6-branes, the D4-branes are discs and so this Wilson loop is

supported on a contractible cycle. One may therefore use Stokes’ theorem to calculate the

world volume field strength inside of the D4-brane

∫

D2

F =

∫

D2

dA =

∫

x6

A = y. (3.1)

This produces a contribution to the D4-brane Wess-Zumino terms

SWZ ⊃

∫

D2×R2,1

C3 ∧ F = y

∫

R2,1

C3 (3.2)

therefore identifying the fractional D2-brane charge of each D4-brane as y, in line with the

expectations from the IIB side. In particular, if one undoes the above displacement of the

D6-brane, one will find that the fractional D2-branes have a tension which is only y times

the tension of the other D2-branes.

What happens with different values of k? Now the D6-brane will necessarily be a

superposition of KK monopoles, and so naively the x6 circle always shrinks on top of the

D6-brane and this argument does not apply. However in M-theory one sees that it is

not actually the x6 circle that shrinks, but rather a linear combination of the x6 and x10

circles. The D4-branes will lift to M5-branes which wrap both, and so they will still have a

nontrivial boundary on the non vanishing circle which allows the fractional brane argument

to work. We will make this more precise in the next subsection.

3.2 M-theory lift

In the M-theory lift, all of our original 5-branes have disappeared. The NS5-brane already

disappeared in type IIA, leaving a Kaluza-Klein monopole with respect to the x6 circle.

Now the D5-branes, which was T-dual to a D6-brane also disappears, leaving a Kaluza-

Klein monopole for the x10 M-theory circle. For k > 1 with no S-duality it yields a KK

monopole for the x6 + kx10 circle. These two monopoles may simply be superimposed [16],

yielding a hyper-Kähler space that preserves at least 6 supercharges. Near the origin, this

space in fact preserves twice as many supercharges [17] and is simply C
4/Zk, which in the

k = 1 case is C
4.

However when y 6= 0 the M-theory lift of [14, 16, 17] is somewhat altered. This is

because the D6-brane carries a nontrivial Wilson loop. In [25] the author argued that

the world-volume gauge field strength of a D6-brane is equal to the integral of the M-

theory 4-form field strength over a 4-cycle which is a circle-valued family of 3-cycles which

are M-theory lifts from discs ending on the D6-brane. We will see below that the same

– 8 –
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correspondence holds for the connections. In other words, the D6-brane world-volume

Wilson line lifts to an M-theory 3-form connection C3 on a 3-cycle which is the M-theory

lift of a 2-disc bounded by the D6-brane. Momentarily we will see that this C3 flux is also

required by Dirac quantization.

So what is the lift of our fractional branes? They were D4-branes extended from the

x6 KK-monopole to the D6-brane and wrapping the x6 circle. Therefore they must now be

M5-branes wrapping the x6 − x10 torus and extending between an x6 KK-monopole and

an x6 +kx10 KK-monopole. The 2-torus is fibered over the line interval extending between

the two monopoles, which is nontrivial when slightly displaced from the origin. A 2-torus

fibered over a line interval, with two circles degenerating on both ends, describes the lens

space Lk,1 = S3/Zk where k is the index of subgroup of the first homology of the torus

which is spanned by the degenerating circles. This is the same lens space as is wrapped

in the large N dual AdS4 × S7/Zk of [14]. This k is equal to the Chern-Simons level k

above, since the circles correspond to the elements (k, 1) and (0, 1) which indeed generate

an index k subgroup of Z2.

If one compactifies this lens space on a circle along the Zk direction then one arrives

at a D4-brane on a 2-sphere with k units of F2 flux, and so the Wess-Zumino term implies

S ⊃

∫

F2 ∧ A ∧ dA = k

∫

A ∧ dA (3.3)

that the fractional branes yield 3-dimensional Chern-Simons theories at level k as de-

sired [14, 26].

The lift of the 2-form gauge field strength F on the D4-brane is a 3-form self-dual field

strength T on the M5-brane, which will be equal to T = F ∧ dx10. Therefore one may use

the M5-brane Wess-Zumino term to determine the M2-brane charge

S ⊃

∫

S3/Zk×R2,1

C3 ∧ T =

∫

S3/Zk×R2,1

C3 ∧ F ∧ dx10 =

∫

D2×R2,1

C3 ∧ F = y

∫

R2,1

C3. (3.4)

Therefore the M5-branes indeed each carry y units of M2-brane charge.

This may appear surprising if one thinks that the 3-form T needs to be quantized.

However, as is the case with the gauge field strength on a D-brane, the gauge-invariant

3-form field strength T is the sum of a closed, quantized piece dA2 and a pullback of the

bulk 3-form C3. Therefore we learn that the pullback of the M-theory 3-form C3 to this lens

space is equal to y. Therefore the Dirac quantization of dA2, the M2-brane Page charge,

implies that
∫

C3 = y as claimed above.

Dimensionally reducing to type IIA, this implies that the integral of the B-field is

equal to y. In particular, in the N = 6 case in which the IIB 5-branes do not bend, y is an

integer and so the B-field is quantized exactly as was advertised in the previous section.

In summary, the parameter y, which was necessarily equal to 0 in the N = 6 case,

determines the fractional brane charge. It is manifested differently in the various theories,

as is summarized in table 1.
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Theory Manifestation of y

IIB Brane Cartoon Distance between 5-branes/inverse gauge coupling squared

IIA D6-brane theory Wilson loop on x6 circle

IIA D4-brane theory Gauge field strength on disc/fractional D2 charge

M-theory M5-brane theory T field strength on lens space/fractional M2 charge

M-theory bulk fields C3 gauge connection on lens space

Table 1. Our construction generalizes those in the literature by introducing a parameter y. In this

table we describe how y appears in the various dual descriptions.

3.3 Seiberg dualities

The tension of the fractional D3-branes in type IIA will bend the 5-branes, leading to a

renormalization group flow of the U(N + M)×U(N) gauge theory which may well change

the ranks of the gauge groups. In particular, in [14] the authors have found a single such

duality,2 which essentially interchanges M and k − M .

The running is somewhat different from the 4-dimensional running of Witten [27] and

Klebanov-Strassler [4]. Those field theories were described by brane cartoons in type IIA,

in which the gauge theory lives on a D4-brane stretched between two NS5’s. The length of

the D4, which is the separation of the NS5’s, is identified with the inverse gauge coupling

squared 1/g2
YM

. As the intersection of the D4 and NS5’s is co-dimension two on the NS5’s,

this separation solves a 2-dimensional Laplace equation and so is logarithmic, leading to

the usually logarithmic RG flow in 4-dimensions. In particular at sufficiently high energy

the logarithm is arbitrarily large and so the NS5-branes are arbitrarily distant. When the

separation direction is compactified this implies that the branes cross an infinite number

of times, yielding a solution with an infinite cascade.

As we have reviewed, 3-dimensional gauge theories are modeled, following [1], by brane

cartoons in type IIB with D3-branes stretching between 5-branes. The endpoints are now

co-dimension 3 and so the RG flow is captured by the constant plus 1/E solution of the

3-dimensional Laplace equation. In particular there is now a maximum distance between

the 5-branes, corresponding to the fact that the gauge coupling is relevant in 3-dimensions

and so the 1-loop RG flow is asymptotically unimportant in the ultraviolet. Compactifying

this direction one finds that the UV completion of the cascade contains a finite number of

steps. At each step the new gauge group begins with the new gauge coupling. When the

energy scale exceeds gauge coupling squared, the cascade ends.

4 The cascade from M-theory

The results of the present note allow one to see such transitions directly in the M-theory

configuration. The M2-charge of M M5-branes is

Q2 = M

∫

S3/Zk

C3. (4.1)

Increasing C3 by one, corresponding to bringing a 5-brane all of the way around the IIB

circle, then increases the M2-charge by M . What about the shift by k?

2See also [9, 10] for a recent discussion of Seiberg dualities in 3d theories.
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To describe this, we will need to be a bit more explicit about our choice of fields.

Topologically our 11-dimensional spacetime is R
2,1 times a cone over S7/Zk. This quotient

is an S1 fibered over CP
3 with Chern class c1 = k. In particular the third homology group is

H3

(

S7/Zk, Z
)

= Zk (4.2)

which is generated by the lens space S3/Zk. In other words there exists a 4-chain Σk whose

boundary is homologous to k copies of S3/Zk.

Let r be the radial direction along the cone. Then the C3 flux may be decomposed

into a component on the S3/Zk, on R
2,1 and on Σ4. We will choose this S3/Zk so that the

integral of C3 over S3/Zk is just the T-dual of the distance between the 5-branes

1

g2
YM

=

∫

S3/Zk

C3 = y ∼ a −
b

E
(4.3)

where a and b are constants for each gauge group and E is the energy.

Let G4 = dC3 be the 4-form field strength. Then the Bianchi identity

d ⋆11 G4 =
1

2
G4 ∧ G4 (4.4)

may be used to determine the running of the M2-brane charge QM2, just as the Bianchi iden-

tity for the 5-form determines the running of the D3-brane charge in the Klebanov-Strassler

cascade. The M2-brane charge at radius less than r0, corresponding to the contribution to

the ranks of both gauge groups at a fixed energy, is given by the integral of d ∗ G4 up to

that value of r, which by (4.4) is the integral of G4 ∧ G4. By Stokes’ theorem this may be

re-expressed as an integral on the base

∫

r<r0

d ⋆11 G4 =
1

2

∫

r<r0

G4 ∧ G4 =
1

2

∫

S7/Zk

C3 ∧ G4 =
1

2

(

∫

S3/Zk

C3

)

(
∫

Σ4

G4

)

. (4.5)

Note in particular that it depends on
∫

S3/Zk
C3 which we identified as the distance be-

tween the 5-branes in type IIB. However to determine the charge we will also need to

calculate
∫

Σ4
G4.

What about the M5-brane charge QM5? This is given by dG4, which by Stokes’ theorem

we may write as the integral of G4 on the Σ4. Summarizing

QM5 =

∫

Σ4

G4, QM2 =
1

2

(

∫

S3/Zk

C3

)

(
∫

Σ4

G4

)

,

∫

S3/Zk

C3 ∼ a −
b

E
. (4.6)

At first glance this is not in agreement with our expectations for the Seiberg duality. The

Hanany-Witten transition in type IIB should change the difference in the ranks of the

gauge groups, which is the number of fractional branes QM5. However we have identified

this charge as the integral of a closed form, which only depends on the homology class of

the cycle on which it is wrapped and so seems independent of r.

The resolution to this problem is that this Σ4 is not a closed submanifold of S7/Zk as

∂Σ4 = kS3/Zk. (4.7)
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One may then wonder whether such an integral over a manifold with boundary may measure

a RR charge. It can. In fact such terms are familiar in the heterotic tadpole condition for

heterotic torsional compactifications on torus bundles over K3, in these cases the K3 is

not a submanifold but the tadpole nonetheless is an integral over K3 which measures the

charges of 5-branes wrapped on the fiber [11–13].

Now we are now ready to calculate
∫

Σ4
G4. By Stokes’ theorem it is

QM5 =

∫

Σ4

G4 =

∫

∂Σ4

C3 = k

∫

S3/Zk

C3 = k

(

a −
b

E

)

. (4.8)

This gives us the RG flows of the charges. The M5-brane charge is linear in 1/E and so

by (4.6) the M2-brane charge is quadratic with a second derivative which is twice the slope

of the M5-brane charge3

QM2 =
1

2
k

(

∫

S3/Zk

C3

)2

=
1

2
k

(

a −
b

E

)2

. (4.9)

This is precisely what we expect from the cascade based on the T-dual IIB brane cartoons,

as the difference in M5 charge at each step changes the step size of the M2-brane charge.

More concretely, after n steps we expect the M5-brane charge to change by kn and the

M2-brane charge to change by n times the original M5-brane charge plus roughly kn2/2.

Therefore the change in M2-brane charge is roughly the square of the change in M5-brane

charge divided by k. Here n is the change in the integral of C3 over the S3/Zk.

This result is independent of the energy scales at which the transitions occur and of

the deformations in the metric caused by the backreaction of the fluxes. It is a consequence

only of the torsion third homology group of S7/Zk.

5 Towards a cascading SUGRA solution

In this short section we make some comments on a potential 11d supergravity solution for

a cascading 3d gauge theory. We begin with the usual M2-brane Ansatz

ds2
11 = H−2/3dxµdxµ + H1/3ds2

M8
and G4 = d3x ∧ dH−1 + mL4, (5.1)

where the function H depends only on the M8 coordinates, likely on only the radial direction

R, and L4 has no space-time legs. Here ds2
M8

is the metric of ref. [16]. The 4-form EOM is

d ⋆11 G4 =
1

2
G4 ∧ G4. (5.2)

In terms of H and L4 this equation implies that

�H = −
1

48
m2L2

4 and d (ln H) ∧ (⋆8L4 − L4) = d ⋆8 L4. (5.3)

3The E = ∞ version of this result has already appeared in formula (3.14) of [28] with a = l/k, where

l = M in the notations of [28] (notice that with this identification QM5 = M for E = ∞). We are grateful

to Oren Bergman for bringing this point to our attention as well as for correcting a numerical mistake in

the earlier version of the paper.

– 12 –



J
H
E
P
1
2
(
2
0
0
9
)
0
1
6

Notice that the last equation can be easily solved by a closed and self-dual 4-form L4.

More precisely assuming that L4 is self-dual the above equation implies also that it is closed.

Let σ3 be the top form on the S3/Zk submanifold, and let f(r) be a function of the

radial direction such that

L4 = d(f(r)σ3) = ⋆8L4. (5.4)

Then the Bianchi identity will be satisfied. Self-duality is likely to imply N = 2 supersym-

metry. However it is quite possible that cascading solutions exist which preserve N = 3.

In this case, one may re-express the self-duality condition in terms of contractions with the

Kähler form. One then needs to impose the condition with respect to two distinct Kähler

forms to obtain N = 3 supersymmetry.
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