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ABSTRACT

The 18O(p, α)15N reaction is of great importance in several astrophysical scenarios, as it influences the produc-
tion of key isotopes such as 19F, 18O, and 15N. Fluorine is synthesized in the intershell region of asymptotic
giant branch (AGB) stars, together with s-elements, by α radiative capture on 15N, which in turn is produced in
the 18O proton-induced destruction. Peculiar 18O abundances are observed in R-Coronae Borealis stars, having
16O/18O � 1, hundreds of times smaller than the galactic value. Finally, there is no definite explanation of the
14N/15N ratio in pre-solar grains formed in the outer layers of AGB stars. Again, such an isotopic ratio is influenced
by the 18O(p, α)15N reaction. In this work, a high accuracy 18O(p, α)15N reaction rate is proposed, based on the
simultaneous fit of direct measurements and of the results of a new Trojan Horse experiment. Indeed, current
determinations are uncertain because of the poor knowledge of the resonance parameters of key levels of 19F. In
particular, we have focused on the study of the broad 660 keV 1/2+ resonance corresponding to the 8.65 MeV level
of 19F. Since Γ ∼ 100–300 keV, it determines the low-energy tail of the resonant contribution to the cross section
and dominates the cross section at higher energies. Here, we provide a reaction rate that is a factor of two larger
above T ∼ 0.5 109 K based on our new improved determination of its resonance parameters, which could strongly
influence present-day astrophysical model predictions.
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1. INTRODUCTION

In recent years, both models and observations have reached a
high degree of accuracy in several astrophysical environments.
This has allowed researchers to single out key problems or
critical points deserving closer attention. The 18O(p, α)15N
reaction has been proven to play a key role as it influences
the production of isotopes such as 19F, 18O, and 15N that can
be used to probe several astrophysical scenarios and test the
current accepted models. In particular, 19F has been the subject
of extensive investigations, regarding both its spectroscopic
determination in the cold outermost layers of asymptotic giant
branch (AGB) stars (Abia et al. 2010, 2009a, 2009b) and its
nucleosynthesis in the intershell region of AGB stars (Lugaro
et al. 2004). These studies have been triggered by the possibility
of using fluorine abundance to constrain AGB models as it is
sensitive to the efficiency of the dredge-up and to the physical
conditions in the deep layers of AGB stars (Lugaro et al.
2004).

Peculiar 18O and 19F abundances are observed in post-AGB
stars, in particular in the so-called R-Coronae Borealis stars,
having 16O/18O � 1, hundreds of times smaller than the
galactic value (the solar ratio is 500), and fluorine enhancements
by factors of 800–8000 with respect to the supposed initial
abundances (Clayton et al. 2007; Pandey et al. 2008). The
recent work by Clayton et al. (2007) has pointed out that
a quantitative account of such abundances can be provided
only in the framework of the double degenerate scenario.
In fact, Clayton et al. (2007) have also shown that, if the
18O(p, α)15N(p, α)12C chain is activated, the 16O/18O and the
C/N ratios reach observed values, thus reversing the effect of
excessive He burning, while fluorine is produced by p-radiative
captures on 18O. Therefore, a revised 18O(p, α)15N reaction rate

at temperatures higher than those in AGB stars might provide a
clue to better understanding these rare systems.

Precious information about nucleosynthesis inside AGB stars
is provided by the abundance ratios of some CNO and aluminum
isotopes, such as 18O, 17O, 15N, 13C, and 26Al, to the correspond-
ing most abundant ones, namely 16O, 14N, 12C, and 27Al (Nollett
et al. 2003; Busso et al. 2010), which are very sensitive to the
nucleosynthesis and the mixing mechanisms taking place in-
side these stars. These isotopic ratios are determined with good
accuracy from the analysis of meteorite grains (Zinner 2005).
Though current AGB models can explain several features of the
measured isotopic ratio patterns, several questions are still open
that nuclear physics might help to answer without introducing
additional hypotheses on mixing processes. In particular, a re-
vised 18O(p, α)15N reaction rate might shed light on the 14N/15N
isotopic ratio, which turns out to be even smaller than the solar
one.

It is worth stressing that, following the above considerations,
an accurate knowledge of the 18O(p, α)15N reaction rate is
required over a wide temperature range, T9 = 0.007–0.5
(T9 = T/109 K). Therefore, an accurate knowledge of its cross
section in the 0–1 MeV energy range is also required.

2. PREVIOUS MEASUREMENTS

About 10 resonances contribute to the 18O(p, α)15N reaction
cross section below 1 MeV (Lorentz-Wirzba et al. 1979; Angulo
et al. 1999). In particular, the narrow ER = 20 keV 5/2+

resonance (corresponding to the Ex = 8.014 MeV state of 19F)
is especially important at T9 � 0.02 (La Cognata et al. 2009a,
2010), the narrow 145 keV 1/2+ resonance (Ex = 8.138 MeV)
dominates the reaction rate for 0.05 � T9 � 1 (Lorentz-
Wirzba et al. 1979), while the broad 799 keV 1/2+ resonance
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Table 1
Level Parameters for 660 keV Resonance

ER (keV) Γp (keV) Γα (keV) Γtot (keV) References

∼658 ∼7 ∼317 ∼324 Lorentz-Wirzba et al. (1979)
616 5 150 155 Mak et al. (1978)
644 4.7 90 94.7 Yagi (1962)
656 · · · · · · ∼300 Tilley et al. (1995)
656 ± 30 5.6 ± 1.0 200 ± 110 206 ± 110 Iliadis et al. (2010)
590 ± 20 · · · · · · 208 ± 26 La Cognata et al. (2008a)

Notes. Each parameter is given in the center-of-mass system. The parameters taken from Lorentz-
Wirzba et al. (1979) and Mak et al. (1978) are obtained from the R-matrix parameterizations of
the measured 18O(p, α)15N reaction cross sections. In the same way, Yagi (1962) extracted the
resonance parameters from the R-matrix fitting of the 18O +p elastic scattering. Tilley et al. (1995)
and Iliadis et al. (2010) are reviews of the existing data. Finally, La Cognata et al. (2008a) is a
recent indirect preliminary measurement by means of the THM.

(Ex = 8.793 MeV) has a significant contribution at high
temperatures (Angulo et al. 1999). These levels have been the
subject of direct and indirect studies (compare Champagne &
Pitt 1986; Wiescher & Kettner 1982; La Cognata et al. 2009a,
2010; Wiescher et al. 1980, Mak et al. 1978; Lorentz-Wirzba
et al. 1979; Wiescher et al. 1980, and Lorentz-Wirzba et al.
1979; Yagi 1962; Wiescher et al. 1980; Christensen et al. 1990
for the 20, 145, and 799 keV resonances, respectively). Thus,
the contribution to the reaction rate from such resonances is
presently well established.

Particular attention has to be devoted to the broad 1/2+

resonance at about 660 keV. Our present knowledge allows us
to state that it is comparatively broad, Γtot ranging from 100 to
300 keV according to the different measurements (Yagi 1962;
Lorentz-Wirzba et al. 1979; Mak et al. 1978). As a consequence,
such a broad resonance at 660 keV gives strong contributions
at both low and high temperatures (Angulo et al. 1999) and its
accurate determination is crucial to pin down both the reaction
rate and its uncertainty. Furthermore, all the measurements are
in agreement regarding the proton width, Γp ∼ 5 keV, but not for
the α-particle width (Γα = 317, keV Lorentz-Wirzba et al. 1979;
150 keV, Mak et al. 1978; or 90 keV, Yagi 1962). The resonance
energy ER, the proton and α widths Γp and Γα , and the total width
are summarized in Table 1. To account for the large discrepancy
in the NACRE compilation (Angulo et al. 1999) the contribution
of the 660 keV resonance to the reaction rate has been evaluated
by averaging the rates resulting from the numerical integration of
the cross sections obtained from the two sets of widths available,
namely from Yagi (1962) and Lorentz-Wirzba et al. (1979).
To underscore the importance of the 8.65 MeV 19F state, we
note that its updated contribution accounted for the differences
between the adopted NACRE rate (Angulo et al. 1999) and
the CF88 one (Coughlan & Fowler 1988) at high temperatures
(T 9 > 0.45). In a similar approach, Iliadis et al. (2010) adopted
a value of Γα = 200 ± 110 keV, which is an average of the
existing widths, in the reaction rate calculations. Finally, a
preliminary Trojan Horse Method (THM) measurement of the
660 keV resonance has been performed, aiming at extracting
the resonance parameters (La Cognata et al. 2008a). These
were deduced in a simple Breit–Wigner approach, yielding
ER = 590 ± 20 MeV and Γtot = 208 ± 26 MeV (see last
line of Table 1), namely a ∼10% smaller resonance energy and
an intermediate width, as compared with the ones available in
the literature. Moreover, an inaccurate estimate of the reaction
rate, assuming the narrow resonance approximation, produced
a reaction rate larger than the NACRE one.

To understand the origin of such varying experimental widths,
the procedures adopted to extract the resonance parameters are
briefly reviewed. In Yagi (1962), the R-matrix analysis of the
excitation function of the 18O + p elastic scattering is per-
formed. The resonance energies, spin-parities, and total and
partial widths were then extracted for several 19F states in the
8.5–9.5 MeV excitation energy range. From the experimental
data, it turns out that the broad 660 keV and 799 keV resonances
have the same spin-parity (Jπ = 1/2+) and display a remarkable
interference pattern, making it necessary to adopt a two-level
approach in the R-matrix application. The resulting 660 keV
resonance parameters are given in Table 1. Mak et al. (1978)
analyzed the 18O(p, α)15N cross section using the R-matrix the-
ory. In particular, the authors adopt the same p- and α-channel
radii as Yagi (1962), namely 5.1 fm and 5.7 fm, respectively,
and perform a simultaneous fit of the scattering and the re-
action data. Besides the 660 keV and 799 keV resonances,
an additional broad 1/2− level at Ep = 750 keV was in-
troduced as a background level, with no physical correspon-
dence, to achieve a satisfactory fit of the cross section, taking
care that the extrapolated cross section had a weak dependence
on it. A satisfactory fit was obtained for a larger width of the
8.65 MeV 19F level, 160 keV in the laboratory system (Table 1).
Lorentz-Wirzba et al. (1979) also performed an R-matrix anal-
ysis of the 18O(p, α)15N cross section, taking into account
the constructive (destructive) interference of the 660 keV and
799 keV resonances between (outside) the two levels. The result-
ing resonance parameters are given in Table 1. A significantly
larger width was obtained (Γtot ∼ 324 keV) in comparison with
the previous results.

A better agreement was found among the different authors
(Lorentz-Wirzba et al. 1979; Mak et al. 1978; Yagi 1962) about
the parameters of the broad resonance near Ecm = 799 keV
(compare Table 2). The only remarkable difference concerns the
resonance energy: Christensen et al. (1990) yield ER = 789 keV
which is about 10 keV smaller than recommended by the
previous works. For these reasons, NACRE adopts the partial
widths from Yagi (1962) and Angulo et al. (1999), which are
used in the numerical integration to calculate the reaction rate.
On the other hand, in the recent review by Iliadis et al. (2010)
an average of the existing values was adopted to perform the
numerical integration.

The origin of the discrepancy among the resonance param-
eters for the 660 keV state can be seen clearly if the different
experimental data sets for the 18O(p, α)15N astrophysical fac-
tor S(E) are given in the same figure. Figure 1 shows a linear
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Table 2
Level Parameters for 799 keV Resonance

ER (keV) Γp (keV) Γα (keV) Γtot (keV) References

802 25 20 47 Lorentz-Wirzba et al. (1979)
801.5 23.3 18.9 42.2 Mak et al. (1978)
801.5 ± 1.4 24.6 ± 1.4 19.9 ± 0.9 44.5 ± 0.9 Yagi (1962)
789 · · · · · · · · · Christensen et al. (1990)
798.8 ± 1.5 · · · · · · 46 ± 2 Tilley et al. (1995)
798.4 ± 1.6 24.6 ± 1.4 20 ± 1 44.6 ± 1.7 Iliadis et al. (2010)

Notes. Each parameter is given in the center-of-mass system. The parameters from Lorentz-Wirzba et al.
(1979) and Mak et al. (1978) are obtained from the R-matrix analyses of the measured 18O(p, α)15N cross
sections. Yagi (1962) extracted the resonance parameters from the R-matrix fitting of the 18O + p elastic
scattering. Tilley et al. (1995) and Iliadis et al. (2010) are reviews of the existing data.

Table 3
Formal Values of the Proton and Alpha Reduced Width Amplitudes and Resonance Energies for the Indicated Boundary Conditions (BC)

R-Matrix Fitting
Parameters

BC E1 (MeV) γp1 (MeV1/2) γα1 (MeV1/2) E2 (MeV) γp2 (MeV1/2) γα2 (MeV1/2)

R Bc = Sc(E1) 0.609 −0.407 0.212 0.845 0.495 0.0706
U Bc = Sc(E1) 0.607 −0.430 0.215 0.853 0.535 0.0737
L Bc = Sc(E1) 0.611 −0.387 0.212 0.857 0.590 0.0519
R Bc = Sc(E2) 0.579 −0.466 0.202 0.813 0.439 0.0967
U Bc = Sc(E2) 0.572 −0.501 0.202 0.814 0.469 0.103
L Bc = Sc(E2) 0.582 −0.468 0.202 0.811 0.527 0.0819

Notes. The labels 1 and 2 refer to the 660 keV and 799 keV resonances. The parameters refer to the simultaneous fitting
of Lorentz-Wirzba et al. (1979) and THM data (R), of their upper (U), and lower (L) limits. χ̃2 is given in the text. The
same approach and notation as in Barker (2008) are adopted.

Figure 1. Review of the 18O(p, α)15N experimental astrophysical S(E) factor
data from Lorentz-Wirzba et al. (1979; blue solid line), Mak et al. (1978;
green solid line), and Christensen et al. (1990; red solid line). A remarkable
discrepancy shows up between the Lorentz-Wirzba et al. (1979) and Mak et al.
(1978) data in the region where the 660 keV broad resonance dominates the
cross section.

(A color version of this figure is available in the online journal.)

interpolation of Lorentz-Wirzba et al. (1979) data (blue solid
line) together with Mak et al. (1978) data interpolation (green
solid line) and the more recent Christensen et al. (1990) data
interpolation (red solid line). Apart from the mentioned shift
in the 799 keV peak observed by Christensen et al. (1990) in

comparison with Lorentz-Wirzba et al. (1979), which may be at-
tributed to a wrong estimate of the target thickness (Christensen
et al. 1990), a clear discrepancy is apparent in the absolute
value of the experimental S(E) factors around Ecm = 660 keV.
Such a large discrepancy should be attributed to systematic er-
rors of unknown nature, making the deduced reaction rates and
the astrophysical predictions based on them potentially flawed.
The presence of such untenable discrepancy for this resonance,
which spoils the cross section accuracy in the energy region
of interest for astrophysics, has motivated the present indirect
study via the THM.

This represents the final step in the extensive work on the
18O(p, α)15N reaction. The new results concerning the broad
high-energy resonances will be merged with the previous ones
concerning the narrow low-energy resonances (La Cognata et al.
2008b, 2009a, 2010) to provide an updated reaction rate whose
validity range extends over a wide temperature interval for
astrophysical modeling.

3. THE THM THEORY: THE MODIFIED
R-MATRIX APPROACH

The THM was introduced in the early 1990s with the aim of
measuring low-energy nuclear reactions severely hindered by
the Coulomb barrier for astrophysical application (Baur 1986;
Spitaleri 1990; Cherubini et al. 1996; Spitaleri et al. 1999). The
THM has been developed in the framework of the plane wave
impulse approximation (PWIA; Chew 1950; Jain et al. 1970),
which has proved accurate enough to extract the astrophysical
S(E) factor (Spitaleri et al. 2004; La Cognata et al. 2010). The
analysis of the TH reaction proceeding through a resonance
state in the subsystem requires a modified R-matrix approach.
The reason is that a conventional R-matrix method (Lane &
Thomas 1958) was developed for analysis of the binary resonant
reactions. For a multi-channel, multi-level case, the R-matrix
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amplitude has quite a complicated form in which the level matrix
is expressed in terms of the level energies, level shifts, and
reduced widths of the entry and exit channels. The amplitude of
the TH reactions, which has three particles in the exit channel
instead of the entry-channel reduced widths, contains the binary
transfer reaction amplitudes populating resonance states. The
question of whether these amplitudes will also appear in the
level matrix has been addressed in Mukhamedzhanov et al.
(2008) and La Cognata et al. (2010) where, using the shell-
model approach to nuclear reactions (Mahaux & Weidenmüller
1969), the generalized R-matrix method has been developed
for the two-channel, two-level case. In particular, it was shown
that the level-matrix remains the same as in the case of the
binary reactions, i.e., it does not contain the transfer reaction
amplitudes, which appear only in the nominator instead of the
entry channel reduced widths. Here, we provide some details
about the THM, focusing on the case of broad resonances.

Let us consider the TH reaction (the two-body to three-body
(2 → 3))

a + A → s + c + C, (1)

where a = (s x). This TH reaction is used to obtain the
astrophysical factor for the binary subreaction

x + A → c + C. (2)

We consider the case when the binary subreaction is the resonant
one.

The TH reaction amplitude describing the transfer of particle
x is given in the post form by (for simplicity, we disregard the
spins of the particles)

M(P, kaA) = 〈
χ

(−)
ksF

Φ(−)
F

∣∣ΔVsF

∣∣Ψ(+)
i

〉
. (3)

Here, Ψ(+)
i is the exact a + A scattering wave function; Φ(−)

F is
the wave function of the system F = c + C = x + A; χ

(−)
ksF

(rij )
is the distorted wave of the system s + F ; ϕi is the bound state
wave function of nucleus i; rij and kij are the relative coordinate
and relative momentum of nuclei i and j; P = {ksF , kcC} is the
six-dimensional momentum describing the three-body system
s, c, and C; ΔVsF = VsF −UsF ; VsF = Vsc +VsC = Vsx +VsA

is the interaction potential of s and the system F and UsF is their
optical potential.

Equation (3), which is the exact expression for the TH reaction
amplitude, can be used as a starting point to derive the expression
for the TH reaction amplitude proceeding through the interfering
resonances in the subsystem F. We neglect the direct coupling
between the initial x + A and final c + C channels, which
contributes dominantly to direct reactions but gives negligible
contribution to resonant ones. An important step in deriving
the resonant contribution to the TH reaction matrix element is
the spectral decomposition for the wave function Φ(−)

F given by
Equation (3.8.1) of Mahaux & Weidenmüller (1969). It leads to
the shell-model-based resonant R-matrix representation for Φ(−)

F c

in channel c, which is similar to the level decomposition for the
wave function in the internal region in the R-matrix approach:

Φ(−)
F c ≈

N∑
ν,τ=1

Ṽν c(Ec) [D−1]ντ Φτ . (4)

Here, N is the number of the levels included, Ec is the relative
kinetic energy of nuclei in channel c (in channel c = c + C,
Ec ≡ EcC), and Φτ is the bound state wave function describing

the compound system F excited to level τ . Dντ is the same
level matrix as in the conventional R-matrix theory and is given
by Equation (4.2.20b) of Mahaux & Weidenmüller (1969).
It depends on the entry and exit channels reduced width
amplitudes, energy levels, and energy shifts. Finally,

Ṽν c(Ec) = 〈
χ (−)

c ϕc

∣∣ΔVc

∣∣Φν

〉
(5)

is the resonant form factor for the decay of the resonance level ν
described by the compound state Φν into channel c, where χ (−)

c

is the distorted wave in channel c. The formal partial resonance
width for the decay of this level into channel c is given by

Γ̃ν c(Ec) = 2 π |Ṽν c(Ec)|2. (6)

In the R-matrix approach, the formal resonance width is related
to the formal reduced width γν c as Γ̃ν c(Ec) = 2 Pl(Ec, r0 c)γ 2

ν c,
where Pl(Ec, r0 c) is the barrier penetrability, l is the relative
angular orbital momentum of nuclei in channel c, and r0 c is the
channel radius in channel c. The observable resonance width
Γν c for the decay of the resonance ν into channel c is related to
the formal one by

Γνc = Γ̃νc

(
ERνc

)
1 +

∑
c′ γ

2
νc′

dSc′
dEc

|Ec=ERνc

, (7)

provided that boundary condition Bc = Sc(ERνc
), i.e., the energy

of the νth level in channel c is Eνc = ERνc
. Here, Sc(Ec) is the

shift factor in channel c, and ERν c
is the νth resonance energy

in channel c. Then, the TH reaction amplitude is

M (R)(P, kaA) ≈
N∑

ν,τ=1

Ṽν c(Ec) [D−1]ντ

× Mτ (ksF , kaA), (8)

where Mτ (ksF , kaA) is the exact amplitude for the direct transfer
reaction a + A → s + Fτ populating the compound state Fτ of
the system F = x + A = c + C:

Mτ (ksF , kaA) = 〈
χ

(−)
sF Φτ

∣∣ΔVsF

∣∣Ψ(+)
i

〉
. (9)

Equation (8) represents the generalization of the N-level, two-
channel R matrix for the TH reaction. As in the conventional
R-matrix method, it contains the same level matrix Dντ . In
contrast to the conventional R-matrix amplitude for the x +
A → c + C resonant reaction, which contains the entry width
amplitude Ṽτ xA(ExA) (Lane & Thomas 1958), the generalized
R-matrix amplitude contains the transfer reaction amplitude
Mτ (ksF , kaA). In practical calculations, the exact Mτ (ksF , kaA)
can be replaced by the distorted wave Born approximation
(DWBA) one:

MDW
τ (ksF , kaA) = 〈

χ
(−)
sF Φτ

∣∣ΔVsF

∣∣ϕa ϕA χ
(+)
i

〉
. (10)

The DWBA amplitude takes into account the rescattering of
nuclei a and A in the initial state of the TH reaction and
enters as a form factor into the TH resonant reaction amplitude.
Likewise, for the amplitude of the TH reaction (1) we get from
Equation (8) (the exit channel c = c + C):

M (R)(P, kaA) ≈
N∑

ν,τ=1

Ṽν cC(EcC) [D−1]ντ

× MDW
τ (ksF , kaA). (11)
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The triple differential cross section for the TH process
a + A → s + c + C proceeding through interfering resonances
is given by Mukhamedzhanov et al. (2008):

d3σ

dEcC dΩkcC
dΩksF

= μcC μsF μaA

2 π5

kcC ksF

kaA

1

ĴaĴA

×
∣∣∣∣∣

N∑
ν,τ=1

Ṽν cC(EcC)[D−1]ντMτ (ksF , kaA)

∣∣∣∣∣
2

, (12)

where EcC = k2
cC/(2 μcC), μij is the reduced mass of particles

i and j, Ĵ = 2J +1, and Ji is the spin of particle i. For the case of
two interfering resonances considered in this paper, N = 2. In
the THM the half-off-energy-shell (HOES), astrophysical factor
is normalized to the on-energy-shell (OES) S(ExA) factor for
the binary reaction (2), which is given by (for two interfering
resonances)

S(ExA) = μcC μxA

4 π2

kcC

kxA

1

Ĵx ĴA

ExA e2 π ηxA

×
∣∣∣∣∣

2∑
ν,τ=1

Ṽν cC(EcC) [D−1]ντ Ṽτ xA(ExA)

∣∣∣∣∣
2

.

(13)

Here, ηxA is the Coulomb parameter of the x−A nuclei moving
with the relative momentum kxA = √

2 μxA ExA. Assume
that we normalize the TH astrophysical factor at the second
resonance peak. The renormalized TH STH(ExA) is given by
Mukhamedzhanov et al. (2008):

STH(ExA) = μcC μsF μaA

2 π5

kcC ksF

kaA

1

ĴaĴA

ExA e2 π ηxA

× Γ2 xA(ExA)

∣∣∣∣∣
2∑

ν,τ=1

Ṽν cC(EcC) [D−1]ντL2 τ (ksF , kaA)

∣∣∣∣∣
2

,

(14)

where

L2 τ (ksF , kaA) = Mτ (ksF , kaA)

M2(ksF , kaA)
, (15)

i.e., L2 2 = 1 and L2 1 = M1/M2. Thus, the difference between
the TH and OES is the presence in the former of L2 τ (ksF , kaA)
rather than Ṽ xA

τ (ExA). A priori, it can affect the shape of the TH
astrophysical factor. However, the matrix D−1 and Ṽν cC(EcC)
are the same in the TH and OES astrophysical factors. Hence,
fitting to the TH and direct data should provide the same values
of the partial and total widths. L2 1 can be used as a complex
fitting parameter. If the experimental cross sections for the
transfer reactions a + A → s + Fτ populating levels τ = 1, 2 at
proper energies are available, they can provide |L2 1| and only
the phase of L2 1 will be a fitting parameter.

4. THE EXPERIMENT

The experiment was performed at Laboratori Nazionali del
Sud, Catania (Italy). A detailed description can be found in
La Cognata et al. (2008b, 2009a, 2010), thus in the following
we provide a short discussion of the experimental setup and

procedures. The detection setup consisted of a telescope (A),
devoted to 15N detection, made up of an ionization chamber and
a silicon position sensitive detector (PSD A) on one side with
respect to the beam direction. Three additional silicon PSDs (B,
C, and D) were placed on the opposite side. Angular conditions
were selected in order to maximize the expected quasi free (QF)
contribution. To decrease detection thresholds, no ΔE detectors
were put in front of PSDs B, C, and D. Energy and position
signals of the PSDs were processed by standard electronics
together with the time-to-amplitude converter signal for each
coincidence event.

The first step of the data analysis was the selection of
the 2H(18O,α15N)n reaction channel. Particle identification has
been accomplished by means of the ΔE-E technique and by
investigating the reaction kinematics. This has allowed us to
distinguish the kinematical locus of the 2H(18O,α15N)n reaction
from the ones of binary reactions.

As a second step, a thorough study of the reaction dynamics
was performed to disentangle the different processes feeding the
exit channel. A key test is the study of the neutron momentum
distribution. As discussed by La Cognata et al. (2010), good
agreement was found between the experimental and theoretical
distributions, given by the square of a Hulthèn wave function
in momentum space in the PWIA. To check whether the
simple PWIA is a viable approach, the DWBA distribution was
also evaluated. From the comparison, we found that a good
agreement between the two is present for a neutron momentum
ps < 50 MeV/c. This demonstrates that the QF mechanism
is dominant in such a momentum window (in agreement with
the limit set by Shapiro 1967) and that the PWIA provides an
accurate framework to extract the resonance parameters for the
18O(p, α)15N reaction.

4.1. Extraction of the Cross Section

Angular distributions of the fragments α and 15N, measured
from the 2H(18O, α15N)n TH reaction, were then extracted
following the PWIA prescription (La Cognata et al. 2010, 2007;
Spitaleri et al. 2004).

The resulting THM angular distributions are given in Figure 2
as solid circles. Blue symbols are used for the 145 keV resonance
angular distribution, as in La Cognata et al. (2008b, 2010),
which has been deduced as a cross check of the data reduction
method (La Cognata et al. 2010, 2008b; Spitaleri et al. 2004).
Such a distribution is compared with the one measured in direct
experiments (Lorentz-Wirzba et al. 1979), given as a straight
blue line as the entrance-channel orbital angular momentum is
l = 0. The THM angular distributions for the two interfering
Jπ = 1/2+ resonances are shown as green and red symbols in
Figure 2. From a Gaussian fitting, the resonance energies of
these states are about 609 keV and 812 keV, slightly different
from what is given in the literature (compare Tables 1 and 2). The
THM angular distributions are compared with the direct ones,
given as full green and red lines, respectively. These lines are
obtained by fitting the experimental data from Lorentz-Wirzba
et al. (1979) with first-order cosine polynomials.

Given the good agreement between the experimental THM
and direct angular distributions (Figure 2) over the whole range
covered here, the angular integration was performed assuming
that the trend of the angular distributions is given by the
fitted ones (solid lines in Figure 2) outside the range where
the THM differential cross section is available. The resulting
2H(18O, α15N)n reaction cross section is shown in Figure 3 (full
circles). The error bars account for the statistical uncertainty
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Figure 2. THM angular distributions for the 18O(p, α)15N subreaction in the
PWIA approach (full dots), compared with the experimental distributions (full
lines). These have been obtained by fitting the experimental data from Lorentz-
Wirzba et al. (1979) with cosine polynomials. Good agreement is found in
the whole angular range for the three energies shown, corresponding to the
experimental THM resonance energies.

(A color version of this figure is available in the online journal.)

(about 6%, on average) and for the uncertainties coming from
the procedure adopted to disentangle the contribution of each
resonance to the reaction yield. The 4π integrated cross section
in Figure 3 is given in arbitrary units, thus no normalization
error is included. Besides the resonances below ∼200 keV, the
two resonances corresponding to the 8.65 MeV and 8.793 MeV
states in 19F are clearly seen. On the other hand, the narrow 3/2−
8.592 MeV (Γtot = 2 keV; Tilley et al. 1995), which is clearly
observed in direct measurements (compare Angulo et al. 1999;
Tilley et al. 1995; Lorentz-Wirzba et al. 1979; Mak et al. 1978
and Figure 1) does not show up. This is understood if the effect
of energy resolution is taken into account, namely if direct data
are smeared out to match the measured experimental resolution
of 17 keV (La Cognata et al. 2008a, 2009b, 2010). Moreover, a
bump appears in the d2σ/dEcmdΩn spectrum at about 340 keV,
which is not connected to resonances in the 18O(p, α)15N cross
section. The origin of this contribution can be traced back to
sequential decay mechanisms, namely to the decay of unbound
states of 16N, as can be deduced from Figure 7 (upper panel) of
La Cognata et al. (2010). This enhancement is well separated
from the levels of interest, being above Ecm > 500 keV. In
the following, we will focus on this higher energy region to
extract the resonance parameters of the 660 keV resonance,
thus the effect of such a background state does not affect our
conclusions.

The same approach as in La Cognata et al. (2008a, 2010)
cannot be used here as broad resonances show up in the cross
section, i.e., levels whose ER is comparable with the total
width Γtot. In such cases, the modified R-matrix method is

Figure 3. Cross section of the 2H(18O, α15N)n THM reaction, integrated over
the whole solid angle using the measured angular distributions inside the range
covered by the THM experiment and the trend deduced from Lorentz-Wirzba
et al. (1979) outside. Below 200 keV, the same cross section as in La Cognata
et al. (2008b, 2009a, 2010) is recovered. Labels 1 and 2 mark the positions of
the 660 and 799 keV resonances.

(A color version of this figure is available in the online journal.)

suitable. The PWIA is then used to convert the d2σ/dEcmdΩn

differential cross section into the astrophysical S(E) factor for
the 18O(p, α)15N reaction. Indeed, the PWIA provides a very
reasonable description of the angular distributions as well as
the neutron momentum distribution inside deuteron. It is well
known that the PWIA overestimates the absolute value of the
differential cross section, but normalization will be performed
by scaling the THM S(E) factor to the direct one, which makes
the PWIA a good approximation.

5. R-MATRIX SIMULTANEOUS FIT

Direct data in the literature (Lorentz-Wirzba et al. 1979; Mak
et al. 1978; Yagi 1962; Christensen et al. 1990) cannot clearly
provide a set of coherent resonance parameters to be used in
the reaction rate calculations (compare Table 1 and Figure 1).
Current compilations (Angulo et al. 1999; Iliadis et al. 2010)
have recommended an average of the existing results, which
is affected by large errors to account for the discrepancies.
Determination of isolated broad resonance parameters is a well-
known unsolved problem in physics. The resonance energy
and width for a broad resonance are not uniquely defined
and many prescriptions have been used in the literature (see
Mukhamedzhanov et al. 2010 and references therein). In the
case presently under consideration, we have two interfering
broad resonances which complicate the problem even more.
One of the reasons for simultaneously analyzing the direct data
and the TH data is to check which of the existing direct data
agree with the TH data. The second reason for the analysis
presented in this paper is that we provide the first simultaneous
two-channel, two-level R-matrix fit of direct and indirect data.

As discussed in La Cognata et al. (2010), the THM is not
sensitive to the entrance channel partial widths but, in this case,
the larger uncertainty of the reaction rate is related to the α
width of the 660 keV resonance, which has an error of about a
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Figure 4. Modified R-matrix fitting (red band) of the THM S(E) factor (blue
points). The fitting parameters have been determined by simultaneously fitting
the Lorentz-Wirzba et al. (1979) and THM data (present work). Moreover,
energy resolution has been taken into account by convoluting the fit with the
17 keV energy resolution. The red dashed line shows the background level (see
the text for details).

(A color version of this figure is available in the online journal.)

factor of three (compare Table 1). Therefore, the THM is very
well suited to indirectly studying the 18O(p, α)15N subreaction
to reduce the error affecting the Γα partial width of the 660 keV
resonance.

As a first step, the THM astrophysical S(E) factor has
been deduced in the PWIA framework (La Cognata et al.
2007; Spitaleri et al. 2004) in arbitrary units. Normalization
is obtained by scaling the THM S(E) factor to fit the direct one
from Lorentz-Wirzba et al. (1979), Christensen et al. (1990)
possibly having energy calibration problems at the 799 keV
resonance. Besides the statistical error, a 3% normalization
error has to be added since the fitting is performed over 11
experimental THM points, while the model error, connected
with the use of the PWIA, is about 4% (La Cognata et al. 2010).
The THM S(E) factor is displayed in Figure 4 as blue dots,
where only the statistical error is given. From the comparison of
the THM S(E) factor with the 2H(18O, α15N)n QF cross section
(Figure 3), it turns out that the difference is very small and within
the experimental uncertainties. Regarding the direct data, the
astrophysical S(E) factor is taken from Figure 6 (lower panel)
of Lorentz-Wirzba et al. (1979). In this figure, errors are barely
visible, so they are conservatively estimated to be at least 10%
taking into account that the normalization error is 8.8% (since
dσ (135◦)/dΩ = 57 ± 5 μb/sr; Lorentz-Wirzba et al. 1979). In
Figure 5, the Lorentz-Wirzba et al. (1979) S(E) factor is shown
as blue symbols.

First, we fit the direct data of Lorentz-Wirzba et al. (1979)
in Figure 5 using the genuine two-level, two-channel R-matrix
approach (Lane & Thomas 1958; La Cognata et al. 2009b).
Such an approach is well suited to reproducing the experimental
data, in particular the contribution of the 660 keV and 799 keV
resonances, since the effect of the interfering 145 keV narrow
resonance (Γtot < 0.3 keV) can be neglected at such energies
(this introduces a systematic error �2% above 0.5 MeV)

Figure 5. Full two-level, two-channel R-matrix fit (red band) of the Lorentz-
Wirzba et al. (1979) direct data (blue points). Upper and lower limits of the band
are obtained by fitting the upper and lower limits set by the direct data error bars
(about 10%). The fitting parameters have been determined by simultaneously
fitting the Lorentz-Wirzba et al. (1979) and THM data (present work).

(A color version of this figure is available in the online journal.)

Table 4
660 keV and 799 keV Resonance Parameters from the Simultaneous Fitting of

Lorentz-Wirzba et al. (1979) and THM data

ER (keV) Γp (keV) Γα (keV) Γtot (keV)

1 609 ± 2 11.1 ± 1.1 188 ± 3 199 ± 3
2 812.5 ± 1.5 27 ± 10 40+5

−13 67+11
−16

Notes. The upper and lower limits of the resonance parameters were determined
from the two-level, two-channel R-matrix fitting of the upper and lower limits
of the direct and THM astrophysical S(E) factors. Labels 1 and 2 in the first
column refer to the 660 and 790 keV resonances, respectively.

while the 8.629 7/2+ state in 19F adds up incoherently to the
S(E) factor. It is worth stressing that neither a non-resonant
contribution nor background poles are added, as remarked
in Iliadis et al. (2010). The formal and observable fitting
parameters are given in Table 3. In the fitting, the interaction
radii have been taken as equal to the ones in the literature (Yagi
1962; Mak et al. 1978), namely 5.1 fm for the proton channel
and 5.7 fm for the α channel. It is important to explain the
procedures for determining the observable resonance energies
and widths for overlapping and interfering resonances from the
formal parameters. Following Barker (2008) first we select the
boundary condition Bc = Sc(E1) (where c = p, α and Sc is
the shift function), so that the first energy level E1 coincides
with the energy of the first resonance (8.65 MeV level in 19F
in compilations). After that, we make a fit of the data. From
the determined formal values of the proton and alpha reduced
width amplitudes of the first resonance, we can determine
the observable first resonance energy and observable proton
and alpha widths of the first resonance using the standard
equations (Lane & Thomas 1958; Barker 2008). After that, we
repeat the same procedure fixing the second energy level in the
R-matrix amplitude at the second resonance energy (8.793 MeV)
by taking Bc = Sc(E2) and, fitting the direct data, we determine



No. 2, 2010 THE 18O(p, α)15N REACTION RATE AT T9 ∼ 1 1519

the energy of the second resonance and its observable proton
and alpha widths. The determined resonance parameters are
given in Table 4. Exactly the same fits may be obtained for
any choice of the boundary conditions, provided the values of
Ei and γic are adjusted suitably. The fitting of Lorentz-Wirzba
et al. (1979) has yielded χ̃2 = 1.8. It has been performed for
the recommended cross sections and for the upper and lower
limits set by the experimental uncertainties to determine the
resonance parameter associated errors (Table 4). The resulting
R-matrix fits are given as a light red band in Figure 5, marking
the regions allowed for by experimental errors. As we can see
from Table 4, the resonance parameters from the two-channel,
two-level R-matrix fit of the direct data (Lorentz-Wirzba et al.
1979) differ quite significantly from the original fit (compare
row 1 of Tables 1 and 2), but no details of the R-matrix fitting
of Lorentz-Wirzba et al. (1979) are available.

As a second step, we fit the TH S(E) astrophysical factor.
Comparing Figures 4 and 5, we see that the shape of the
directly measured and TH S(E) factors, in contrast to the narrow
resonance case (La Cognata et al. 2010), is quite different for
overlapping broad resonances. This is a direct indication that the
R-matrix amplitudes for analysis of the direct and TH data are
different. This difference comes from the presence of the ratio
L21 in the TH R-matrix amplitude rather than the entry to the
exit width amplitude in the conventional R-matrix approach. To
fit the THM S(E) factor, we fix the proton and α formal reduced
widths γ1p, γ1α , γ2p, and γ2α for the first and second resonances
and the resonance energies ER1 and ER2 determined from the
R-matrix fitting of direct data (Lorentz-Wirzba et al. 1979).
However, as we have stressed, the modified R-matrix amplitude
has two additional unknown amplitudes Mτ (ksF , kaA), τ = 1, 2,
of the direct transfer reactions 18O(d, n)19Fτ populating the first
(τ = 1) and second (τ = 2) resonances. Normalization of
the TH data to the direct data allows us to express the TH
astrophysical factor in terms of the ratio of the direct transfer
reaction amplitudes L2 τ (ksF , kaA)ksF , kaA), see Equation (14).
Using the DWBA, one can check that L21 remains practically
constant in the significant interval of variation of ksF near the
QF kinematics (ks = ms/ma ka). That is, we fix L21 at the
QF kinematics and vary it to fit the TH data by fixing the other
parameters at values obtained from the direct data from Lorentz-
Wirzba et al. (1979). L21 as a complex function can be written
as

L21 = γ1p

γ2p

m21 eiφ21 , (16)

i.e., we have two fitting parameters m21 = |L21| and its
phase factor φ21. If the experimental data for transfer reactions
18O(d, n)19F populating the 8.65 MeV and 8.793 MeV states
of 19F would be available, m21 could be determined from the
ratio of the experimental differential cross sections. Since these
cross sections are not available in the case under consideration,
we varied both m21 and its phase factor φ21. We note that the
role of the latter is very important due to a strong interference
pattern of two resonances. It is important to remember that
THM data have 17 keV energy resolution, which has to be
considered when fitting the indirect data. A procedure similar
to the one developed in La Cognata et al. (2009b) has been
adopted to account for the energy resolution effect, namely the
modified R-matrix S(E) factor is convoluted with the 17 keV
energy resolution estimated in La Cognata et al. (2008b, 2010).
The fitting has been performed for the THM S(E) factor
(yielding χ̃2 = 3.0) and for the upper and lower limits set
by the experimental uncertainties. The resulting R-matrix fits

are given as a light red band in Figure 4, marking the regions
allowed for by experimental errors. Regarding the m21 and φ21
parameters, for Bc = Sc(E1) one gets m21 = 1.09 ± 0.02
and φ21 = −0.32 ± 0.08 while for Bc = Sc(E1) one gets
m21 = 1.13 ± 0.03 and φ21 = −0.36 ± 0.08. Therefore, the
deviation from the OES condition is of the same order as the
uncertainty of the experimental data, ∼10%, while a significant
modification of the interference pattern is retrieved. This is not
surprising as a different mechanism for the population of the
660 keV and 799 keV resonances is acting in the THM approach.

To take into account the presence of sequential process
events, adding up to the QF yield, in the fit of the THM
data a straight line has been added as in La Cognata et al.
(2010). The background, as obtained in the fitting, is displayed
in Figure 4 as a red dashed line. The dependence of the
fitting parameters on the choice of background function has
been checked by considering different shapes and varying their
relative contribution. It turns out that the change on φ21 is
negligibly small while a maximum change of about 10% affects
m21, still within the uncertainty affecting the experimental data.

From Table 4 it turns out that the resonance energy of level 1
is about 50 keV smaller than reported by Yagi (1962), Lorentz-
Wirzba et al. (1979), Tilley et al. (1995), and Iliadis et al. (2010)
and in good agreement with Mak et al. (1978) and the previous
THM measurement (La Cognata et al. 2008a), while a slightly
larger E2 is found—about 10 keV higher than what is listed
in the literature (compare the first column of Table 2). Also
the proton width for the lower energy resonance Γ1p is larger
than the value in the literature, <7 keV, while the α width for
the same resonance Γ1 α is close to the average value estimated
by Iliadis et al. (2010), though significantly different from the
single estimates except for La Cognata et al. (2008a; column 3 of
Table 1). Moving to resonance 2, the resonance parameters from
the simultaneous fitting (Table 4) are affected by generally larger
errors than those found for the 660 keV resonance because of the
large contribution due to such a level that makes it more difficult
to estimate Γ2p and Γ2 α . Moreover, Figure 4 demonstrates that
in this region the background due to sequential processes is
the largest. While Γ2p is in agreement with direct measurement
values (column 2 of Table 2), a larger α width is extracted in
the present work, even taking into account the experimental
uncertainties. As a result, the total width of the 660 keV state
Γ1 tot = 199 ± 3 keV is in good agreement with the mean value
adopted by Iliadis et al. (2010) and from the previous THM
experiment (La Cognata et al. 2008a), the accuracy being greatly
improved. Instead, the total width of the 799 keV resonance turns
out to be significantly larger than the values in the literature,
about 45 keV. It is worth stressing, anyway, that Yagi (1962)
extracted the α width from the proton scattering cross section
measurements while Mak et al. (1978) did not cover the region
above about 680 keV with their experimental data. This means
that their estimates may be affected by systematic errors while
the present approach is particularly sensitive on the α widths.

If the same procedure is repeated for the Mak et al. (1978)
and Christensen et al. (1990) combined data, to cover the
whole 0.5–0.9 MeV range (compare Figure 1), no reasonable
simultaneous fitting of direct and THM data have been possible,
though the possible shift in energy in Christensen et al. (1990)
data was considered in the fitting. This suggests that a consistent
picture of the S(E) factor for the 18O(p, α)15N reaction in the
0.5–0.9 MeV energy interval can be found only if Mak et al.
(1978) data set is not included in the fitting, on the basis of
the present THM measurement and the independent one in



1520 LA COGNATA, SPITALERI, & MUKHAMEDZHANOV Vol. 723

La Cognata et al. (2008a). Following this recommendation,
the reaction rate has been calculated to evaluate its impact on
astrophysics.

6. REACTION RATE

Since the 660 and 799 keV resonances are broad and show an
interfering pattern, the narrow resonance approximation cannot
be used and numerical integration of the S(E) factor should be
performed. To this purpose, the standard equation has been used
(Rolfs & Rodney 1988):

NA〈σv〉 =
√

8

kT

1

(kT )3/2

×
∫ ∞

0
S(E) exp

(
− E

kT
− 2πη

)
dE . (17)

In the present case, the simultaneous R-matrix fitting of the direct
Lorentz-Wirzba et al. (1979) and THM data has been used in
the integration, to account for the overlapping contribution of
the 660 and 799 keV resonances. The Jπ = 1/2+ 145 keV
resonance also coherently adds up to the 660 keV state, the
interference being constructive in the region between the two
resonances and destructive outside (Lorentz-Wirzba et al. 1979),
while the effect of the tail of the 799 keV resonance is negligible
due to the small overlap with the 145 keV level. Therefore, an R-
matrix fitting of the Lorentz-Wirzba et al. (1979) data has been
performed to take into account the contribution of the 145 keV
resonance and of the additional interference effect. Finally, the
contributions of the 20 and 90 keV narrow resonances are taken
from La Cognata et al. (2010). The resulting total reaction rate
is given as a solid thick line in Figure 6, while the contribution
of the single resonance is shown as thin lines. In particular,
the green line displays the reaction rate component due to the
interfering 660 keV and 799 keV resonances, which cannot be
considered separately because of the strong interfering pattern.
The blue and red lines instead stand for the contribution of the
145 keV and 20 keV resonances, respectively, while the effect
of the 90 keV peak is not displayed as it is negligibly small
(La Cognata et al. 2010). The validity range of the reaction rate
evaluated here extends up to about T9 ∼ 5 as the contributions
of resonances lying above 0.9 MeV is neglected.

In Table 5 the reaction rate is listed, in cm3 mol−1 s as a
function of the temperature T9. In particular, the recommended,
lower, and upper limits are given, the confidence range being
fixed by the experimental uncertainties. In the 0.007 < T9 < 5
range, the recommended reaction rate has been fitted to provide
an analytic expression to be included in astrophysical codes.
The resulting equation is

NA〈σv〉 = 4.76 × 1011

T
2/3

9

exp

(
−16.74

T
1/3

9

−
(

T9

0.592

)2
)

× (
1 − 2.74 T9 + 69.94 T 2

9

)
+

1.39 × 10−13

T
3/2

9

exp

(
−0.232

T9

)
+

3.34 × 104

T
3/2

9

exp

(
−1.685

T9

)
+

1.903 × 109

T 1.218
9

exp

(
−7.528

T9

)
, (18)

Figure 6. Total rate of the 18O(p, α)15N reaction as a function of the temperature
T9 (thick black line), together with the other main contributions to the reaction
rate. The thin red line displays the component of the rate due to the 20 keV
resonance (La Cognata et al. 2010, 2009a), and the thin blue line shows the
contribution of the 145 keV resonance (Lorentz-Wirzba et al. 1979). Finally,
the thin green line shows the effect of the combined 660 keV and 799 keV
interfering resonances, numerically integrated from the R-matrix simultaneous
fitting of Lorentz-Wirzba et al. (1979) and THM data.

(A color version of this figure is available in the online journal.)

yielding χ̃2 = 1.48. This expression is obtained by using a
formula similar to the NACRE one as a fitting function, leaving
the numerical coefficients as free parameters and using the
NACRE ones as initialization parameters (Angulo et al. 1999).

A straightforward comparison of our 18O(p, α)15N reaction
rate with the ones in the most recent compilations (Angulo et al.
1999; Iliadis et al. 2010) is obtained by plotting their ratios.
In Figure 7, the ratio to the NACRE rate (Angulo et al. 1999)
is given. The light green band represents the range spanned
by the NACRE rate, the recommended one being equal to
the one in the entire T9 range. The light red band instead
represents the range allowed by the experimental uncertainties
of our reaction rate, including the errors of each component
contributing to the reaction rate. Clearly, two conclusions can
be drawn: (1) there is good agreement between the NACRE
compilation rate and the present one below T9 = 0.5 and (2) the
reaction rate evaluated here is up to a factor of two larger than
the NACRE one above T9 = 0.5. Both considerations can be
easily understood by examining Figure 6, since it demonstrates
that the 660 keV resonance, whose parameters have been
more accurately determined here, is dominant above about
T9 = 0.5. Below this temperature, a significant improvement
in the rate accuracy has two main causes. (1) The contribution
of the 145 keV resonance and the interference effect due to
the coherent overlap between the tail of the 660 keV broad
resonance and the 145 keV peak are fully taken into account,
while in NACRE the upper and lower limits by Mak et al. (1978)
are considered, corresponding to constructive and destructive
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Table 5
Recommended Values, Lower and Upper Limits of the 18O(p, α)15N Reaction

Rate as a Function of the Temperature T9 in cm3 mol−1 s

T9 Lower Adopted Upper

0.007 7.65 × 10−25 1.07 × 10−24 1.52 × 10−24

0.008 3.82 × 10−23 5.40 × 10−23 7.68 × 10−23

0.009 8.15 × 10−22 1.15 × 10−21 1.63 × 10−21

0.010 9.58 × 10−21 1.34 × 10−20 1.88 × 10−20

0.011 7.43 × 10−20 1.02 × 10−19 1.42 × 10−19

0.012 4.32 × 10−19 5.79 × 10−19 7.87 × 10−19

0.013 2.06 × 10−18 2.68 × 10−18 3.54 × 10−18

0.014 8.65 × 10−18 1.09 × 10−17 1.38 × 10−17

0.015 3.31 × 10−17 4.02 × 10−17 4.94 × 10−17

0.016 1.18 × 10−16 1.39 × 10−16 1.65 × 10−16

0.018 1.22 × 10−15 1.39 × 10−15 1.58 × 10−15

0.020 9.76 × 10−15 1.10 × 10−14 1.22 × 10−14

0.025 6.77 × 10−13 7.53 × 10−13 8.30 × 10−13

0.03 1.75 × 10−11 1.95 × 10−11 2.14 × 10−11

0.04 2.06 × 10−9 2.30 × 10−9 2.53 × 10−9

0.05 6.55 × 10−8 7.30 × 10−8 8.04 × 10−8

0.06 2.20 × 10−6 2.45 × 10−6 2.70 × 10−6

0.07 6.35 × 10−5 7.07 × 10−5 7.78 × 10−5

0.08 9.74 × 10−4 1.08 × 10−3 1.19 × 10−3

0.09 8.31 × 10−3 9.24 × 10−3 1.02 × 10−2

0.10 4.59 × 10−2 5.10 × 10−2 5.61 × 10−2

0.11 1.84 × 10−1 2.05 × 10−1 2.25 × 10−1

0.12 5.80 × 10−1 6.45 × 10−1 7.09 × 10−1

0.13 1.52 1.69 1.85
0.14 3.44 3.82 4.20
0.15 6.94 7.71 8.48
0.16 1.27 × 101 1.42 × 101 1.56 × 101

0.18 3.46 × 101 3.85 × 101 4.23 × 101

0.20 7.60 × 101 8.44 × 101 9.29 × 101

0.25 3.01 × 102 3.35 × 102 3.68 × 102

0.30 7.38 × 102 8.21 × 102 9.03 × 102

0.35 1.43 × 103 1.59 × 103 1.74 × 103

0.40 2.52 × 103 2.80 × 103 3.08 × 103

0.45 4.40 × 103 4.88 × 103 5.37 × 103

0.50 7.99 × 103 8.88 × 103 9.77 × 103

0.60 2.89 × 104 3.21 × 104 3.53 × 104

0.70 9.22 × 104 1.02 × 105 1.13 × 105

0.80 2.37 × 105 2.63 × 105 2.90 × 105

0.90 5.26 × 105 5.85 × 105 6.43 × 105

1 1.01 × 106 1.12 × 106 1.23 × 106

1.25 3.24 × 106 3.59 × 106 3.95 × 106

1.5 6.96 × 106 7.73 × 106 8.51 × 106

1.75 1.18 × 107 1.31 × 107 1.44 × 107

2 1.72 × 107 1.91 × 107 2.10 × 107

2.5 2.79 × 107 3.10 × 107 3.41 × 107

3 3.69 × 107 4.10 × 107 4.51 × 107

3.5 4.36 × 107 4.85 × 107 5.33 × 107

4 4.82 × 107 5.36 × 107 5.89 × 107

5 5.27 × 107 5.85 × 107 6.44 × 107

interference, respectively. This is the origin of the difference
of Figures 7 and 14 of La Cognata et al. (2010), where the
nonresonant rate was taken from NACRE. (2) Below T9 = 0.02,
the contribution of the 20 keV resonance is included in the
reaction rate calculation (La Cognata et al. 2008b, 2009a, 2010).

Recently, a new reaction rate compilation has been proposed
(Iliadis et al. 2010), based on updated nuclear physics input and
an improved numerical method for calculating the reaction rate.
In Figure 8, the comparison of our reaction rates with those
tabulated in Iliadis et al. (2010) is displayed. This is taken as
the reference value, namely equal to 1 in the 0.01 < T9 < 10
range; the light green band represents the allowed reaction rate

Figure 7. Comparison of the reaction rate calculated here (red band) and the
NACRE recommended rate (Angulo et al. 1999; green band). The bands mark
the regions allowed by experimental uncertainties. The NACRE recommended
rate is presumed equal to 1 over the whole temperature range. A good agreement
is found below T9 ∼ 0.5 (though the accuracy is largely improved); above
T9 ∼ 0.5 the 660 keV and the 799 keV dominate and the rate is up to a factor
of two larger.

(A color version of this figure is available in the online journal.)

Figure 8. Comparison our reaction rate (red band) and the one given in the
recent compilation by Iliadis et al. (2010; green band). Here, the Iliadis et al.
(2010) rate is taken as reference, i.e., equal to one the in whole T9 range, while
the bands have the same meaning as in Figure 7. Again, good agreement is found
below T9 = 0.5 while at larger temperatures the effect of the new determination
of the 660 keV resonance parameters causes a factor of two increase of the
reaction rate.

(A color version of this figure is available in the online journal.)

range as determined by Iliadis et al. (2010), namely the 0.16
and 0.84 quantiles of the cumulative reaction rate distribution.
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As in Figure 7, a light red band provides our allowed range, but
taking the ratio to the Iliadis et al. (2010) recommended rate.
Again, a good agreement is found between our reaction rate
and the Iliadis et al. (2010) reaction rate below T9 = 0.5; it is
worth noting that the uncertainty affecting the reaction rate at
this low temperature is greatly reduced with respect to NACRE
as both the very accurate THM strength of the 20 keV resonance
(La Cognata et al. 2010) is included in the calculations and the
contribution of the 145 keV resonance as well as the effect of the
interference discussed above are taken into account. Moreover, a
factor of two discrepancy is still present at higher temperatures
since Iliadis et al. (2010) consider an average of the existing
660 keV resonance parameters in the calculations, a procedure
similar to the one adopted by NACRE (Angulo et al. 1999),
where an average of the numerically integrated reaction rate is
recommended.

7. DISCUSSION AND CONCLUSION

A recent THM work (La Cognata et al. 2008a) has suggested
that the THM can be employed to solve the problem of the
large discrepancy affecting the directly measured 18O(p, α)15N
cross section in the region around 600 keV and, in particular,
the parameters of the broad 660 keV resonance dominating
the cross section below 1 MeV. The THM has been used to
extract the S(E) factor from the 2H (18O, α15N)n QF reaction
performed at 54 MeV beam energy. The resulting S(E) factor
has been normalized to the direct data (Lorentz-Wirzba et al.
1979) around 800 keV. Finally, a simultaneous fit of the direct
(Lorentz-Wirzba et al. 1979; Mak et al. 1978; Christensen et al.
1990) and THM S(E) factor of the 18O(p, α)15N reaction in
the 0.5–0.9 MeV energy range has been performed to provide a
conclusive set of resonance parameters to be used to calculate
the reaction rate. A consistent fitting is obtained by considering
the Lorentz-Wirzba et al. (1979) S(E) factor together with the
THM one, once the HOES nature of the THM S(E) factor and
the 17 keV energy spread have been taken into account. As a
consequence, a dramatic improvement of the accuracy of the
resonance parameter of the 8.65 MeV 19F state is apparent,
the error on its width changing from ∼50% to 1.5%, while
the resonance energy turns out to be about 50 keV smaller than
quoted in the literature (Table 4). This improvement is crucial for
astrophysics as the broad 660 keV (and the 799 keV) resonance
dominates the reaction rate between T9 = 0.5 and T9 = 5
and strongly influence the low-temperature region through its
low-temperature tail (Angulo et al. 1999). As a result, a factor
of two increase is found in the reaction rate here determined,
due to the recommended resonance parameters, while the rate
shows an increased accuracy especially below T9 = 0.5 because
the interference between the 145 keV resonance and the tail of
the 660 keV peak is fully taken into account in the present

calculation (compare Figure 7). A factor of two difference is
also found if our reaction rate is compared with the one in Iliadis
et al. (2010), where a different and more rigorous technique is
used for the reaction rate calculation, but still using an average
of the resonance parameters in the literature. Following the
considerations discussed in the introduction, the effects of the
present results on astrophysics are currently under examination.

This work was supported by the US Department of Energy
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NSF grant PHY-0852653.

REFERENCES

Abia, C., et al. 2009a, PASA, 26, 351
Abia, C., et al. 2009b, ApJ, 694, 971
Abia, C., et al. 2010, ApJ, 715, L94
Angulo, C., et al. 1999, Nucl. Phys. A, 656, 3
Barker, F. C. 2008, Phys. Rev. C, 78, 044611
Baur, G. 1986, Nucl. Phys. A, 458, 188
Busso, M., et al. 2010, ApJ, 717, L47
Champagne, A. E., & Pitt, M. 1986, Nucl. Phys. A, 457, 367
Cherubini, S., et al. 1996, ApJ, 457, 855
Chew, G. F. 1950, Phys. Rev., 80, 196
Christensen, N. S., et al. 1990, Nucl. Instrum. Methods Phys. Res. B, 51, 97
Clayton, G. C., et al. 2007, ApJ, 662, 1220
Coughlan, G. R., & Fowler, W. A. 1988, At. Data Nucl. Data Tables, 40, 283
Iliadis, C., et al. 2010, Nucl. Phys. A, 841, 31
Jain, M., et al. 1970, Nucl. Phys. A, 153, 49
La Cognata, M., et al. 2007, Phys. Rev. C, 76, 065804
La Cognata, M., et al. 2008a, J. Phys. G: Nucl. Part. Phys., 35, 014014
La Cognata, M., et al. 2008b, Phys. Rev. Lett., 101, 152501
La Cognata, M., et al. 2009a, PASA, 26, 237
La Cognata, M., et al. 2009b, Phys. Rev. C, 80, 012801
La Cognata, M., et al. 2010, ApJ, 708, 796
Lane, A. M., & Thomas, R. G. 1958, Rev. Mod. Phys., 30, 257
Lorentz-Wirzba, H., et al. 1979, Nucl. Phys. A, 313, 346
Lugaro, M., et al. 2004, ApJ, 615, 934
Mahaux, C., & Weidenmüller, H. A. 1969, Shell-Model Approach to Nuclear

Reactions (Amsterdam: North-Holland)
Mak, H. B., et al. 1978, Nucl. Phys. A, 304, 210
Mukhamedzhanov, A. M., et al. 2008, J. Phys. G: Nucl. Part. Phys., 35, 014016
Mukhamedzhanov, A. M., et al. 2010, Phys. Rev. C, 81, 054314
Nollett, K. M., et al. 2003, ApJ, 582, 1036
Pandey, G., et al. 2008, ApJ, 674, 1068
Rolfs, C., & Rodney, W. S. 1988, Cauldrons in the Cosmos (Chicago, IL: Univ.

Chicago Press)
Shapiro, I. S. 1967, in Proc. XXXVIII Int. School of Physics “Enrico Fermi”,

ed. T. E. O. Ericson (New York: Academic), 210
Spitaleri, C. 1990, in Problems of Fundamental Modern Physics II, ed. R.

Cherubini, P. Dalpiaz, & B. Minetti (Singapore: World Scientific), 21
Spitaleri, C., et al. 1999, Phys. Rev. C, 60, 055802
Spitaleri, C., et al. 2004, Phys. Rev. C, 69, 055806
Tilley, D. R., et al. 1995, Nucl. Phys. A, 595, 1
Wiescher, M., & Kettner, K. U. 1982, ApJ, 263, 891
Wiescher, M., et al. 1980, Nucl. Phys. A, 349, 165
Yagi, K. 1962, J. Phys. Soc. Japan, 17, 604
Zinner, E. K. 2005, in Treatise of Geochemistry. I. Meteorites, Comets, and

Planets, ed. A. M. Davis (Amsterdam: Elsevier), 17

http://dx.doi.org/10.1071/AS08038
http://adsabs.harvard.edu/abs/2009PASA...26..351A
http://adsabs.harvard.edu/abs/2009PASA...26..351A
http://dx.doi.org/10.1088/0004-637X/694/2/971
http://adsabs.harvard.edu/abs/2009ApJ...694..971A
http://adsabs.harvard.edu/abs/2009ApJ...694..971A
http://dx.doi.org/10.1088/2041-8205/715/2/L94
http://adsabs.harvard.edu/abs/2010ApJ...715L..94A
http://adsabs.harvard.edu/abs/2010ApJ...715L..94A
http://dx.doi.org/10.1016/S0375-9474(99)00030-5
http://adsabs.harvard.edu/abs/1999NuPhA.656....3A
http://adsabs.harvard.edu/abs/1999NuPhA.656....3A
http://dx.doi.org/10.1103/PhysRevC.78.044611
http://adsabs.harvard.edu/abs/2008PhRvC..78d4611B
http://adsabs.harvard.edu/abs/2008PhRvC..78d4611B
http://dx.doi.org/10.1016/0375-9474(86)90290-3
http://adsabs.harvard.edu/abs/1986NuPhA.458..188B
http://adsabs.harvard.edu/abs/1986NuPhA.458..188B
http://dx.doi.org/10.1088/2041-8205/717/1/L47
http://adsabs.harvard.edu/abs/2010ApJ...717L..47B
http://adsabs.harvard.edu/abs/2010ApJ...717L..47B
http://dx.doi.org/10.1016/0375-9474(86)90384-2
http://adsabs.harvard.edu/abs/1986NuPhA.457..367C
http://adsabs.harvard.edu/abs/1986NuPhA.457..367C
http://dx.doi.org/10.1086/176780
http://adsabs.harvard.edu/abs/1996ApJ...457..855C
http://adsabs.harvard.edu/abs/1996ApJ...457..855C
http://dx.doi.org/10.1103/PhysRev.80.196
http://adsabs.harvard.edu/abs/1950PhRv...80..196C
http://adsabs.harvard.edu/abs/1950PhRv...80..196C
http://dx.doi.org/10.1016/0168-583X(90)90508-R
http://adsabs.harvard.edu/abs/1990NIMPB..51...97C
http://adsabs.harvard.edu/abs/1990NIMPB..51...97C
http://dx.doi.org/10.1086/518307
http://adsabs.harvard.edu/abs/2007ApJ...662.1220C
http://adsabs.harvard.edu/abs/2007ApJ...662.1220C
http://dx.doi.org/10.1016/0092-640X(88)90009-5
http://adsabs.harvard.edu/abs/1988ADNDT..40..283C
http://adsabs.harvard.edu/abs/1988ADNDT..40..283C
http://dx.doi.org/10.1016/j.nuclphysa.2010.04.009
http://adsabs.harvard.edu/abs/2010NuPhA.841...31I
http://adsabs.harvard.edu/abs/2010NuPhA.841...31I
http://dx.doi.org/10.1016/0375-9474(70)90756-6
http://adsabs.harvard.edu/abs/1970NuPhA.153...49J
http://adsabs.harvard.edu/abs/1970NuPhA.153...49J
http://dx.doi.org/10.1103/PhysRevC.76.065804
http://adsabs.harvard.edu/abs/2007PhRvC..76f5804L
http://adsabs.harvard.edu/abs/2007PhRvC..76f5804L
http://dx.doi.org/10.1088/0954-3899/35/1/014014
http://adsabs.harvard.edu/abs/2008JPhG...35a4014L
http://adsabs.harvard.edu/abs/2008JPhG...35a4014L
http://dx.doi.org/10.1103/PhysRevLett.101.152501
http://adsabs.harvard.edu/abs/2008PhRvL.101o2501L
http://adsabs.harvard.edu/abs/2008PhRvL.101o2501L
http://dx.doi.org/10.1071/AS08045
http://adsabs.harvard.edu/abs/2009PASA...26..237L
http://adsabs.harvard.edu/abs/2009PASA...26..237L
http://dx.doi.org/10.1103/PhysRevC.80.012801
http://adsabs.harvard.edu/abs/2009PhRvC..80a2801C
http://adsabs.harvard.edu/abs/2009PhRvC..80a2801C
http://dx.doi.org/10.1088/0004-637X/708/1/796
http://adsabs.harvard.edu/abs/2010ApJ...708..796L
http://adsabs.harvard.edu/abs/2010ApJ...708..796L
http://dx.doi.org/10.1103/RevModPhys.30.257
http://adsabs.harvard.edu/abs/1958RvMP...30..257L
http://adsabs.harvard.edu/abs/1958RvMP...30..257L
http://dx.doi.org/10.1016/0375-9474(79)90505-0
http://adsabs.harvard.edu/abs/1979NuPhA.313..346L
http://adsabs.harvard.edu/abs/1979NuPhA.313..346L
http://dx.doi.org/10.1086/424559
http://adsabs.harvard.edu/abs/2004ApJ...615..934L
http://adsabs.harvard.edu/abs/2004ApJ...615..934L
http://dx.doi.org/10.1016/0375-9474(78)90104-5
http://adsabs.harvard.edu/abs/1978NuPhA.304..210M
http://adsabs.harvard.edu/abs/1978NuPhA.304..210M
http://dx.doi.org/10.1088/0954-3899/35/1/014016
http://adsabs.harvard.edu/abs/2008JPhG...35a4016M
http://adsabs.harvard.edu/abs/2008JPhG...35a4016M
http://dx.doi.org/10.1103/PhysRevC.81.054314
http://adsabs.harvard.edu/abs/2010PhRvC..81e4314M
http://adsabs.harvard.edu/abs/2010PhRvC..81e4314M
http://dx.doi.org/10.1086/344817
http://adsabs.harvard.edu/abs/2003ApJ...582.1036N
http://adsabs.harvard.edu/abs/2003ApJ...582.1036N
http://dx.doi.org/10.1086/526492
http://adsabs.harvard.edu/abs/2008ApJ...674.1068P
http://adsabs.harvard.edu/abs/2008ApJ...674.1068P
http://dx.doi.org/10.1103/PhysRevC.60.055802
http://adsabs.harvard.edu/abs/1999PhRvC..60e5802S
http://adsabs.harvard.edu/abs/1999PhRvC..60e5802S
http://dx.doi.org/10.1103/PhysRevC.69.055806
http://adsabs.harvard.edu/abs/2004PhRvC..69e5806S
http://adsabs.harvard.edu/abs/2004PhRvC..69e5806S
http://dx.doi.org/10.1016/0375-9474(95)00338-1
http://adsabs.harvard.edu/abs/1995NuPhA.595....1T
http://adsabs.harvard.edu/abs/1995NuPhA.595....1T
http://dx.doi.org/10.1086/160558
http://adsabs.harvard.edu/abs/1982ApJ...263..891W
http://adsabs.harvard.edu/abs/1982ApJ...263..891W
http://dx.doi.org/10.1016/0375-9474(80)90451-0
http://adsabs.harvard.edu/abs/1980NuPhA.349..165W
http://adsabs.harvard.edu/abs/1980NuPhA.349..165W
http://dx.doi.org/10.1143/JPSJ.17.604
http://adsabs.harvard.edu/abs/1962JPSJ...17..604Y
http://adsabs.harvard.edu/abs/1962JPSJ...17..604Y

	1. INTRODUCTION
	2. PREVIOUS MEASUREMENTS
	3. THE THM THEORY: THE MODIFIED R-MATRIX APPROACH
	4. THE EXPERIMENT
	4.1. Extraction of the Cross Section

	5. R-MATRIX SIMULTANEOUS FIT
	6. REACTION RATE
	7. DISCUSSION AND CONCLUSION
	REFERENCES

