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ABSTRACT

The statistical properties of the radiative signature of a coronal loop subject to turbulent heating obtained from a
three-dimensional (3D) magnetohydrodynamics (MHD) model are studied. The heating and cooling of a multi-
strand loop is modeled and synthetic spectra for Fe xii 195.12, Fe xv 284.163, and Fe xix 1118.06 8 are calculated,
covering a wide temperature range. The results show that the statistical properties of the thermal and radiative
energies partially reflect those of the heating function in that power-law distributions are transmitted, but with very
significant changes in the power-law indices. There is a strong dependence on the subloop geometry. Only high-
temperature radiation (�107 K) preserves reasonably precise information on the heating function.

Subject headings: methods: statistical — MHD — Sun: corona — Sun: flares — Sun: UV radiation —
techniques: spectroscopic — turbulence

1. INTRODUCTION

The coronal heating problem is concerned with identifying the
energy dissipation process(es) that lead to coronal temperatures
well in excess of 106 K (see, for example, Mandrini et al. 2000;
Klimchuk 2006).A completemodel of the corona needs to be able
to simulate not only the physical mechanisms for energy input
and dissipation, but also the plasma response to heating and pos-
sible observables that can benchmark the model. In general, the
problem is often broken up into discrete parts; in particular, en-
ergy dissipation and transport are usually treated as independent
problems (but see the recent work of Peter et al. 2004; Gudiksen
& Nordlund 2005).

Impulsive coronal heating, as originally discussed by Lin et al.
(1984) and Parker (1988), is a potentially viablemodel for closed-
field regions. Energy is dissipated through discrete impulsive
events over small scales, both in space and energy. The number
of flares and microflares is distributed in energy as a power law
having an index somewhat more positive than �2 (see Crosby
et al. 1993; Aschwanden & Parnell 2002, for a review), and
Hudson (1991) further argued that if smaller (perhaps unresolved)
events such as nanoflares are to heat the corona, the index should
bemore negative than�2. Studies on the line intensity also show
similar distributions (Berghmans et al. 1998; Aletti et al. 2000;
Buchlin et al. 2006). Studies of the energy distribution of smaller
events (referred to hereafter as nanoflares, although in fact the
energy can be in a wide range) rely on estimates of the amount of
energy associated with the radiation of an observed X-ray and
ultraviolet (XUV) or EUV brightening (e.g., Berghmans et al.

1998; Aschwanden et al. 2000; Parnell & Jupp 2000). A range of
indices are obtained, with values both greater than and less than
�2 (Parnell 2004). A basic assumption of this approach is that
one can associate the same statistical properties in the distribu-
tions of the injected and radiated energies so that the plasma
response simply transmits the distribution of the nanoflares as
opposed to modifying it. However, this hypothesis has never ac-
tually been tested.

This paper carries out such a test using a forward-modeling
approach. In general terms, forward modeling uses a model of
the corona to generate ‘‘observables,’’ which can then be com-
pared with what is actually observed. This enables one to study
the role of effects that may be difficult to pin down from the ob-
servations, such as the geometry of the observed structure, line
of sight, assumptionof ionization equilibrium, and elemental com-
position, to name a few examples. In the context of this paper, the
technique can be used to simulate the coronal response to a pre-
scribed nanoflare distribution with a range of energies, some of
which may be unresolvable as individual events.

The key step linking the input nanoflare energy distribution
and the output distribution of ‘‘events’’ as seen in various emis-
sion lines is understanding how the coronal plasma responds to
impulsive heating, since the temperature, density, and velocity
determine the intensity of the spectral lines we calculate. So, the
question we address is: for a given distribution of input ener-
gies, how does coronal energy transport determine the energy
distribution of measured events? There has been extensive mod-
eling of the coronal response to nanoflare energy input in re-
cent years (see, for example, Peres 2000; Mendoza-Briceño
et al. 2004 2005;Winebarger &Warren 2004; Testa et al. 2005;
Patsourakos et al. 2004; Patsourakos&Klimchuk2006;Klimchuk
2006 for a discussion and further references). However, these
models consider nanoflare heating to be repeated either in a single
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monolithic loop or in a few strands. Here, as described in x 2, we
assume a highly fragmented corona and consider each observed
loop to be comprised of many small strands.

The paper is organized as follows. Section 2 (and the associ-
ated Appendix B) describes the models for the nanoflare energy
distribution (a 3DMHDmodel) and the energy-response model.
Section 3describes the distribution of coronal thermal energy for the
nanoflare input, and x 4 presents the properties of synthetic spectra.

2. THE MODEL

We adopt an approach of using a model of coronal turbulence
to generate a distribution of nanoflare energies, and a second
model to calculate the response of the coronal temperature and
density to heating by such nanoflares.

2.1. The Heating Model

To generate the distribution of nanoflare energies we use a 3D
hybrid model of MHD turbulence from Einaudi & Velli (1999)
andBuchlin et al. (2003) that simulates the coronal effects of pho-
tospheric turbulent motion at the loop footpoints. These random
motions cause the propagation of Alfvén waves along the loop,
first producing storage, and then impulsive dissipation of mag-
netic energy. The time-dependent dissipation then gives the heat-
ing function used here. Further details on the model are provided
in the Appendices A and B. The probability distribution function
(PDF) of the dissipated energy is a clear power law with index
close to �1.6 over about 2 decades (Fig. 1). Such power-law
behavior seems to be common to self-organized critically (SOC)
systems, which involve a spontaneous organization of the sys-
tem into a critical state under the action of small external dis-
turbances, leading to energy dissipations over many scales. We
also see falloffs at high and low energies, which are caused by the
upper and lower current thresholds imposed for the energy dis-
sipation in the model. Because the purpose of the present work is
to verify how the power law is transmitted by the plasma response,
our investigation focuses on the central part of the energy distri-
bution. In xx 3 and 4 we use this distribution such that the aver-
age energy values vary between 6 ; 1023 and 1:2 ; 1025 ergs,
depending on the simulation. Each distribution has energy vary-
ing over almost 5 decades (Fig. 1, for example).

2.2. The Cooling Model

To study the plasma response to this kind of heating, we as-
sume that the timescale for energy input is short compared to the

characteristic cooling time of the corona by conduction or radia-
tion. Typical cooling times are a few hundred to over a thousand
seconds, so this seems reasonable. Cooling of coronal plasmas
has been well studied for many years (see Cargill et al. 1995 for
a review of early work and Walsh & Galtier 2000; Winebarger
&Warren 2004; Reale et al. 2005; Bradshaw&Cargill 2005 for
more recent efforts). A coronal loop cools by conduction and ra-
diation with characteristic timescales

�c ¼
5

2

pL2

kT
7=2
e

; �r ¼
3kT1��

e

Ne�
; ð1Þ

where p is the plasma pressure,�(Te) ¼ �T�
e is the loss function

(we used a parameterization of the curve shown in Fig. 2), and k
is the Boltzman constant. Analysis of these timescales show that
an impulsively heated loop will cool first by conduction (high
temperature, low density), with an associated ‘‘evaporation’’ of
chromospheric plasma, and subsequently by radiationwith plasma
draining (low temperature, high density), as demonstrated in both
analytical and numerical models.
In the present work, wewish tomodel an ‘‘observed’’ coronal

loop as being highly fragmented, composed of many small, un-
resolved strands. For example, a loop with an observed diameter
of 1000 may have 104Y106 strands of scales 10Y100 km. If each
of these strands is heated independently, one is required to fol-
low the cooling of a lot of strands. For this reason we use the
analytical multistrand model first developed by Cargill (1994),
as opposed to full solutions of the energy-transport equations.
The details of this model are in Appendix B. We thus consider a
coronal ‘‘loop’’ comprised of (N 31) identical elemental strands
(the cases N ¼ 500 and 5000 are shown), each strand having
the same cross-sectional area Ah and semilength L. The values
assumed for L and the loop section (N ; Ah) are typical values
derived from EUV observations (e.g., 109 cm and 1014 cm2).
As discussed later, the number of strands is chosen to study dif-
ferent cases of lowY and highYfilling-factor loops.
At the beginning of the simulation all strands are cool and

empty. Each strand is described by one temperature Te and one
density Ne. Each nanoflare is instantaneous and heats only one
strand, randomly chosen inside the loop. This energy all goes
into plasma heating. The heating function is described by the
power law in energy discussed in x 2.1, and is distributed ran-
domly (i.e., which strand is heated is determined by a random

Fig. 1.—PDF for the nanoflare energy (the average value is 1:2 ; 1024 ergs)
heating the loop system.

Fig. 2.—Radiative-loss function as a function of temperature derived using
the CHIANTI database.
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number generator). Unlike earlier publications using this model,
we replace the simple radiative loss function with a parameter-
ization of the one available in the CHIANTI version 4.2 atomic
database (Young et al. 2003). This function was calculated as-
suming the Mazzotta et al. (1998) ionization equilibrium and
coronal abundances. The same assumptions are made later on to
build the synthetic spectra.

3. DISTRIBUTIONS OF THERMAL ENERGY
IN RESPONSE TO A POWER-LAW ENERGY INPUT

In this section we investigate the PDF of the loop thermal en-
ergy generated by the MHD model. The temperature and den-
sity in each strand are obtained as a function of time from the
cooling model, and the PDF of the thermal energy is obtained

Fig. 3.—PDFs of total thermal energy (top); PDFs for the thermal energy during the conductive cooling phase (middle); and the PDF of the thermal energy during the
radiative cooling phase (bottom). Left: Ah ¼ 8 ; 1013 cm2,N ¼ 5000. Right: Ah ¼ 8 ; 1014 cm2,N ¼ 500. For both cases L ¼ 109 cm. The index of the fitted power law
is represented by �.
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by summing all the strands. Two cases are shown, with the num-
ber of elemental strands being different in each. They corre-
spond to low and high filling factors, where the filling factor is
a measure of what fraction of any (unresolved) coronal volume
is actually filled with radiating plasma. For simplicity, the fill-
ing factor is defined as the ratio of the number of hot strands
(log T > 5) to the total number of strands (see Cargill [1994]
for more details). The filling factor is important because for low
(high) values, one tends to heat cool, low-density (hot, high-
density) strands. It also measures the characteristic ‘‘repeat
time’’ of strand heating relative to the cooling time. When the
characteristic timescale of the strand cooling is much shorter
than the inverse frequency of injection of nanoflares in the loop,
the filling factor is small and the strand is scarcely visible at
coronal temperatures.

The top two panels of Figure 3 show the PDF of the thermal
energy of our loop with a lowY (highY) filling-factor case on the
left (right). All phases of the cooling are included in the PDF.
The left panels show the caseAh ¼ 8 ; 1013 cm2,N ¼ 5000 (fill-
ing factor of 0.06), and the right panels have Ah ¼ 8 ; 1014 cm2,
N ¼ 500 (filling factor of 0.52). In both cases the energy loss is
5 ; 10�4 ergs cm�3 s�1 and L ¼ 109 cm. We have fit the ther-
mal energy distribution by a power law with slope � in the vi-
cinity of 1024Y1025 ergs. It is clear that the generic power-law
distribution of the heating function is transmitted to the ther-
mal energy over about two decades. However, � depends on
the strand geometry, with the absolute value of � (the term we
will now use) increasing for wider strands. (Note that at the
lower and upper extremes the PDF deviates due to the model
limitations discussed in x 2.1. In particular, the low-energy dis-
tribution is likely to be unphysical.)

We then analyzed the PDFs from the conductive and radiative
cooling phases separately (middle and bottom panels in Fig. 3,
respectively). As expected, both components follow a power-
law distribution, but the radiative phase is steeper. For small
filling factors (left panels), the total PDF and that of the con-
duction phase are very similar, suggesting that information about
the energy input is directly transmitted at high temperatures. The
dependence on filling factor in the conductive phase can be un-
derstood as follows. For low filling factors, the initial thermal
energy in the strand is proportional to the nanoflare energy, and
the evaporative cooling takes place at constant pressure (or
constant thermal energy; Antiochos & Sturrock 1978). Hence,
the nanoflare distribution will map precisely into that of the ther-
mal energy. In the highYfilling-factor case, any one strand is sub-
ject to sporadic but inevitable reheating, which prevents the
strand from completing its cooling cycle (note the lack of the
very low energy component in the radiative PDF for high
filling factors). Each time the strand is reheated while it is still
cooling from the previous nanoflare, its temperature increases
andmakes the thermal energy associated with the previous nano-
flare jump to higher values. For this reason the PDF changes its
shape. Such change particularly involves the low-intermediate
energies and makes the index � increase. This is because the re-
heating has a higher probability of happening over a strand pre-
heated by a small-intermediate energy flare.

In the radiative phase, the PDF is more complex for several
reasons. At this time the thermal energy decreases as T1��, which
leads to an enhancement of the low-energy part of the PDF. The
complex dependence of the radiative cooling on the temperature
leads to the nonuniformity. [We performed several tests in which
we assumed a single value of �(=�1

2
). A single power law was

then found over a wider energy range.] However, it is clear that

this leads to a lack of perfect ‘‘transmission’’ of the input energy
distribution.

4. PDFs OF SYNTHETIC SPECTRA

The next step is to generate synthetic spectra arising from
the combined heating and cooling models. For the present work
we chose to synthesize the Fe xii 195.12 (log Tmax ¼ 6:14),
Fe xv 284.163 (log Tmax ¼ 6:3), and Fe xix 1118.068 (log Tmax ¼
6:9) line intensities. The first two lines are observed by the Solar
andHeliospheric Observatory (SOHO) EUV Imaging Telescope
(EIT; Delaboudiniere et al. 1995) and will be observable by the
Solar-BEUV ImagingSpectrometer (EIS),whichwill be launched
in 2006. These are background, relatively hot and bright resonant
lines in the corona. Fe xix is a much hotter line that can be ob-
served by SOHO Solar Ultraviolet Measurement of Emitted Ra-
diation (SUMER; Wilhelm et al. 1995). The choice of such
lines is guided by the intention of coveringmedium-high coronal
temperatures.
A line intensity is defined as

Ik ¼
1

4�

Z
G(Te)N

2
e dh; ð2Þ

Fig. 4.—Logarithm of N2
e as a function of the logarithm of temperature,

obtained with the parameters Ah ¼ 8 ; 1013 cm2, N ¼ 5000 (top) and Ah ¼ 8 ;
1014 cm2, N ¼ 500 (bottom).
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Fig. 5.—Total loop intensity as a function of time (left) for Fe xii 195 8 ( first and third panels) and Fe xv 284 8 (second and fourth panels) and their PDFs (right).
The parameters used for the simulation are the same as in Fig. 4.



Fig. 6.—PDFs for Fe xii 195 8 (left) and Fe xv 284 8 (right). PDFs for different values of L (top four panels) and flare energy (bottom four panels). Here
E1 ¼ 2:5 ; 10�4 ergs cm�3 s�1 and E2 ¼ 5 ; 10�3 ergs cm�3 s�1.



where G(Te) is the contribution function, which gives informa-
tion on the distribution of the line emission in temperature and
the plasma density Ne along the line of sight h. The contribution
functions were calculated with the CHIANTI database providing
coronal abundances. To generate the line intensities we use the
density and temperature histories of each strand and calculate the
total loop time-dependent line intensity.

The distribution of the emission measure (EM, which scales
as N2

e V ) as a function of temperature will be important in un-
derstanding our results. The EM distributions peak in the range
log Tmax ¼ 6:4Y7:2, assuring important emission from the cho-
sen lines. Figure 4 shows two examples of the distribution of
N 2
e as a function of temperature, using the same parameters as

Figure 3. These results were obtained by summing the densities
of all the strands for each temperature interval of the loop. Be-
cause in the model the temperature is assumed to be uniform
along a strand, and all the strands have the same volume, the quan-
tity plotted in Figure 4 is representative of the total loop EM.
There is a broad range of temperatures (a lower limit log Te ¼ 5
was imposed) that reflect the presence of many strands at dif-
ferent states of cooling. As pointed out by Cargill (1994), the
case with smaller filling factor (top panel ) has more plasma at
higher temperature.

The left-hand panels in Figure 5 show examples of the time
variation of Fe xii and Fe xv intensities, in which the same pa-
rameters as in Figures 3 and 4 are used. The two top (bottom)
panels show cases with low (high) filling factors. Larger strand

cross sections give smaller values of the intensity (note the drop
in the EM at coronal temperatures) with smaller frequency fluc-
tuations. The PDFs shown in the right column also demonstrate
this. Like the thermal energy, the intensity distributions show a
power-law distribution. However, these PDFs have entirely dif-
ferent power-law indices from the heating function; indeed, a
power law is not evident in the bottom right panel (Fe xv with
large filling factor). Thus, at these temperatures information of
the energy input does not seem to have survived.

For the lowYfilling-factor loop shown in Figure 5 (top panels),
the PDF index increases for the higher temperature line. This
result comes about because of the location of the peak formation
temperature of the line with respect to the EM-T distribution
plotted in Figure 4. There are two aspects to consider. First, the
formation temperature of these lines falls on the left side of
the maximum of the EM. This means that the lines form when
the strand is cooling by radiation, far from the initial heating, and
so suffering from amnesia. Moreover, looking at the top panel of
Figure 4, we see that these two lines form at temperatures where
the gradients of the EM distributions are different. This means
that the temperatures around the peak emission of each line con-
tribute in a different way to the line intensity.

The top four panels of Figure 6 show the PDFs for Fe xii (left
panels) and Fe xv (right panels), and are for cases where the
loop cross section and input energy are held fixed (at the values
of the top panels in Fig. 5), and the loop length is varied. In the
top two panels we take L ¼ 2 ; 108 cm (filling factor of 0.013),

Fig. 7.—Total loop intensity as a function of time (left) for Fe xix 1118 8 and the corresponding PDF (right). The loss energy is assumed to be
E0 ¼ 5 ; 10�4 ergs cm�3 s�1.
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while in the second two panels we take L ¼ 5 ; 109 cm (filling
factor of 0.86). This provides further confirmation that for each
line, the smallest filling factor is associated with the smaller
power-law index. (The smaller filling factor is obtained because
the thermal-conduction cooling time scales with L2, while the
number of flares remains the same in all the cases discussed here.
As the cooling time decreases, it increases the number of strands
that cool completely before being reheated.)

The plots in the third and fourth rows of Figure 6 were ob-
tained by changing the nanoflare energy while keeping the rate
of nanoflares and the loop parameters constant. In particular,
we assumed N ¼ 5000, L ¼ 109 cm, and Ah ¼ 8 ; 1013 cm2. A
smaller value of the nanoflare energy has the effect of decreas-
ing the temperature of the peak of the EM. While in the pre-
vious cases the average flare energywas 1:2 ; 1024 ergs, here we
used 6 ; 1023 ergs (E1 in the third row of the figure) and 1:2 ;
1025 ergs (E2 in the last row of the figure). In the third row we
obtain a filling factor of 0.07, which is quite similar to the case
shown in the top row of Figure 5. What we observe is a small
change in the PDF of Fe xii, while Fe xv has almost lost its
power-law shape. This can be explained by the small amount of
plasma that is left at the Fe xv temperatures. In the bottom row of
Figure 6, we show the PDFs for a higher value of the nanoflare
energy. For this case the EM extends to quite high temperatures
(log T ¼ 7:6; see also the EM in Fig. 8). The filling factor is

0.043, and there is enough plasma for the emission of Fe xv, which
again shows a power-law distribution. These last two results point
out the importance of the ‘‘right’’ choice of the temperature in-
terval to investigate.
We now investigate the behavior of the Fe xix intensity for

all the loop conditions discussed thus far. The results are shown
in Figures 7 and 8. In Figure 7 the plots were obtained assuming
the same parameters as Figure 4 and 5. The top case is for the
highYfilling-factor loop. Here there is not enoughmaterial at the
peak Fe xix formation temperature to guarantee any detectable
emission. This also produces a shallow PDF.
In the second case, the PDF shows a power-law distribution

with an index close to that of the heating function. Here the for-
mation temperature of the line falls very close to (on the right
side) the maximum of the EM-T distribution (see Fig. 4, top).
This point corresponds to the plasma conditions at the moment
when the strand is changing its cooling mode from conduction
to radiation. Because the line formation temperature is just at the
side of such peak, we can say that the line formsmainly while the
strand is cooling by conduction, although there will be a radia-
tive contribution.
The top left panel of Figure 8 shows the case when the line

forms completely during the conduction cooling phase. Here we
find the same index as the one for the energy input. This PDF, as
well as that on the right side, was obtained by changing the energy

Fig. 8.—Top: PDFs for Fe xix assuming an energy loss of E1 ¼ 2:5 ; 10�4 ergs cm�3 s�1 and E2 ¼ 5 ; 10�3 ergs cm�3 s�1. The respective EMs are given in the
bottom left panel. Bottom right: PDF for Fe xix, assuming the same parameters of Fig. 7 bottom, but with a different value of L.

PARENTI ET AL.1226 Vol. 651



input (the same cases of Fig. 6) and keeping the flaring rate
constant. As we mentioned before, a decrease in the input en-
ergy leads to a decrease in the temperature at which the density
distribution peaks. This is shown in the bottom left panel of
Figure 8 (solid line), where we reported the density distribu-
tions for the two cases just mentioned. As a consequence, the
Fe xix formation temperature falls in the range where the strand
cools only by conduction. In the top right panel of Figure 8 we
are in the opposite situation. The increase of the input energy
produces an increase of material at higher temperatures. At the
same time, the peak of the density distribution transforms into a
plateau (dashed curve, bottom left panel ). This is an indication
that at such temperatures each strand is in a different phase of
cooling. The Fe xix temperature formation falls on such plateau,
where strands in the conduction and radiation phases coexist.
As a result, the index of the PDF steepens again.

The bottom right panel of Figure 8 shows the PDF for a lower
filling-factor loop (same case as the top row of Fig. 6) than the
previous examples. Here the conduction cooling time is much
reduced with respect to the previous cases, so that the strand
spends a short time at the temperature of emission of this line.
For this reason, very little is left of the power-law distribution
of the PDF (eventually only in the highest decade of intensity).

5. SUMMARY AND CONCLUSION

In this paper we have presented a simple model that is able to
address the plasma response to heating in a highly structured
corona.We use as input an energy distribution provided by a three-
dimensional MHD model for coronal dissipation that has a well-
defined power-law distribution of event energy. The thermal
energy of the many strands comprising the structured corona is
calculated, and distributions of thermal energy and line inten-
sities can be calculated. Thus, this paper represents an impor-
tant step in merging MHD and energy-transport models.

It was first demonstrated that the information contained in the
statistics of the energy input to the coronal plasma can only be
partially recovered in the statistics of thermal energy. The agree-
ment between input and output distributions was better for cases
of a lowYfilling-factor loop and at temperatures for which con-
ductive cooling was dominant. However, the agreement was by

no means exact, indicating that energy-transport processes grad-
ually wash out the initial information.

An investigation of the distribution of the line intensities of
a number of important coronal lines gave similar conclusions.
However, an encouraging aspect of such a diagnostic is the dif-
ferent behaviors of lines that form at different temperatures. This
can be interpreted as an indication that we need to look at hot
coronal lines (�107 K) in order to see a signature of the heating.
The ‘‘right’’ temperatures to investigate seem to be those for which
the thermal conduction is dominant over radiation as the cool-
ing mechanism. At such high temperatures probably only newly
heated strands emit, and the heating signature is not hidden by
the averaging effects that are present when we look at lower tem-
peratures. Observing at the Fe xii and Fe xv temperatures, we look
at the million-degree background corona emission as the result
of the cooling of a large number of strands, each of them in a dif-
ferent plasma condition. It is this ‘‘average’’ effect that is respon-
sible for the large index in the intensity power law (the distribution
of the average of a quantity tends toward a Gaussian distribution,
which means an infinite power index).

In view of our results we stress the importance of investi-
gating high-temperature lines, both from the theoretical and
observational aspects. In particular, it is essential to use spec-
troscopic data (such as those of the new mission Solar-B, with
good spatial and spectral resolutions) to better isolate the high-
temperature components in the observed emission.
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APPENDIX A

THE HEATING MODEL

The heating model was introduced in x 2.1, and full details can be found in Buchlin et al. (2003), especially x 2.2 of that paper.
A coronal magnetic loop is modeled in a 3D simulation box. A background magnetic field points along the loop (defined as the
z direction, so that B0 ¼ B0êz), with the photosphere located at z ¼ 0; 2L. The boundary conditions there impose a velocity field that
models the stirring of the loop footpoints by photospheric motions. The energy introduced is then transferred into the rest of the loop
by Alfvén waves. These waves interact through nonlinear interactions that are confined to the x-y plane. Energy release occurs in each
of these planes and is modeled using a threshold technique, leading to avalanches of the fields. The model is intermediate between
cellular automata (CA) and MHD models, and runs fast enough for a statistical analysis of the time series of energy dissipation in a
turbulent loop, while keeping fields consistent with the equations of MHD.

The avalanche process is similar to CA models, such as those proposed by Lu & Hamilton (1991), but the threshold variable is the
electric current density instead of the magnetic field gradient, and the magnetic field is updated using Maxwell’s equations in a self-
consistent manner. Thus, if the electric current density exceeds some given threshold at a point, the local current and vorticity are
redistributed and the process is repeated until the threshold criterion is not met anywhere anymore, i.e., until the avalanche stops. The
energy lost during this process is recorded, and we thus get a time series of energy dissipations.

To interface this model with the loop cooling hydrodynamic model described next, we selected the energy dissipated in one of the
planes in the simulation box. Such energy has a power-law distribution, as described in x 2.1. One of the timescales for this heating
model is the Alfvén speed (va), which defines the propagation time needed by the wave to propagate from one plane to the next. For
our simulations, we assumed va ¼ 108 cm s�1 (B0 ¼ 10�3 T). The time step is then 3 s, which corresponds to the lapsed time between
nanoflares in our hydrodynamic model.
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APPENDIX B

THE HYDRODYNAMIC MODEL

After rapid heating by nanoflares, each loop strand cools as described by the energy equation

@p

@t
þ Vs

@p

@s
¼ ��p

@Vs

@s
þ (� � 1)

@

@s
k0T

5=2
e

@Te
@s

� �
� N 2

e �(Te)

� �
; ðB1Þ

whereVs is the plasma field-aligned flow, s is the coordinate along themagnetic field, k0 is the thermal conductivity coefficient, and�(Te)
is the optically thin radiative-loss function. The initial temperature and density immediately after the nanoflare are determined using
energy conservation considerations based on the nanoflare energy, strand volume, and preheating state of the loop. For heating of an
‘‘evacuated’’ strand, it is assumed that the initial evaporation phase occurs rapidly with fast thermalization (see Cargill & Klimchuk
[2004] for details).

The cooling model used is described fully in Cargill (1994) and Cargill & Klimchuk (1997). The key assumption is that, because of
the strong dependence of the radiative and conductive cooling times on loop temperature (the ratio scales as approximately T6 at
constant pressure), we can treat the conductive and radiative cooling separately. This in fact enables us to use analytical models for
each stage.

The loop cools first by conduction, where the solution of Antiochos & Sturrock (1978) for subsonic upflow of chromospheric
material at constant pressure is used:

Te(t) ¼ T0 1þ t

�c

� ��2=7

; ðB2Þ

where �c is defined in equation (1) and T0 is the temperature in the strand immediately following the nanoflare.
As conductive cooling proceeds, the temperature falls and the density rises, so that the instantaneous conductive cooling time gets

longer and the radiative time becomes shorter. When the two cooling times are equal, there is a transition to radiative cooling that is
described using the solution of Antiochos (1980),

Te tð Þ ¼ T0 1� 3

2

1

2
� �

� �
t

�r

� �1= 1=2��ð Þ
; ðB3Þ

and the well-known result from the radiative-decay phase of flares that Te / N 2
e (see Cargill et al. 1995). Here � is the power of Te in

the radiative loss function of Figure 2, �r is defined in equation (1), and T0 is now the temperature at the start of the radiative phase.
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