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REGULARIZED ELECTRON FLUX SPECTRA IN THE 2002 JULY 23 SOLAR FLARE
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ABSTRACT

By inverting the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) hard X-ray photon
spectrum with the Tikhonov regularization algorithm, we infer the effective mean electron source spectrum for
a time interval near the peak of the 2002 July 23 event. This inverse approach yields the smoothest electron flux
spectrum consistent with the data while retaining real features, such as local minima, that cannot be found with
forward model-fitting methods that involve only a few parameters. A significant dip in the recovered mean source
electron spectrum near keV is noted, and its significance briefly discussed.E p 55

Subject heading: Sun: flares

1. INTRODUCTION

As discussed by Brown, Emslie, & Kontar (2003), hard X-
ray spectra in solar flares can be used, in conjunction withI(e)
a suitable bremsstrahlung cross section , to determineQ(e, E)
the effective mean electron flux spectrum in the source,F̄(E)
viz.,

�
1 ¯¯I(e) p nV F(E)Q(e, E)dE, (1)�24pR e

whereR is the distance to the observer and the mean target
density . The function represents the�1 ¯n̄ p V n(r)dV F(E)∫
density-weighted mean electron spectrum in the source and is
“effective” in the sense that it is influenced by factors such as
secondary (e.g., photospheric albedo) emission in the observed

. It is a quantity that is obtained solely from the observedI(e)
photon spectrum ; it requires no assumptions about physicalI(e)
conditions (e.g., thin target vs. thick target, uniform vs. non-
uniform) in the bremsstrahlung source (Brown et al. 2003).

The Volterra integral (eq. [1]) for can be solved eitherF̄(E)
by forward-fitting parameterized forms of to (e.g.,F̄(E) I(e)
Holman et al. 2003) or by direct inversion of the integral equa-
tion. Such an inversion may be performed by several equivalent
methods, e.g., differentiation (possibly of fractional order;
Brown 1971) or discretization followed by matrix inversion
(Johns & Lin 1992). However, the ill-posed nature of the in-
verse problem (eq. [1]; e.g., Craig & Brown 1986) may result
in a large amplification of data noise in the recovered .F̄(E)
Thompson et al. (1992), Piana (1994), and Piana & Brown
(1998) have therefore presented aregularized inversion algo-
rithm that maintains much of the fidelity in the recovered

, while effectively suppressing much of the noise ampli-F̄(E)
fication through the imposition of a degree of smoothness in
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the recovered solution (see, e.g., eq. [2]). The latter two of
these works employ an approach based on the Tikhonov (1963)
regularization algorithm, which utilizes the singular value de-
composition (SVD) of a linear operator for its implementation
(Golub & Van Loan 1933). In this Letter, we apply this Tik-
honov regularization technique to deduce the form of forF̄(E)
a 20 s interval near the peak of the 2002 July 23 flare.
Significant features in not realizable through limited-F̄(E)
parameter forward-fitting techniques (e.g., Holman et al. 2003)
are indeed revealed.

2. DERIVATION OF REGULARIZED MEAN ELECTRON
FLUX SPECTRA

The formal methodology of the Tikhonov (1963) regulari-
zation technique was first applied to high-resolution solar hard
X-ray spectra by Piana (1994) and Piana & Brown (1998).
Essentially, the method consists of writing equation (1) in the
discretized matrix form , where, in general, is anM-¯I p AF I
vector representing the observed photon spectrum ,A is anI(e)

matrix representing the cross section , and is¯M # N Q(e, E) F
anN-vector representing the mean electron spectrum . WeF̄(E)
seek the solution of the minimization problem

2 2¯ ¯AF � I � l F p minimum, (2)k k k k

where the double bars denote the Euclidean norm of a vector
and the regularization parameterl tunes the trade-off between
the fidelity of the data fit (measured by the first term on the
left-hand side of eq. [2]) and the smoothness in the recovered

(measured by the second term). In order to compute theF̄
solution of the minimization problem (eq. [2]), we utilized the
SVD of , namely, the set of triples ,pA {j ; v , u } p pk k kp1k

, that satisfy theshifted eigenvalue problemmin (M, N)

TAu p j v ; A v p j u , (3)k k k kk k

where is the transpose of ; and are eigenvectors ofTA A u vk k

length N and M, respectively; and the eigenvalues are realjk

positive numbers with . It can be shownj ≥ j ≥ … ≥ j1 2 p
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Fig. 1.—Regularized spectrum vs.E for the time interval 00:30:00–¯n̄VF
00:30:20 UT, obtained using the Haug (1997) cross section. The spectrum has
been extended from 160 keV to 1 MeV using a power law of indexd p

(dashed line; see text for details). The vertical sizes of the error boxes2.45
from keV through keV reflect the limits caused byE p 15 E p 160 3j
statistical noise in the observed photon spectrum . The forward-fitted spec-I(e)
trum of Holman et al. (2003), using the same cross section, is shown as a
solid line.

(Bertero, de Mol, & Pike 1988) that the formal solution of
equation (2) is given by

p
jkF̄ p (I · v )u . (4)� kk2j � lkp1 k

In the present case, we have set , correspondingM p N p 286
to energies from 15 to 300 keV with 1 keV resolution. The
regularization parameterl is determined using the Morozov
discrepancy principle, i.e., such that is equal to2¯kAF � Ik /N
the mean square data noise (Tikhonov et al. 1995). Equa-
tion (4) shows that singular functions with associatedu (E)k

eigenvalues (which are generally associated with lack�j K lk

of smoothness) are effectively suppressed relative to those
(smoother) that are associated with larger values of ;u (E) jk k

for more details, see Massone et al. (2003).

3. ANALYSIS PROCEDURE

We first obtained theReuven Ramaty High Energy Solar
Spectroscopic Imager (RHESSI) count rate spectrum for the
period 00:30:00–00:30:20 UT during the 2002 July 23 flare.
This time interval is near the time of peak hard X-ray flux and
corresponds to one of the intervals studied by Holman et al.
(2003) in their forward-fitting approach. The corresponding
photon spectrum was then derived according to theI(e)
procedure discussed by Kontar et al. (2003). This resulted in
a photon spectrum in 1 keV bins spanning the range 15–I(e)
300 keV. Then, using the bremsstrahlung cross section

due to Haug (1997; his eqs. [4] and [5]), weighted byQ(e, E)
a factor to take into account bremsstrahlung on2Z p 1.44
heavy elements, we calculated the corresponding singular val-
ues and vectors , , and hence, using equation (4), thej v uk kk

regularized mean electron spectrum .F̄(E)
We note that obtaining photon spectra at a high level of

accuracy depends on knowledge of several instrument-related
factors (e.g., pulse pileup and the spectral dependence of grid
transmission vs. viewing angle) that are not currently known
to this level of accuracy. This remaining few percent uncer-

tainty in will affect the precise values of obtained¯I(e) F(E)
but should not radically affect the essential conclusions of this
Letter. Final determination of absolute mean electron spectra

must, however, await a more through understanding ofF̄(E)
these instrumental effects.

Any valid form of must, of course, satisfactorilyF̄(E)
account for the observed photon spectrum. In this Letter,
we have set up the problem as “square,” i.e., determining
electron energiesE at 1 keV intervals in the [15, 300] keV
range using photon data at the same discrete energies. How-
ever, due to noise in the photon data, the quality of the
recovered electron spectrum above∼160 keV wasF̄(E)
rather poor, and the spectrum was therefore truncated at this
value. While such a truncation does not introduce serious
errors in the corresponding photon spectrum for sufficiently
soft (steep) spectra, the photon spectrum near the peak of
the 2002 July 23 event was actually very hard, with a spec-
tral index (Holman et al. 2003). For such a flatg � 3.5
spectrum, higher energy ( keV) electronsdo con-E 1 160
tribute significantly to the photon spectrum in the observed
range, so that an extrapolation of the recovered electron
spectrum above keV is necessary in order to cor-E p 160
rectly account for the observed photon spectrum (see Johns
& Lin 1992).

We here extend the electron spectrum from 160 keV up to
1 MeV by a power law. The errors in the recovered photon
spectrum resulting from the neglect of electrons of even higher
energies ( MeV) are negligible compared with the dataE 1 1
noise. A full treatment of such a spectral extrapolation would
calculate the photon spectrum in the range keVe p [15, 160]
produced by the extrapolated part of the electron spectrum (i.e.,
from electrons with energies 160 keV! MeV) and sub-E ! 1
tract this from the observed data to yield (see Johns & Lin
1992) the photon spectrum produced by the remaining electrons
(i.e., those with energies in the range 15 keV! keV).E ! 160
The electron spectrum in this range would then be obtained
through the “square” regularized inversion algorithm described
in § 2. In this Letter, we abbreviate this process somewhat by
simply adding the power-law–extrapolated spectrum forE 1

keV to the [15, 160] keV portion of the regularized spec-160
trum, obtained using equation (4). The differences in the
[15, 160] keV electron spectra therefore depend on the differ-
ences between the actual electron spectrum above 160 keV and
the power-law–extrapolated form. Based on the fidelity of a
power-law fit to the data in the range keV (Holman ete 1 160
al. 2003), these differences should be small.

This power-law extrapolation process allows us to improve
the fit between the data and the reconstructed photon spectrum
(determined using the electron spectrum over the entire range
15 keV ! MeV). The value of the power-law spectralE ! 1
index d was chosen through optimization of the fit to the ob-
served photon spectrum (see § 4) to be , which isd p 2.45
very close to the value found for the energy ranged p 2.48
greater than 130 keV through the forward-fitting procedure of
Holman et al. (2003). However, due to differences between the
actual spectrum above 160 keV and the extrapolated power-
law form, systematic deviations in the photon spectral fit may
(and indeed do) occur.

4. RESULTS

Figure 1 shows the quantity (in units of electrons¯n̄VF(E)
cm s keV ) for the interval 00:30:00–00:30:20 UT. The�2 �1 �1

( ) vertical extents of the error boxes were deduced from3 j
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Fig. 2.—Top panel: Reconstructed photon spectrum for the time intervalI(e)
00:30:00–00:30:20 UT, compared with the data.Bottom panel: Residuals (data-
reconstructed spectrum), normalized to the standard deviation in the data at
each point. Fig. 3.—Top panel: Distribution function for the normalized residuals of

Fig. 2. A Gaussian fit, with the mean and standard deviation values indicated,
has been superposed.Bottom panel: (the average residual over the energyS(e)
range from 15 keV toe; see eq. [5]) as a function ofe. The � limits for3 j
a random statistical process are shown for comparison.

repeated inversions using different uniform random realizations
of the data set, with the uncertainties in the photon spectrum
deduced from the Poisson uncertainties in the instrument count
rates in each 1 keV energy channel. [This procedure for de-
termining the uncertainties in the recovered mean source elec-
tron spectrum does not incorporate possible systematicF̄ (E)
effects (e.g., Smith et al. 2002) in the photon spectra used for
the analysis. Therefore, features that appear may reflect, to
some degree, such systematic errors rather than real features
in the actual . Differentiation between real features andF̄ (E)
those introduced by systematic effects will improve as our
understanding of the latter is improved.]

The spectrum deduced by Holman et al. (2003) based on an
isothermal�power-law fit is shown for comparison in Fig-
ure 1. The absolute values, and general trends, of the forward-
fitted and regularized inverted spectra agree very well over the
whole energy range, so that “global” quantities such as energy
content, etc., are equally well calculated from either spectrum.
However, the regularized spectrum shows significant features
(such as a local minimum near 55 keV) that cannot be detected
by procedures such as parametric power-law fitting. It also shows
the true form of at low energies without any assumptionF̄(E)
about thermality or nonthermality of the electron population, far
less the usual assumption ofisothermality.

The top panel of Figure 2 shows the reconstructed photon
spectrum over the photon energy range up to 300 keV, obtained
by convoluting the spectrum of Figure 1 up to electron¯n̄VF(E)
energies of 1 MeV with the Haug (1997) bremsstrahlung cross
section. The bottom panel of Figure 2 shows the residuals (data
minus reconstructed spectrum, normalized to the standard de-
viation in the photon flux at each energy) over the same energy
range.

The top panel of Figure 3 shows the distribution of the
sizes of the normalized residuals; they are well fitted by a
Gaussian form with a mean of� and a standard0.020j
deviation of . With 146 points (15–160 keV in1.034j
1 keV steps) in the distribution, the standard error in the
mean is ; hence, the measured offset�1.034j/ 146� 0.086j
of the mean from zero is only 0.23 of a standard error and
so not significant. However, the pattern of residuals shown
in the bottom panel of Figure 2 indicates that merely having
a Gaussian distribution of residuals is not a sufficiently strin-
gent test; it is also necessary to consider the distribution of
residuals with respect to photon energye, in order to assess

the level of clustering of positive and/or negative residuals
in certain energy ranges (e.g., the apparent tendency for the
residuals to be consistently negative in the photon energy
range from ∼25 to 45 keV). We therefore consider the
function

N1
S(e) p r , (5)� iN ip1

where is theith normalized residual, corresponding to theri

photon energy keV, as shown in the bottom panel of(14� i)
Figure 2, and keV is the photon energy corre-e p (14� N)
sponding to theNth residual. The quantity is the averageS(e)
(normalized) residual over the photon energy interval

; if the residuals were randomly distributed, then[15 keV,e]
would exhibit a random walk with a standard deviationS(e)

. We found that varying the spectral indexd of the�j p 1/ N
greater than 160 keV extrapolated electron spectrum (seeF̄(E)
§ 3) resulted in significantly different forms of . Many ofS(e)
these forms exhibited deviations from zero greater than .3 j
Such forms indicate an unacceptable level of clustering of pos-
itive (or negative) residuals and hence a value ofd that can be
rejected at the 99% confidence level. The value ofd was chosen
to yield the most acceptable behavior of (i.e., least max-S(e)
imum deviation from zero), i.e., .d p 2.45

The bottom panel of Figure 3 shows the actual variation of
for the residuals shown in Figure 2. stays within theS(e) S(e)
random walk limits over the entire energy range, so that3 j

the null hypothesis (of residuals distributed randomly with re-
spect to photon energy) is acceptable. Nevertheless, there is
significant evidence of some clustering of residuals [e.g., the
systematic decrease in from∼25 to 45 keV], which is aS(e)
subject for future investigation.

We conclude that the form of in Figure 1 yields anF̄(E)
acceptable fit to the photon spectrum, with residuals consistent
with random data noise. Based on this fidelity in fitting the
photon spectrum, we assert that the electron spectral features
in Figure 1 are real and therefore carry important information.
(While, to the eye, the nearly power-law photon spectra re-
sulting from a single– or double–power-law mean electron
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spectrum also look very good, with a small [Holman et al.2x
2003], such apparent fits are very misleading in the case of ill-
posed inverse problems [Craig & Brown 1986].) In particular,
the dip in at around 50–60 keV, the significant excessF̄(E)
over an isothermal form in the∼30–45 keV range, and the fact
that the spectrum isincreasing over the energy intervalF̄(E)
from ∼55 to ∼60 keV are all significant features at up to the

level.5 j

5. DISCUSSION

In this Letter, we have shown that the regularized SVD in-
version technique (Tikhonov 1963; Piana 1994) can be used
rather productively to derive effective mean electron flux spec-
tra [ ; Brown et al. 2003] in solar flares. The spectra thusF̄ (E)
derived reveal features not accessible with the simple para-
metric forms usually associated with forward-fitting methods.

The feature in around 55 keV must indicate an energyF̄(E)
characterizing the physics either of the acceleration process or
of electron propagation/energy losses. It could indicate the
presence of a lower limit to the accelerated electron spectrum,
with the shallowing of the spectral slope between∼30F̄(E)
and 50 keV due to the presence of thermal plasma from a
source with a broad temperature distribution (see, e.g., Brown
1974 and Brown & Emslie 1988), with a steadily declining
emission measure over a range of temperature consistent with
the range of electron energies involved, viz., 10 keV�

keV, much larger than the dominant, purely isothermalkT � 50
component at keV found by Holman et al. (2003).kT � 3

If the acceleration were purely stochastic in character, one
would expect a scale-free acceleration spectrum (i.e., a pure

power law). Attributing the feature in to the acceleratorF̄(E)
would thus require either that the stochastic process have a
threshold energy or that acceleration be by large-scale electric
fields with a minimum associated potential drop. As far as
propagation effects are concerned, it should be remarked that
the energy of this feature is very close to the value of the
quantity found by Kontar et al. (2003) in their forward-E∗
fitting analysis of the hard X-ray photon spectrum for this event.
In that analysis, represents the energy required to penetrateE∗
to the weakly ionized chromospheric layers of the flare, and it
is therefore not unexpected that the spectrum would showF̄(E)
interesting features in the vicinity of this energy (Kontar,
Brown, & McArthur 2002; Brown et al. 2003).

Such features, and their significance for electron acceleration
and propagation in solar flares, will be addressed in future work.
The key point for now is that, unlike forward-fitting techniques
that utilize only a few parameters (e.g., the power-law spectral
index), the regularized inversion technique utilized here is ca-
pable of revealing such interesting features and their evolution
with time. In future papers, the sensitivity of such features to
the exact form of the bremsstrahlung cross section used, and
the evolution of such features throughout this (and other)
events, will be discussed and evaluated.
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