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ABSTRACT

We present a new compressible MHD model for simulating the three-dimensional structure of the solar wind
under steady state conditions. The initial potential magnetic field is reconstructed throughout the computational
volume using the source surface method, in which the necessary boundary conditions for the field are provided
by solar magnetogram data. The solar wind in our simulations is powered by the energy interchange between
the plasma and large-scale MHD turbulence, assuming that the additional energy is stored in the “turbulent”
internal degrees of freedom. In order to reproduce the observed bimodal structure of the solar wind, the ther-
modynamic quantities for the initial state are varied with the heliographic latitude and longitude depending on
the strength of the radial magnetic field.

Subject headings: interplanetary medium — methods: numerical — MHD — solar wind — Sun: evolution —
Sun: magnetic fields

On-line material: mpeg animation

1. INTRODUCTION

The global structure of the solar wind results from the com-
plex interaction between the expanding coronal plasma, mag-
netic fields, solar rotation, and interplanetary turbulence. The
observed dichotomy between a fast solar wind and a slow solar
wind (Phillips et al. 1995; Goldstein et al. 1996) results from
the topological structure of the solar magnetic fields that are
divided into open field and closed field regions by the bound-
aries of helmet-like streamers. Unlike open field regions (as-
sociated with coronal holes), magnetic fields in helmet stream-
ers are bipolar, and their strength is large enough to prevent
the bulk expansion of coronal plasma.

The simulation runs presented in this Letter are designed to
reproduce the global structure of the heliosphere under realistic
conditions. The initial magnetic field at the solar surface is
taken from synoptic maps, and the field is reconstructed into
the simulation volume through a potential field extrapolation
(Altschuler et al. 1977). The MHD solution is allowed to evolve
from this initial configuration to a fully self-consistent, non-
potential solution.

Our model was inspired by a multitude of previous numerical
efforts pioneered by Pneuman & Kopp (1971), who first studied
the steady, axisymmetric expansion of coronal plasma from a
sphere with an embedded dipolar magnetic field. Similar mag-
netic configurations were used in the majority of later studies
in two dimensions (see Wang et al. 1998 and Suess et al. 1999)
and three dimensions (see Usmanov 1993 and Groth et al.
2000), in order to model the solar wind conditions representing
the heliosphere at solar minimum. Most studies have success-
fully reproduced the global structure of the outer solar corona,
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but the bimodality of the solar wind could not be modeled in
a quantitative manner without adding proper empirical sources
to power the wind in open field regions. The incorporation of
Alfvén waves in the momentum balance and energetics of the
solar wind was studied extensively in one-dimensional mag-
netohydrodynamics (see Holzer, Fla˚, & Leer 1983 and Mc-
Kenzie, Axford, & Banaszkiewicz 1997). The effect of an Alf-
vén wave flux on the flow properties of the solar wind, in a
WKB approximation, was recently studied in two dimensions
by Usmanov et al. (2000). These results are in good agreement
with the Ulysses data normalized to 1 AU. The dissipation of
an Alfvén wave spectrum at the ion-cyclotron frequency might
additionally lead to preferential heating of the ions in open field
regions (Axford & McKenzie 1992).

We are still taking the first steps in modeling the global
structure of the heliosphere for realistic conditions derived from
solar magnetogram data (Linker et al. 1999; Riley, Linker, &
Mikić 2001). In this Letter, we present further attempts in this
direction, which employ a fully three-dimensional and com-
pressible MHD in our simulations. We allow for the polytropic
index to change with radial distance from the Sun (Wu et al.
1999), but in our model, a form of the total energy is conserved.

2. MODEL

In order to simulate the large-scale structure of the corona
properly, one has to consider the solar plasma as a gas with a
polytropic indexg close to unity (Steinolfson & Hundhausen
1988), say , close to the Sun. Near the Earth, however,g ≈ 1.1
observations indicate that the polytropic index of the solar wind
plasma has a value of (Phillips et al. 1995; Totten,g ≈ 1.50

Freeman, & Arya 1995). This could be interpreted as the ratio
of specific heats for a gas of particles with degrees ofn ≈ 4
freedom since, in general, . For a fully ionizedg p (n � 2)/n0

plasma, such as the solar wind, there are almost no species
with standard internal degrees of freedom such as those arising
from molecule vibrations, rotations, and bound-bound and
bound-free electron transitions in atoms/ions. However, espe-
cially close to the Sun, a significant amount of energy is stored
in waves and turbulent fluctuations. We therefore adopt a mod-
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Fig. 1.—Comparison betweenUlysses data normalized to 1 AU (dotted curves in black) and simulation results for a nontilted, rotating magnetic dipole (solid
curves in red).

Fig. 2.—Left: Three-dimensional view of the magnetic field geometry near the Sun. The solid lines are magnetic field lines, where the false-color code visualizes
the wind speed in kilometers per second.Right: Three-dimensional view far from the Sun showing isosurfaces of a wind speed of 470 km s�1 (shaded in green);
a wind speed of 760 km s�1 (orange); and a zero radial magnetic field (purple). This figure is also available as an mpeg animation in the electronic edition of
the Astrophysical Journal.

eling approach in which low values ofg are associated with
such “turbulent” internal degrees of freedom, in a way anal-
ogous to the work of Zeldovich & Raizer (2002) in partially
ionized plasmas.

Within some temperature intervals, the ratio of specific heats
for partially ionized plasmas is very close to unity, or, equiv-
alently, the specific heat is very large precisely�1(g � 1) p n/2
because energy can be stored in a form of the ionization po-
tential of decoupled electrons, and it can be deposited in the
course of plasma recombination as these electrons rejoin the
ions. The contribution of the specific heat due to internal de-
grees of freedom is p , and�1 �1(g � 1) � (g � 1) (n � 4)/20

the additional internal energy may be expressed asE pst

. HereP is the plasma pressure, and is[P(n � 4)/2](T /T ) Tst st

the temperature in the internal degrees of freedom, which gen-
erally differs from the kinetic plasma temperature,T. The full
energy balance in this case is given by one more equation for

describing the energy exchange between the classical andEst

internal degrees of freedom in terms of temperature relaxation,
namely,

E � P(n � 4)/2st(energy eq. withg p g ) p , (1)0
trel

�E E � P(n � 4)/2st st� � · (UE ) p � , (2)st
�t trel

where is the relaxation time. If this time tends to infinity,trel

the stored and classical internal energies are conserved inde-
pendently, while in general only the total is conserved.

Following this approach, we assume that the energy of tur-
bulent motions near the Sun can also be treated as the extra
energy stored in the plasma, in a manner analogous to equations
(1) and (2). Note that phenomenological models of turbulence
based on “hydrodynamical” equations for the turbulent energy
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Fig. 3.—Mercator map projection of the steady state wind speed in kilometers per second (background image) and the radial magnetic field (contours) at
1 AU. The position of the current sheet is shown as the dashed contour in white. The magnetic field strength is given in units of nanotesla.

Fig. 4.—Mercator map projection of the steady state wind temperature in kelvins (image) and the number density in units of m�3 (contours) at 1 AU. Both
quantities are shown in a logarithmic scale. The dashed contour line in black marks the minimum value of number density.
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density with some “equation of state” for the latter are widely
used in applied physics (see Saurel, Chinnayya, & Renaud 2003
and the references therein). The role of the energy interchange
depends on the relation between the relaxation time,trel, and
the characteristic hydrodynamical time,thyd. If , thent k thyd rel

, and the resulting energy equation (the sumE ≈ P(n � 4)/2st

of eqs. [1] and [2]) is for . In the opposite limit,g p (n � 2)/n
, equation (1) is valid for , and equation (2)t K t g p ghyd rel 0

is not needed. In our numerical model, we choose to be astrel

small as possible (of the order of the time step). We further
assume that the internal degrees of freedom depend on the kinetic
plasma temperature as , where we choosen(T ) p n � n T/T0 1 0

and following the discussion above. Here isn p 4 n p 9 T0 1 0

some reference value of temperature at the Sun that will be
defined later. Thus, we employ the full energy equation in our
computations with a polytropic index ,g p [n(T ) � 2] /n(T )
which is now a function of temperature describing the additional
energy density associated with turbulent motions. We note that
this technique is an empirical one inspired by the “hidden in-
ternal” degrees of freedom. This is only a model we are using
to bridge from a polytrope, which is nearly isothermal, to a fully
fledged energy equation with wave coupling and heating.

In the static initial state, the plasma temperature as a function
of radial distance from the Sun,R, can be obtained from the
differential equation of state, namely,dp p {g(T )/ [g(T ) �

, and the equation for hydrostatic equilibrium in the1]} r dT
absence of magnetic field, i.e., . (We workdp p GM rd(1/R),

in units where the universal gas constant equals the mean mo-
lecular weight.) As a result of simple integration from toR,

R, we obtain the following quadratic equation foru(R) p
:T(R)/T0

4 n 4 n n R0 0 1 ,2u � 1 � u � 1 � � p 0. (3)( ) ( )n 2 n 2 4 R1 1

Here the reference temperature is chosen such that the as-T0

ymptotic behavior of at large distances is∼1/R, so thatu(R)
as . Furthermore, this choice is consistent with solaru r 0 R r �

wind observations showing that and for2r ∼ 1/R T ∼ 1/R g ≈
. The explicit choice for reads1.5 T T p GM /[R (1 �0 0 , ,

. Once the temperature is derived from equationn /2 � n /4)]0 1

(3), the plasma pressure can be obtained from pd ln (p/p )0

p , fol-{g(T )/[g(T ) � 1]}d ln (T/T ) [1 � n /2 � n u/2]d ln u0 0 1

lowing a direct integration. (Here is the reference value forp0

pressure atR,, where .) As a result,T p T0

n (1 � u)1(1�n /2)0p p p u exp � . (4)0 [ ]2

From the equation of state, the mass density isr p
, where (in units of �14r (p/p )/u r p p /T p 1 8.36# 100 0 0 0 0

kg m�3). For and , the value of becomesn p 4 n p 9 T0 1 0

K, and ranges from 1 at64.402# 10 u(R) p T(R)/T R p0

to at AU. Accordingly, ranges�3R 8.053# 10 R p 1 g(R),

from 1.154 at the solar surface to 1.491 at 1 AU.
In order to reproduce the observed bimodal structure of the

solar wind, we impose a temperature variation on the solar
surface depending on the strength of the radial magnetic field.
This is chosen asT [R , B (v,f)] p T L [B (v, f)] p T [1 �, R 0 R 0

. Here is the strength of the radial mag-(L � 1)B (v, f)/B ] Bt R 0 R

netic field at the surface (by absolute value), is the maximumB0

value of , and (≥1) is the ratio between the temperatureB LR t

where (magnetic poles in the case of dipole field) andB p BR 0

that where (magnetic equator). From this definition,B p 0R

and are the two extremes. With thisL(B ) p L L(0) p 10 t

modification in place, all of the above derivations still apply,
but has to be replaced by everywhere. Sincen n L [B (v, f)]1 1 R

the pressure at the surface, , scalesp [R , B (v, f)] p p (B ), R 0 R

as , the following relation applies: pT (B ) p (B )/p (0)0 R 0 R 0

p [1 � /2 � L(0)/4]/[1 � /2 � /T (B )/T (0) n n n n L(B )0 R 0 0 1 0 1 R

4] p . The mass density at the solar surface can beY(B ) ≤ 1R

obtained from the equation of state, which givesr (B ) p0 R

. In order to achieve good agreement betweenr (0)Y(B )/L(B )0 R R

model results and solar wind data, as will be shown in § 4, it
is necessary to choose , which gives pL p 2.10 Y(0)/Y(B )t 0

1.47, and so . Note also that for ,r (0)/r (B ) p 3.09 B p 00 0 0 R

ranges from 1.154 at the solar surface to 1.491 at 1 AU,g(R)
while for , these values are 1.087 and 1.474, respec-B p BR 0

tively. Once derived for the initial temperature distribution, the
value of g at each point of the three-dimensional volume is
maintained throughout the simulations.

3. SIMULATION SETUP

The governing equations of compressible MHD are solved
in conservative form using the Block Adaptive-Tree Solar-wind
Roe-type Upwind Scheme (BATS-R-US) code (Powell et al.
1999). We employ the Artificial Wind method (Sokolov et al.
2002) as an approximate Riemann solver. An explicit, two-
stage time-stepping algorithm is used to advance the solution
in time. The solenoidal constraint is achieved using� · B p 0
the eight-wave scheme of Powell et al. (1999).

The simulation domain is a cube with a length of 440R,,
and the numerical grid is nonuniform, consisting of self-similar
blocks with 43 cells. After five levels of uniform initial refine-
ment, we applied seven more levels of body-focused refinement
in order to achieve the highest spatial resolution near the Sun.
Thus, the total number of computational cells becomes
3,147,264. The smallest grid size corresponds to 0.0269R,,
while the largest cells (near the outer boundaries) are 128 times
bigger than this.

The boundary conditions describe an impenetrable and highly
conducting spherical inner body, placed at , andR p R p 1,

open outer boundaries. In order to achieve line-tying of the mag-
netic field at the inner boundary, all velocity components are
maintained at zero throughout the simulation runs, with the ex-
ception of solar rotation (which is assumed to be uniform with
latitude). The pressure, turbulent energy density, , and massEst

density are fixed at the inner body. This ensures a dynamical
evolution of the system toward a steady state. Floating conditions
are applied to the radial and tangential components of the mag-
netic field. The open boundary conditions at the outer surface
of the computational domain are implemented by applying a
zero gradient to all physical variables.

4. “STEADY-STATE” SOLAR WIND DRIVEN BY SOLAR
MAGNETOGRAMS

The model described above was tested for a nontilted, rotating
magnetic dipole (with the field strength at the poles chosen as
3.87 G). We used this simple case to explore the consequences
of the source terms we introduced in equations (1) and (2), as
well as to filter out the right choice of parameters that produces
the most realistic solar wind. The results of this comparison are
shown in Figure 1. The solid curves in this figure correspond
to simulation results, while the dotted curves representUlysses
data obtained for the period from 1994 September through 1995
July. These data are normalized to 1 AU following Goldstein et
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al. (1996). The set of parameters for this simulation run is as
given above. As seen in the figure, the bimodal structure of the
modeled solar wind is well reproduced. However, there is a lack
of sharp transition between the two types of wind because of
the insufficient numerical resolution.

Simulation results for a realistic magnetic field configuration
at the Sun are shown in Figures 2, 3, and 4. To obtain the bulk
solar magnetic fields, we followed the Potential Field Source
Surface method by Altschuler et al. (1977). This method as-
sumes that the magnetic field is a potential field and that the
magnetic scalar potential is estimated as a series of spherical
harmonics. The coefficients in the series6 are chosen to fitreal
magnetogram data obtained from the Wilcox Solar Observa-
tory. The source surface (where the scalar potential is equal to
zero) is placed at radial distance from theR p 2.5 Rss ,

Sun. The function is chosen asL [B (v, f)] {1 � (L �R t

where G as above. In this1) min [1,B (v, f)/B ]}, B p 3.87R 0 0

Letter, we present simulation results for Carrington rotation
1881 (with a central meridian on 1994 April 22). The left panel
of Figure 2 shows a three-dimensional view of the field ge-
ometry near the Sun under steady state conditions. The sphere
is placed at , and the color code represents the solarR p R,

wind speed. A three-dimensional view far from the Sun is
shown in the right panel of Figure 2.

As seen in Figures 3 and 4, the fast wind (∼790 km s�1)
correlates with open field regions, whereas the slow wind
(∼425 km s�1) originates from helmet-type coronal streamers.
The dense (∼ m�3) and cool (∼ K) outflow7 51.5# 10 1.1# 10
is associated with closed field regions at the Sun, whereas in
coronal holes we observe a rarefied (∼ m�3; see the65.0# 10
dashed contour line in black in Fig. 4) and hot (∼ K)53.1# 10

6 They can be obtained from http://solar.stanford.edu/˜wso/forms/prgs.html.

solar wind. These results agree with the observed solar wind
characteristics at 1 AU, both in a qualitative and a quantitative
manner, despite the relatively course spatial resolution in our
simulations (∼3.438R,) at this radial distance from the Sun.

5. CONCLUSIONS

We used the concept of energy interchange between the
plasma and turbulence, in terms of temperature relaxation, to
describe the thermal properties of plasma and flow acceleration
in the inner heliosphere. We developed an empirical model in
which the low values ofg near the Sun are associated with the
“turbulent” internal degrees of freedom; we allowed forg to
change with radial distance from the Sun, but a form of the
total energy was conserved. By means of this approach, we
were able to produce a steady state solar wind in simulations
involving magnetic fields derived from observations, and we
succeeded in obtaining results that are consistent with observed
wind properties at 1 AU.

We believe that the computational techniques presented in
this Letter open new doors to incorporating magnetic obser-
vations into numerical simulations aimed at modeling the global
heliosphere and space weather. In a follow-up study, we intend
to make a detailed comparison between MHD results and ob-
servational data, ranging from solar minimum to solar maxi-
mum conditions.
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