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ABSTRACT

We study radiation-hydrodynamical normal modes of radiation-supported

accretion disks in the WKB limit. It has long been known that in the large

optical depth limit the standard equilibrium is unstable to convection. We

study how the growth rate depends on location within the disk, optical depth,

disk rotation, and the way in which the local dissipation rate depends on

density and pressure. The greatest growth rates are found near the disk surface.

Rotation stabilizes vertical wavevectors, so that growing modes tend to have

nearly-horizontal wavevectors. Over the likely range of optical depths, the

linear growth rate for convective instability has only a weak dependence on disk

opacity. Perturbations to the dissipation have little effect on convective mode

growth rates, but can cause growth of radiation sound waves.
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1. Introduction

Shakura & Sunyaev (1973) predicted that the inner portions of accretion disks that

extend into relativistically-deep gravitational potentials should be radiation pressure-

dominated when the accretion rate is greater than a modest fraction of the Eddington rate.

In that regime, they found that disks could achieve hydrostatic balance in the vertical

direction if the local dissipation rate were proportional to the local mass density. Given

that assumption, upward radiation flux could support the disk matter against gravity if the

density were essentially constant as a function of height (falling sharply to zero at the top

surface) and the radiation pressure fell gradually from the disk midplane to the surface.

Soon after this equilibrium was discovered, it was found to suffer from several sorts

of instabilities. Lightman & Eardley (1974) pointed out that if the viscous stress is

proportional to the total pressure (in this case, dominated by radiation), perturbations with

radial wavelengths long compared to the vertical thickness h, but short compared to a radius

r, grow on the (comparatively long) viscous inflow timescale. Shakura & Sunyaev (1976)

then observed that in these conditions perturbations in the same range of wavelengths

would also grow on the (shorter) thermal timescale. Bisnovatyi-Kogan & Blinnikov (1977)

noticed that if the radiation is locked to the gas even on short lengthscales (i.e., if, for the

purpose of dynamics, the optical depth is treated as effectively infinite), such disks should

be convectively unstable, for the specific entropy decreases outward; the linear growth

rate for convective “bubbles” was worked out by Lominadze & Chagelishvili (1984). More

recently, Gammie (1998) has demonstrated that a magnetic field in radiation-supported

disks can catalyze a short-wavelength (kh � 1) overstable wave mode. In view of these

instabilities, it has long been a puzzle just what sort of equilibrium would actually be

found in Nature when the accretion rate is high enough that radiation pressure-domination

might be expected (see, e.g. Shapiro, Lightman & Eardley 1976; Liang 1977; Coroniti 1981;
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Svensson & Zdziarski 1994; Szuszkiewicz & Miller 1997; Krolik 1998).

In this paper, we take a closer look at the nature of the short wavelength modes in

radiation-supported disks without magnetic fields. Our goal (motivated by a companion

work on radiation-hydrodynamics simulations of such disks: Agol & Krolik 2000b) is to

examine more closely which modes can be expected to grow most quickly, what happens

when finite optical depth permits some photon diffusion, and what role, if any, is played by

associated perturbations in the local dissipation rate.

2. Problem Definition

We begin by writing down the equations of non-relativistic radiation hydrodynamics

so that we may first describe the equilibrium in this language, and then discuss linear

perturbations to this equilibrium. Because we are interested in accretion disks, it is

convenient to write them in a rotating frame. The first is the usual equation of mass

conservation:

∂ρ

∂t
+ ∇ · (ρ~v) = 0. (1)

Our notation is the usual one, in which ρ is the mass density and ~v is the fluid velocity.

Next is the the fluid force equation:

ρ
∂~v

∂t
+ ρ~v · ∇~v = −∇pg + ρ~g + (κρ/c) ~F + 2ρ~v × ~Ω − ρvr(∂Ω/∂ ln r)φ̂ (2)

where pg is the gas pressure, ~g is the local gravity, κ is the opacity per unit mass, ~F is the

radiation flux, and Ω is the rotation rate of the fluid. Although all the fluid quantities are

defined in the rotating frame, the radiation quantities (e.g., ~F) are defined in the frame of

the local fluid motion, i.e. including any departures from corotation (Mihalas & Mihalas

1984). Note that we have omitted magnetic forces.

For the two equations describing radiation energy density and momentum density,
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we follow Buchler (1979), but write the Lagrangian time derivatives explicitly, i.e.,

D/Dt = (∂/∂t + ~v · ∇). The evolution of radiation energy density E is described by:

∂E

∂t
+ ~v · ∇E + ∇ · ~F + pr : ∇~v +

E

c2
∇ · ~v +

2

c2

(
∂~v

∂t
+ ~v · ∇~v

)
· ~F = Q. (3)

Here pr is the radiation pressure tensor and Q is the net local emissivity. Finally, there is

the equation describing the time-dependence of the radiation momentum density (1/c2)F :

1

c

∂ ~F
∂t

+
~v

c
· ∇ ~F + c∇ · pr +

1

c

(
~F · ∇~v + ~F∇ · ~v

)
+

1

c
(EI + pr) ·

(
∂~v

∂t
+ ~v · ∇~v

)
= ~q. (4)

In this equation, I is the identity matrix and ~q is the net rate per unit volume at which

photon momentum is created by radiation (usually negative in the fluid frame because

photon momentum is lost due to opacity, while newly-created photons are usually isotropic

in the fluid frame).

In the equilibrium, ∂/∂t = ~v = 0. To isolate the effect of radiation support, we also

take the extreme limit of pg � pr. If we regard the rotation of the disk matter as cancelling

the radial component of gravity, the only non-trivial remark to make about the equilibrium

is that Fz = cg/κ, where g = gz(z, r) is the local vertical component of gravitational

acceleration [in a thin disk, gz(z, r) ' GMz/r3 for central mass M ].

Now consider perturbed versions of equations (1) through (4). In order to write

these perturbations in Fourier-transform form (i.e., for any quantity X, the perturbation

is δX̃ = δX exp{i(krr + kzz) − iωt}), we will suppose that the wavevectors obey three

conditions: that k = (k2
z + k2

r)
1/2 � κρ; that kz � 1/h; and that kr � 1/r. The first

limit means that the diffusion approximation applies, i.e. pr = prI, so that E = 3pr. The

second is the WKB approximation, as applied to variations in both the radial and vertical

directions. Note that we further restrict our attention to axisymmetric perturbations. The

condition kzh � 1 also means that we can ignore any gradients in the gravity or equilibrium

radiation flux. In addition, assuming kr � 1/r allows us to neglect the terms in vector
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divergences arising from cylindrical geometry. For example, after Fourier-transforming,

∇ · δ~v becomes ikrδvr + δvr/r + ikzδvz ' ikrδvr + ikzδvz. We then find:

−iωδρ + ρi~k · δ~v = 0 (5)

−iωρδvr = (κρ/c)δFr + 2ρΩδvφ (6)

−iωρδvz = (κρ/c)δFz (7)

−iωρδvφ = (κρ/c)δFφ − (1/2)ρΩδvr (8)

−3iωδpr − 3ρgδvz + ikzδFz + ikrδFr + 4pr (ikzδvz + ikrδvr) − i
2ω

c2
δvzFz = δQ (9)

−i(ω/c)δFr + ikrcδpr + ikz(g/κ)δvr − 4i(ω/c)prδvr = −κρδFr (10)

−i
(

ω

c

)
δFz + ikzcδpr +

g

κ
(2ikzδvz + ikrδvr) − 4i

ω

c
prδvz = −cgδρ − κρδFz (11)

−i(ω/c)δFφ + i(kz/c)Fzδvφ − 4i(ω/c)prδvφ = −κρδFφ (12)

The second and third equations in this set are the two components of the fluid force

equation, with the vertical component reduced by the fact that the radiation flux exactly

balances gravity in the equilibrium. The last three equations are the three components of

the radiation flux equation. These equations may be further simplified by the assumption

(verifiable post hoc) that ω � κρc; that is, the wave frequency is very small compared to

the mean time between photon scattering events.

With the further approximation that pr � ρc2, equations (5) – (12) may be

manipulated to yield a dispersion relation. This relation is most conveniently displayed in

terms of dimensionless quantities, so that ω = ω∗
√

g/h and ~k = ~k∗/h. To satisfy the WKB

approximation, k∗z � 1 and k∗r � h/r. The dispersion relation is then seen to depend on

six dimensionless combinations of parameters:

P =
pr

ρgh
(13)

G =

√
gh

c
(14)
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Ω2
∗ = hΩ2/g (15)

τ = κρh (16)

Qp = (∂Q/∂pr)(h/g)1/2 (17)

Qρ = (∂Q/∂ρ)(hg3)−1/2 (18)

Note that here g is g = gz(z), the local value of the vertical gravity. In any thin disk,

the quantity G � 1, for it is of order the free-fall speed from the top of the disk to

the midplane in units of c. The relative importance of rotational effects is given by Ω2
∗,

which is simply h/z for Keplerian rotation. The parameter P is also a function of height

above the midplane. In an optically thick disk, P = 1
2
[1 + 1/τ − (z/h)2]/(z/h). Thus,

the two parameters P and Ω2
∗ could be replaced by the single parameter z/h. The last

two dimensionless parameters describe the sensitivity of the dissipation to the radiation

pressure and the density, respectively. If one could extrapolate the “α” prescription to local

fluctuations, one might expect that Qp ' α.

3. The Dispersion Relation

3.1. General considerations

In terms of these dimensionless quantities, the dispersion relation is:

3ω5
∗ +

[
ik2

∗/(Gτ) − 3k∗zG/τ − iQp

]
ω4
∗

−
(
4k2

∗P + 3Ω2
∗ + ik3

∗z/τ
2 − ik∗zGQp/τ

)
ω3
∗

+
[
4k3

∗zPG/τ − ik2
∗Ω

2
∗/(Gτ) + iQp(−ik∗z + Ω2

∗) − ik2
∗Qρ

]
ω2
∗

+
[
4k2

∗zPΩ2
∗ − 3k2

∗r + k2
∗zG(ik∗zQρ −Qp)/τ

]
ω∗

+ k∗zk2
∗rΩ

2
∗/(Gτ) + k∗zΩ2

∗(ik∗zQρ −Qp) = 0.
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In the limit of τ → ∞ and Qp = Qρ = 0, this dispersion relation simplifies to

ω5
∗ −

[
(4/3)k2

∗P + Ω2
∗
]
ω3
∗ +

[
(4/3)k2

∗zPΩ2
∗ − k2

∗r
]
ω∗ = 0. (19)

One root is clearly ω∗ = 0. The other four are given by:

ω2
∗ =




(4/3)k2
∗P

[2k2
∗zΩ

2
∗ − (3/2)k2

∗r/P ] /k2
∗

(20)

The first pair of roots are the familiar radiation-supported sound waves. The second pair

describe buoyancy behavior (cf. Balbus 1999). If k2
∗zΩ

2
∗ ≥ (3/4)k2

∗r/P , there are two

neutrally stable gravity (epicyclic) waves; on the other hand, if k2
∗zΩ

2
∗ < (3/4)k2

∗r/P , one

mode is damped, but the other grows exponentially with essentially no oscillation. It is this

last mode that corresponds to convection. Although rotation tends to have a stabilizing

effect, when Ω∗ > 0 one can always find a mode with kr/kz large enough to satisfy this

criterion. As a consequence, when radiation pressure dominates gas pressure in a very

optically thick disk, the standard equilibrium is always unstable to convection. However,

relatively strong rotational effects (i.e., Ω2
∗P ∼ (h/z)2 relatively large, or location near the

midplane) do diminish the range of wavevector directions that is unstable.

3.2. Dependence on parameters

As already remarked, both P and Ω∗ are determined by z/h, and both should be,

except very near the midplane, ∼ 1. Because the growth rate of the fastest growing mode in

the optically thick limit is ' P−1/2, and P decreases upward, convective instability should

develop most rapidly near the top of the disk. This expectation is borne out when the full

equations are solved: as predicted by equation 20, when kr � kz, the growth rate is nearly

independent of |~k| and is ' 7× greater at z/h = 0.9 than at z/h = 0.1.
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The optical depth τ in a radiation pressure-dominated Shakura-Sunyaev disk is

τ =
4/3

α
ṁ−1x3/2

(
κ

κT

)−1 RzRT

R2
R

, (21)

where α is the usual dimensionless stress parameter, ṁ is the accretion rate in Eddington

units for unit efficiency, x is the radius in units of GM/c2, κ/κT is the opacity relative to

pure Thomson opacity, and RR,T,z are the relativistic corrections to the dissipation rate,

torque, and vertical gravity (Page & Thorne 1974; Abramowicz, Lanza & Percival 1997; see

also Agol & Krolik 2000a). Because we expect α, ṁ < 1, but x must be > 1, these disks

should be optically thick. However, in the inner part of the disk, τ might be as little as

∼ 102.

Fig. 1 shows how the growth rate and phase velocity of the unstable convective modes

depend on wavenumber and kz/kr when there is no perturbation to the dissipation rate and

the optical depth is very large (τ = 106). To illustrate the dependence on optical depth,

the same curves are shown in Fig. 2 for a case with the smallest optical depth one might

expect, τ = 102. In both cases, the range of meaningful wavenumbers (and hence the range

of wavenumbers displayed in the figures) is limited by two criteria. On the one hand, the

WKB approximation demands that kzh � 1; on the other, the diffusion approximation is

only consistent with kh � τ . We present results extending out to kh ∼ τ ; at the highest

wavenumbers shown, the diffusion approximation has only marginal validity.

For fixed optical depth, the growth rate depends on kz/kr; when kz/kr
>∼ 1.2, the

unstable convective mode disappears. For smaller kz/kr (< 0.1), the growth rate is

independent of kz/kr. Decreasing the optical depth reduces the extent of the “flat” portion

of the growth rate curve for a given kz/kr. However, the largest value of the dimensionless

growth rate, (ω∗i)max, in the wavenumber range of physical interest is almost independent

of τ over this range.

Figs. 1 and 2 also show the phase velocity of the unstable convective mode, normalized
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to the free fall speed in the disk. For large optical depths, the real frequency of convective

modes is so close to zero that they can be considered as non-oscillatory; decreasing

the optical depth towards the smallest value (τ = 102) expected for radiation pressure

dominated disks leads to an increase in the real frequency of the mode, endowing it with a

non-negligible phase velocity and, as a consequence, it becomes oscillatory.

In the absence of perturbations to the dissipation rate, finite (although large)

optical depth primarily affects the radiation sound waves (cf. Agol & Krolik 1998). Not

surprisingly, as the opacity falls, short wavelength sound waves become damped. Less

intuitively, convective modes remain unstable even when the diffusion rate (∼ k2
∗c/(hτ))

is larger than the characteristic frequency
√

g/h, i.e. when k∗ >
√

Gτ . In this regime,

epicyclic motions cause convective modes to acquire an oscillatory character. Convection

remains unstable even in the face of strong radiative diffusion because the equilibrium gas

density is constant. A parcel that begins to fall because its specific entropy is too small is

squeezed as it encounters higher pressure. Its radiation pressure rises, but because diffusion

is so effective, only up to the ambient level. Meanwhile, however, the increased gas density

means that the parcel’s density exceeds that of its neighbors, and it continues to fall.

Such impunity to the effects of radiation diffusion does not persist all the way to zero

opacity, however. When k∗ > τ , the diffusion approximation is no longer a valid description

of radiation transfer. For wavelengths that short (or opacity that small), the radiation

streams freely, entirely independent of gas motions. In that limit, if there is nothing to alter

the distribution of dissipation, there is no perturbation to the flux as a function of position,

and therefore, no perturbation to the force. The result, of course, is that convection

disappears.

Again applying the Shakura-Sunyaev disk solution, we expect G to be small, for it is
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given by

G =
3

2
ṁ
(

κ

κT

)(
z

h

)1/2

x−3/2 RR

R
1/2
z

. (22)

G becomes irrelevant over most of the wavenumber interval of interest when τ → ∞, as

every factor in which it appears in the dispersion relation is divided by τ ; the value of G

can still have some influence even at large τ only for very large wavenumbers, k∗ >∼ 0.01τ ,

since some of those same terms of the dispersion relation actually are ∝ k2
∗/τ or even

∝ k3
∗/τ . However, even when τ is as large as 105, some dependence on G begins to appear

across the range of interesting wavenumbers. When the optical depth is no larger than

this, diminishing G tends to enhance instability, particularly at short wavelengths. When

τ ∼ 105, the growth rate of the very short wavelength convective modes increases by

factors of several when G falls from 10−2 to 10−4. When τ <∼ 104, and G ∼ 10−4, a second

mode, in addition to the convective mode, becomes unstable at short wavelengths. This

mode is weakly oscillatory, and its very low phase velocity (∼ 2.5 × 10−2 – 1.6 × 10−3 the

free fall velocity) behaves similarly to that of damped radiation sound waves at the same

wavelengths. Analysis of the corresponding amplitudes of the various physical quantitities’

perturbations shows that this mode has magnitude and especially phase relationships

between perturbations in pressure, density and velocity components that are intermediate

between those of convective modes and those characteristic of radiation sound waves.

It is important to note, however, that if the canonical disk solution applies, the product

Gτ = 2
(

z

h

)1/2

α−1RT R1/2
z

RR

. (23)

In other words, the product Gτ should be very nearly independent of radius (if α is). Even

where the relativistic corrections are substantial, Gτ hardly changes because RR and RT are

very nearly proportional, and Rz has a total range of at most a factor of two (Krolik 1999).

Thus, the criterion for which scaled wavelengths should be substantially affected by photon

diffusion (i.e., k∗ >
√

Gτ ) is almost independent of radius, but does depend somewhat on
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z/h.

Given our estimate of G (equation 22), we can also verify our expectation that

ω/cκρ � 1. Rewritten in terms of our dimensionless parameters, this ratio is ω∗G/τ .

As we have just estimated, G � 1 and τ � 1 in radiation pressure-supported α-disks.

Consequently, unless ω∗ is extremely large, ω/cκρ � 1 is a very safe assumption.

As already pointed out, Qp is much like a local version of the vertically-averaged

quantity α, the ratio of the r–φ stress to the total pressure. On this basis we expect Qp

to be somewhat less than unity. The (dimensional) dissipation perturbation coefficient

Qρ ≡ (∂Q/∂ρ), on the other hand, is most closely related to the ratio of the flux to the

surface density. In a Shakura-Sunyaev disk, this quantity (reduced to a dimensionless

number according to equation 18), is

(
F̃

Σ̃

)
≡ F

Σ

1

(hg3)1/2
=

1

2

(
3

2

)3/2

αṁ3/2
(

κ

κT

)3/2

x−3/2 R
5/2
R

R2
zRT

. (24)

Although we don’t know for certain that Qρ ∼ F̃ /Σ̃, it is a likely estimator. On this

basis, we expect Qρ � 1, and should be particularly small at larger radius or in disks with

relatively low accretion rate.

Like τ , varying Qp or Qρ affects the radiation sound waves much more than the

convective modes. The growth rate of the near-zero real frequency convective mode

is almost independent of Qp and Qρ over a large range in these parameters, but the

longer-wavelength radiation sound waves become unstable when these parameters are

positive. For example, when z/h = 0.5, and τ � 1, the growth rates for positive Qp and

null Qρ are ' (0.1 − 0.16)Qp, and, similarly, those for positive Qρ and null Qp turn out to

be ' (0.1 − 0.16)Qρ.

Unlike the convective mode, for radiation sound waves, growth persists to kr/kz < 1.

Although the maximum growth rate does not depend on the value of this ratio, the range
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of wavelengths for which growth occurs shrinks and moves towards larger wavelengths as

the ratio kr/kz decreases.

Smaller optical depth can also counteract the instability created by positive Qp or Qρ

(see also Agol & Krolik 1998 for a discussion of radiation diffusion damping of MHD waves).

In the very large τ limit, the maximum growth rate for radiation sound waves is almost

independent of the value of the optical depth, but for τ <∼ 104 it decreases with decreasing

τ . The radiation sound waves are all damped for τ < 103 or so; at larger optical depth, the

shorter wavelength modes remain damped (because, of course, diffusion is most effective

acting on them), but growth appears for longer wavelengths, with the range of growing

wavelengths stretching as τ increases. Fig. 3 shows the behaviour of the imaginary part of

the frequency and the normalised phase velocity for radiation sound waves with Qp = 1 and

Qρ = 0 as functions of wavenumber for a variety of optical depths.

Summarizing this discussion, we conclude that there are two sorts of instabilities of

importance in radiation pressure-supported disks: convective instabilities, which grow on

roughly the dynamical timescale, should be very nearly ubiquitous unless the disk becomes

almost optically thin; and radiation sound waves, which can be driven unstable (at a slower

rate) if Qp or Qρ is positive.

3.3. Comparison with the Classical Convection Problem

In standard treatments of convection in rotating fluids (e.g., Chandrasekhar 1961), it

is shown that convection begins when the “Rayleigh number”

R =
gαV βh4

κthν
(25)

exceeds a critical value (generally � 1) which depends on the “Taylor number”

T = 4
Ω2h4

ν2
. (26)
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Writing T for the temperature, we define αV ≡ |∂ ln ρ/∂T |, β ≡ |dT/dz|, κth is the thermal

conductivity, and ν is the kinematic viscosity.

This analysis applies partially, but not entirely, to the circumstances of radiation-

dominated accretion disks. The fact that, rather than entering the fluid solely at the

bottom, heat is actually generated throughout the fluid probably alters the quantitative

criteria for convective instability but should not change anything at a qualitative level. On

the other hand, certain contrasts are of greater importance.

One that requires mention is that the pressure in these circumstances, unlike in classical

fluids, depends only on the radiation, and is therefore independent of density. Consequently,

thermal diffusion can alter the pressure with no change in density. In the classical analog,

thermal diffusion can quench convective instability by adding heat to falling low-entropy

fluid elements, thereby forcing them to expand until their density no longer exceeds the

surrounding density. This occurs when κth is large enough that R falls below the critical

value. By contrast, in the radiation-dominated case, the density remains unchanged in the

face of thermal diffusion. This is why convection persists even when k∗ >
√

Gτ ; i.e., the

radiation analog of the Rayleigh number does not accurately predict the effect of thermal

diffusion on the instability.

Perhaps the most important contrast with classical fluids is that there is no easy

definition of the kinematic viscosity. Bulk orbital shear leads to angular momentum transfer

via magnetic forces (Balbus & Hawley 1998); these are, of course, entirely absent in our

treatment. However, stresses arising from other shears may be quite different, whether they

are caused by magnetic forces or other mechanisms (for example, photon diffusion: Agol

& Krolik 1998). For this reason, it is unclear whether the conventional equation of the

r − φ shear stress with a nominal viscosity (as in the Shakura-Sunyaev α formalism) is

appropriate here. In any event, none of these possible viscosity mechanisms is present in
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our equations; not even radiation viscosity is considered, for no radiation shear stress exists

in the pure diffusion approximation. Thus, in a formal sense, neither R nor T exists in our

treatment of this problem.

Nonetheless, having expressed these caveats, it is still of some interest to estimate what

T and R may be in radiation-dominated accretion disks in order to make some contact

with the classical theory. To do so we make the suspect identification discussed in the

preceding paragraph: we suppose that the shear viscosity in all directions is given by the

Shakura-Sunayev α. If so, T ' 10α−2, independent of radius (or anything else). Within the

radiation-dominated regime, the Rayleigh number is similarly constant: R ∼ O(10)(κ/κT )2.

Interestingly, the critical R for 10 < T < 105 is ∼ 103 – 104 (Chandrasekhar 1961). Thus, if

the most appropriate analog to ordinary fluid viscosity is correctly estimated by this means,

the strong convective instability we find might be quenched; however, as we have stressed,

it is by no means clear that this analogy applies.

4. Implications

We have shown that if an accretion disk is placed in the Shakura-Sunyaev radiation-

dominated equilibrium, the growth rate of the convective instability is hardly affected by

large changes in parameters such as the opacity or the way in which the local dissipation

might be perturbed. This behavior is, perhaps, not surprising, when one considers that the

convective instability is essentially dynamical, whereas the opacity and dissipation rates

pertain to the (rather more slowly accomplished) thermal balance.

Given that the Shakura-Sunyaev equilibrium is unstable to convection for all

reasonable parameters, we can hardly expect that it describes the actual state of radiation

pressure-dominated disks. One’s first guess might be that what happens instead is that
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entropy is redistributed so as to make the disks at most marginally unstable to convection

(Bisnovatyi-Kogan & Blinnikov 1977). If the entropy distribution is at most weakly

unstable to convection, then departures from hydrostatic equilbrium should be small, and

the equilibrium could be determined by applying these two conditions (i.e. isentropy and

hydrostatic balance). However, marginal stability to convection also suggests that the

amount of heat carried by convection is small, so that radiative diffusion dominates energy

exchange. Unfortunately, this condition is inconsistent with the first two. Any two of

these three conditions suffice to determine the equilibrium; the solution is over-determined

if all three are applied. The result must be, then, that in real disks none of them is

satisfied exactly, but all three are approximately correct. The quantitative character of this

balancing act can be determined only by detailed calculations that carry convection into

the nonlinear regime (e.g. Agol & Krolik 2000b).

Deviation from constant specific entropy can certainly be expected near the disk

surface. There, radiation diffusion should be able to consistently dominate convection as

a heat-loss mechanism because the diffusion time is much shorter than in the body of the

disk. Consequently, the specific entropy distribution near the surface must be clearly stable,

i.e. rise with increasing altitude.

The sense of heat redistribution by convection is to raise the specific entropy near the

top and diminish it below. For the same reason that radiative diffusion must dominate near

the top, this redistribution can have the side effect of changing the overall rate at which

heat is able to leave the disk. The mean specific entropy in equilibrium is therefore not

necessarily the same as the value predicted by the original Shakura-Sunyaev equilibrium.

These remarks do not bear on whether the thermal and viscous instabilities continue

to plague radiation-dominated disks. It is possible that convection might be able to remove

extra heat generated in the course of the thermal instability, and might consequently be
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able to quench it. Whether that is so can only be determined by detailed calculation of

heat transport by convection in the nonlinear regime (Agol & Krolik 2000b). Whether

the viscous instability acts under these conditions depends on the character of dynamical

coupling (see, e.g., Agol & Krolik 1998) between the radiation and the MHD turbulence

that most likely accounts for angular momentum transport in disks (Balbus & Hawley

1998).

We have also shown that radiation sound waves may be driven unstable if the emission

of radiation is proportional to either the gas density or the local radiation pressure

(the latter possibility is suggested by a straight-forward extrapolation of the “α-model).

Although phenomenological guesses of this variety are plausible, we do not yet know enough

about the physical mechanisms of dissipation in accretion disks to say whether this is what

should actually happen. However, if it does occur, growth of radiation sound waves (and,

presumably, magnetosonic waves) could provide an additional source of turbulence in disks,

supplementing magneto-rotational instability and convection. Indeed, if dissipation leads to

renewed stirring, there might be interesting twists to the character of the MHD turbulent

cascade.
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Fig. 1.— Dispersion curves of unstable convection modes for very large optical depth

(τ = 106). Non-dimensional growth rate, ω∗i ≡ ωi/
√

g/h, and logarithm of absolute value

of non-dimensional phase velocity, uph ≡ vph/
√

gh = ω∗r/k∗, are shown as functions of

the non-dimensional wavenumber k∗ = kh. In both plots the curves are labelled with the

corresponding value of the ratio of vertical to radial wavenumber kz/kr; curves for kz/kr < 0.1

are not shown, since, in the physically meaningful wavenumber range, the growth rates are

nearly identical to those found for kz/kr = 0.1.

Fig. 2.— Same as in Fig. 1, but for the smallest value of the optical depth expectable in the

disk regime under examination, that is τ = 102. The range of non-dimensional wavenumbers

shown is much smaller than for Fig. 1 because of the restriction imposed by using the diffusion

approximation.

Fig. 3.— Dispersion curves for radiation sound waves in a case including perturbation of

dissipation rate. The curves shown all refer to kz/kr = 0.7 as a reference value; see the

text for discussion of the dependence of the dispersion curves on the value of the ratio

kz/kr. Different curves are labelled with the corresponding value of the optical depth τ .

The wavenumber interval over which the mode is unstable depends on τ , growing in extent

towards larger wavenumbers with increasing τ .


